
lable at ScienceDirect

Renewable Energy 81 (2015) 825e836
Contents lists avai
Renewable Energy

journal homepage: www.elsevier .com/locate/renene
Using GIS analytics and social preference data to evaluate utility-scale
solar power site suitability

Justin Brewer a, Daniel P. Ames a, *, David Solan b, Randy Lee c, Juliet Carlisle d

a Department of Civil and Environmental Engineering, Brigham Young University, Provo, UT, USA
b Energy Policy Institute, Boise State University, Boise, ID, USA
c Idaho National Laboratory, Idaho Falls, ID, USA
d Political Science Department, University of Idaho, Moscow, ID, USA
a r t i c l e i n f o

Article history:
Received 27 August 2014
Accepted 6 April 2015
Available online

Keywords:
Photovoltaic electricity
Site suitability
Public attitudes
GIS
Solar energy
* Corresponding author.
E-mail address: dan.ames@byu.edu (D.P. Ames).

http://dx.doi.org/10.1016/j.renene.2015.04.017
0960-1481/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t

Determining socially acceptable and economically viable locations for utility-scale solar projects is a
costly process that depends on many technical, economic, environmental and social factors. This paper
presents a GIS-based multi-criteria solar project siting study conducted in the southwestern United
States with a unique social preference component. Proximity raster layers were derived from features
including roads, power lines, and rivers then overlain with 10 � 10 m raster terrain datasets including
slope and potential irradiance to produce a high resolution map showing solar energy potential from
“poor” to “excellent” for high potential counties across the southwestern United States. Similar maps
were produced by adding social acceptance data collected from a series of surveys showing the potential
public resistance to development that can be expected in areas of high solar energy suitability. Applying
social preferences to the model significantly reduced the amount of suitable area in each of the selected
study areas. The methods demonstrated are expected to help reduce time, money, and resources
currently allocated toward finding and assessing areas of high solar power suitability.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Energy demand is determined primarily by population growth,
industry, and geographic distribution, whereas the amount of
people that can be supported at an acceptable quality of life relies
heavily on the availability, costs, and efficiency to which energy is
produced [1]. Extensive, overuse of fossil fuels has been argued to
be responsible for excessive levels of carbon dioxide and resulting
ecologic, social, and, economic impacts [2]. This recognition drives
much active research in renewable energy.

Expanded use of renewable energy is expected to increase
global energy production at levels that would forego at least some
use of the world's finite resources and reduce the human impact on
the environment. Photovoltaic (PV) energy has lately received
growing attention as a potential alternative/renewable energy
source with clear advantages for regions where grid connected
power is inconvenient or expensive. In spite of recent efforts to
expand solar energy production, solar power presently contributes
only a small percentage of the total global energy supply. However,
PV energy production has shown to produce enough power to
compete in large scale markets [3]. In recent years, advanced solar
panel manufacturing practices have led to a dramatic drop in costs
and solar energy production has been shown to compete in price
with conventional sources in some U.S. markets [4]. As the PV
market grows, manufacturers will continue to standardize designs
and system installation and share efficient practices to further
reduce costs associated with PV energy production [5]. Paired with
the falling cost of PV hardware and technology, the viability of PV
utility-scale power production has the potential to capture a sig-
nificant share of the energy market.

At present, only 3% of the global energy market is supplied by
PV, however countries that have made renewable energy a priority
demonstrate meeting more than 30% of electricity demand with
wind and solar [6]. Historically, concerns regarding the long term
sustainable use of solar power have included costs related to vari-
able energy integration into the grid and the cost-to-efficiency ratio
regarding the variability of solar irradiance. These concerns have
considerably decreased due to advances in panel-to-grid integra-
tion technology. Advances in almost every aspect of PV technology
have led to solar energy cost competiveness.
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As advanced technologies cause physical system or “hard” costs
to continue to fall, a greater share of the cost of PV deployment is
associated with so-called “soft costs.” A survey directed by the Na-
tional Renewable Energy Laboratory (NREL) found that non-
hardware balance-of-system soft costs account for an increasing
portion of PV systems by an average of 50%e64% of total installed
price [7]. While the NREL study was for rooftop solar systems and
surveyed installers about some soft costs such as planning, time to
permit, and compliance, it is indicative of the potential for cost and
time savings at the utility-scale for both developers and regulators.
Improving site selection through a GIS application to decrease soft
costs was specifically called out in a funding competition as part of
the Department of Energy's SunShot Initiative [8]. Recognizing that
utility-scale soft costs from a survey of developers is not possible due
to the reticence of industry to share competitive informationwith so
few players, the US Department of Energy recently issued a Request
for Information to glean information from stakeholders and experts
in regard to soft costs of utility-scale solar on public lands [9].

The United States Department of Energy's SunShot Initiative's key
focus is to give solar power research the boost needed to compete on
the openmarketwith other forms of energy production by the end of
the decade. This includes the reduction of soft costs such as pre-
liminary siting. According to the energy.gov web site:

“The stated goal of the SunShot Initiative is to reduce the total
installed cost of solar energy systems to $.06 per kilowatt-hour
(kWh) by 2020. SunShot has achieved 60% of its goal, only three
years into the program's ten-year timeline. Since SunShot's
launch in 2011, the average price per kWh of a utility-scale
photovoltaic (PV) project has dropped from about $0.21 to
$0.11” [10].

Many of these goals are aided through freely accessible and
commercial web-based mapping applications to assist analyzing
solar energy project siting decisions. Examples of such web map-
ping applications include:

� PVMapper (http://pvmapper.org) is an open-source geographic
information system (GIS)-based web application that provides
utility-scale solar developers with tools and data for site selec-
tion and screening of potential PV solar energy plants. This study
extensively uses PVMapper for mapping functions, modeling,
and analysis.

� The Eastern Interconnection States Planning Commission
(EISPC) Energy Zones Mapping Tool (https://eispctools.anl.gov)
facilitates planning for clean energy zones and provides and
extensive library of energy resources and other siting factors as
mapping layers, models to map the suitability for solar energy
and other technologies, and region-specific reports.

� Solar Energy Environmental Mapper (http://solarmapper.anl.
gov) concentrates on the southwestern United States and was
developed to share information relevant to siting utility-scale
solar projects in the six southwestern states included in the
scope of the Solar Energy Development Programmatic Envi-
ronmental Impact Statement.

� Landscape Modeler by Esri is a commercial web based tool that
allows a user to specify environmental and cultural factors
considered important to decisionmaking, select the appropriate
data layers, weigh them according to importance, and then use
geoprocessing tools to identify the best locations for a particular
purpose.

Software tools such as these allow for the use of raster (grid-
based) map data services to visualize information such as critical
habitats, development risk, fire potential, and solar power potential
across the U.S., ultimately supporting optimal infrastructure siting
decision-making. Advances in data processing technology and the
availability of geospatial information have the potential to guide
major infrastructure policy decisions [11]. Such tools help fill the
need for large scale information management that weighs energy
production potential and assess potential cost considerations and
conflicts [12]. Indeed, the use of GIS data for renewable resource
site suitability analysis has been become a trusted practice for
stakeholders worldwide [13e18]. Finding a suitable location for
solar energy development affects purchase price, solar power effi-
ciency, environmental impacts, and public opinion [19]. The factors
contributing to the success of solar development siting include
physical characteristics such as slope, road and water proximity,
land ownership and use, and grid connectivity. Developers must
also avoid areas with high environmental impact [20]. Much of the
data related to these factors are freely available.

In addition to physical constraints, social attitudes can also
affect where and solar development occurs. While research dem-
onstrates that majority of Americans support renewable energy
generally [21e25] and solar energy in particular [26,27], develop-
ment of utility-scale solar has been impeded due obstacles such as
cost, efficiency, and regulations [28]. A typical explanation of slow
development tended to place blame on local residents' opposition
to proposed development. However, recently researchers have
found support and opposition to proposed renewable projects are
the result of a variety of factors. Indeed, even environmentalists
have opposed proposed projects due to the impacts of solar facil-
ities on rare desert plants and animals [29]. In the San Luis Valley of
Colorado, local residents sided with environmental groups to
oppose a concentrated solar power (CSP) facility due to the impact
the project would have on the local ecosystem, especially with
regards to transmission line siting, and despite recognizing other
benefits of solar power for the environment [27]. This example is
not an isolated case; despite widespread support for renewable
energy, including solar, specific projects are often met with strong
opposition [30]. As Devine-Wright states, “It is widely recognized
that public acceptability often poses a barrier towards renewable
energy development’’ [22] (p. 125). Thus, an important factor to
successful solar development and other renewables is to under-
stand factors affecting public attitudes toward the resource in
general, as well as those perhaps specific to place and geography.

This paper presents an approach to developing large-scale high-
resolution site suitability maps of potential utility-scale PV instal-
lation locations based on both physical and social constraints.
Although the approach could be applied anywhere with adequate
spatial data inputs, the method is presented here with results for
several counties in the southwest region of the United States. By
modeling public sentiments toward potential solar PV develop-
ment locations the approach can help reduce the potential
economical pitfalls associated with public resistance. Public atti-
tudes are of particular importance because they can slow or stop a
project that should be permissible by law and regulation.

This approach is of particular value to developers and to gov-
ernment permitters and regulators, called “authorities having
jurisdiction” (AHJs). Modeling public preferences in regard to siting
energy infrastructure on or near specific land use or land features
does not replace the importance of meaningful public engagement
for a given project; rather it helps to identify where and why it is
most needed. Developers must often simultaneously compare op-
tions for sites in multiple jurisdictions if not in different states.
Modeling of social preferences enables utility-scale PV developers
to down-select a limited number of sites for expensive intercon-
nection studies, at which point they must begin AHJ and public
engagement in earnest [31]. AHJs may use the information to
identify where constituents and local stakeholders are likely to
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prefer or oppose siting infrastructure, as well as the intensity of
feeling as to location. This approach targets a different stage in the
development process and departs from studies that use the
configurative case study method which focuses on public percep-
tions and engagement after a renewable energy project has already
been proposed or constructed [32e34].

Note that the study presented here does not account for regu-
lations e though regulatory issues certainly play a large role in site
development. Web-based GIS applications such as PVMapper use
datasets that identify lands owned, regulated, or managed by state
and federal agencies. Different developers interpret the regulation
according to their own business plans and perceptions of risk, with
some viewing it as neutral or possibly even a competitive advan-
tage if they have experience with certain requirements, while
others view a particular management classification as a “no-go”
area [31]. Beyond accurate identification by the application, the
varied opinions from developers make the issue of regulations
difficult to score objectively and consistently.

2. Methods

Solar energy resource analysis for utility-scale development is
affected by factors that can be divided into four categories: technical,
economic, environmental, and social. Technical, economic and
environmental factors depend on the physical terrain, existing
infrastructure proximity, geographic location, and land use re-
strictions and regulations. The fourth category, “social”, is somewhat
variable over time based on popular or cultural beliefs and perceived
aesthetics regarding environmental issues, in addition to stages in
the development process when opposition tends to be strongest
when projects are first proposed or revealed to the public [35].
Further, the social category “manifest[s]…the public's perception of
environmental value and agencies' valuation of ecosystem services”
[36], which in turn impact the other three categories. To develop a
site suitability map that adequately addresses these four main cat-
egories, we assessed and processed available datasets using ArcGIS
software. We chose the southwestern region of the U.S. due to the
substantial growth of commercial PV in the region, the availability of
potential lands with “excellent” suitability, and the ability to test
results against many existing PV sites.

The technical, economic and environmental limiting factors for
preliminary PV solar siting and this study were derived from dis-
cussions and decisions made by the PVMapper Steering Committee
e a group of industry professionals who guided the development of
PVMapper. Preliminary terrain and proximity siting requires the
consideration of existing infrastructure that affect the direct cost of
utility-scale PV solar power development and potential solar irra-
diance that directly impacts the efficiency of an operating site [37].
Vehicle access to a developing site is essential for constructability
and maintenance. Due to the high cost of road construction, prox-
imity to existing roads is essential during preliminary siting.
Proximity to grid transmission lines affects construction and
development costs while proximity to a stable water source is
needed for suitable maintenance. While PV power plants require
minimal water resources for their operations than other solar po-
wer generation technologies (such as CSP), significant water re-
sources are imperative during the development stages of utility-
scale PV plants. Only after development is it is generally sufficient
to import water via trucks to maintain operations.

For PV development, flat terrain is essential for both solar
exposure and constructability while a high daily annual solar
irradiance is needed for plant efficiency and stability. Terrain aspect
(compass direction) could also be an important physical parameter
for site selection e particularly in the case of actual site layout and
design issues. However, we chose not to include aspect given the
large scale (state and county level) of this study, the predefined
preference for low slopes, and the use of angled mounting brackets
to overcome non-optimal slope direction. Land cover and land use
are also a critical constraints in nearly every site selection problem.
In the current work, land use is included in the model as part of the
social acceptance constraint parameters described in Section 2.4.
The final set of parameters used in the study include: distances to
roads, river, and power lines together with low maximum slopes
and with high average daily annual solar irradiance values. Future
work could use the approach presented here with the addition of
any combination of additional site selection constraints.

The following sections describe the two-phase approach to the
project including: 1) large scale (multi-state) site suitability using
only physical constraints as limiting factors; and 2) county level
assessment of site suitability incorporating both physical con-
straints and social acceptance factors. Results from phase one were
used to help select specific counties for further study in phase two.

2.1. Large scale site suitability map

2.1.1. Limiting factors
The commencement of this project required data for currently

operating PV projects within the study area. Solar Energy Industries
Association (SEIA) provided its national database of all ground-
mounted solar projects, 1 MW capacity and above, that are either
operating, under construction or under development. These data
were collected by SEIA from public announcements of solar pro-
jects in the form of company press releases, news releases, and in
some cases conversations with individual developers. Data were
edited to show only PV sites in operating status within the south-
west region of the U.S. The top 100 capacity sites in the regionwere
selected to determine optimum proximity to specific features as
well as slope and solar irradiance values for currently operating PV
power plants.

Each selected site was processed by PVMapper [38] to analyze
the maximum slope, minimum irradiance value, and distance to
nearest river, road, and major grid power line. The PVMapper
scorecard tool uses GIS layers to give an overview of the site terrain
slope, soil, solar irradiance potential and land cover as well the
distance to such features as the nearest transmission lines, rivers,
and roads. Data provided by PVMapper are presented in a report for
each site. Site data extracted from PVMapper reports were added to
a spreadsheet giving each site a row with columns representing
distance to feature values, maximum slope and minimum irradi-
ance values for a flat plate tilted solar collector. The values for each
column were analyzed and the 85th percentile value was selected
to represent limiting values for the Boolean map to be built. The
85th percentile was chosen as roughly one standard deviation from
the mean (z-score ¼ 1.036). Using the 85th percentile effectively
removed outlier values. The results, shown in Table 1, can be
interpreted as follows: 85% of the facilities examined are within
.56 km of a road and are within 17.3 km of a river, etc. In the case of
the non-distance parameters, 85% of the facilities have at least
6.5 Kwh/m2/day and are on a slope of no more than 3.1�.

2.1.2. Description of data and sources
Terrain data are used to model the potential solar exposure loss

due to the poor slope and aspect characteristics of the land. Also a
high-resolution digital terrain model can predict constructability
issues associated with steep slopes. Digital Elevation Model (DEM)
data, or a digital representation of a terrain's surface, were
extracted from the “National Map Viewer” managed by the USGS
National Geospatial program (NGP). Datawere extracted in 10-m by
10-m cell-size (10 m) raster format and converted to slope raster
data, shown in Fig. 1.



Table 1
Selected 85th percentile values for existing site data extracted from PVMapper.

Parameter 85th Percentile

Road proximity distance (km) .56
River proximity distance (km) 17.3
Power line proximity distance (km) 32.7
Irradiance e Tilted Flat Plate (Kwh/m2/day) 6.5
Maximum slope (degree) 3.1
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Infrastructure proximity data layers used for this analysis were
derived fromOpenSteetMap (OSM); a collaborative editable map of
the world where data is imported from digitization of aerial
photography and other user-contributed sources. We chose roads
and major electrical grid towers to represent the necessity for
nearby grid connections and/or substation conversion potential
and site accessibility. We extracted these polyline and point data-
sets from the study area extent to create the input data layers
shown in Fig. 1. Solar irradiance data were derived from solar maps
provided by the NREL online data repository. Data values represent,
“the solar energy resource available to a flat plate collector, such as
a photovoltaic panel, oriented due south at an angle from hori-
zontal to equal the latitude of the collector location” (http://www.
nrel.gov/gis/solar.html). According to NREL, “this is a typical prac-
tice for PV system installation, although other orientations are also
used.” The data provide, “monthly average daily total solar resource
information on grid cells of approximately 40 km by 40 km in size”
[39]. This map was developed from the Climatological Solar Radi-
ation (CSR) Model. The CSR model was derived using three pa-
rameters including cloud cover, horizontal surfaces, and trace
gasses together with water vapor. Eight years of data were used to
define cloud cover as monthly average percent cover per 40 km grid
cell [40]. The 40 km data format was extracted as a polygon feature
class containing the annual daily average irradiance values in kwh/
m2/day, shown in Fig. 1.
Fig. 1. Geospatial input data used to
2.1.3. Data preparation
The goal of a Boolean map is to demonstrate geospatial areas

that fit within given limitations of various GIS layers. The resulting
map is presented in the form of a single vector dataset or “shape-
file” representing the area that overlaps every layer's acceptability
parameters. The area of study for this project required the infra-
structure proximity layers be edited to contain the southwestern
region of the U.S. We processed the road polyline data for the area
of study to create a shapefile layer representing the acceptable area
for PV development according to the 85th percentile values shown
in Table 1. This was done using the buffer function in ArcMap that
produced a polygon layer representing all area within .56 km of an
existing road. We used a similar process to produce polygon layers
representing the acceptable areas for development near existing
rivers and power lines.

The process to prepare the slope and solar irradiance gridded
datasets required the conversion of gridded data to polygons. We
then selected the polygons containing acceptable values using a
simple SQL expression to query the area containing the acceptable
values shown in Table 1. The road, river, power line, slope, and solar
irradiance layers were then intersected. The intersect tool, a part of
the ArcMap analysis toolbox, computes a geometric intersection of
the input features which overlap in all layers. The output produces a
shapefile representing the areas that fit within the limitations of
each parameter, shown in Fig. 2.
2.1.4. Zonal statistics
The Boolean map shown in Fig. 2 is a representation of suitable

land for the development of utility-scale PV solar power. The five
suitability factors used were determined by the PVMapper Steering
Committee. We derived the parameters for each factor from the
analysis done on the 100 highest capacity operational PV sites in
the study area. We used the 85th percentile values as limiting
values for each factor to produce for the reasons given in 2.1.1. The
for site suitability assessment.

http://www.nrel.gov/gis/solar.html
http://www.nrel.gov/gis/solar.html


Fig. 2. Acceptable areas for PV development based on large-scale assessment.
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Boolean mapwe created was used for visual suitability analysis and
to assess the highest concentration of area suitable for PV devel-
opment. Using ArcGIS and this map, we calculated the zonal sta-
tistics for each county in the southwestern U.S. The results of this
analysis are shown below in Table 2.

Table 2 shows the five counties in each state with the highest
concentration of suitable area in order of most total suitable area as
defined by the Boolean map and the zonal analysis we prepared
using ArcMap. This preliminary breakdown returned the counties
Table 2
Results of the zonal statistical analysis showing percent and total suitable area.

State County Total area
(Km2)

Suitable area
(Km2)

Percent suitable
area

Arizona Apache 43,123 21,010 49%
Arizona Navajo 38,463 16,146 42%
Arizona Maricopa 34,074 15,411 45%
Arizona Pinal 19,609 9352 48%
Arizona Cochise 22,466 9223 41%
California Modoc 19,422 8309 43%
California Lassen 21,057 12,424 59%
California Merced 7954 5618 71%
California Butte 7251 4041 56%
California Stanislaus 6348 3356 53%
California Nevada 4214 2875 68%
Colorado Kit Carson 9359 7436 79%
Colorado Elbert 7866 6160 78%
Colorado Arapahoe 3481 2827 81%
Colorado Alamosa 2892 2180 75%
Colorado Denver 683 675 99%
Nevada Pershing 26,836 10,898 41%
Nevada Eureka 18,313 7818 43%
Nevada Lyon 8762 4082 47%
Nevada Storey 1136 579 51%
Nevada Carson City 695 358 51%
New Mexico San Juan 22,203 12,936 58%
New Mexico Chaves 22,647 11,213 50%
New Mexico Guadalupe 11,606 5874 51%
New Mexico Valencia 4218 2877 68%
New Mexico Bernalillo 4476 2438 54%
Utah Uintah 19,982 9104 46%
Utah Duchesne 14,451 6510 45%
Utah Sanpete 6784 3137 46%
Utah Carbon 6722 2987 44%
Utah Rich 4750 2240 47%
in the southwestern region of the U.S. that are most suitable for
further analysis. We selected the top two counties in each state
with highest total suitable area for high-density suitability analysis
including social factors.

2.2. Solar PV site suitability analysis

A GIS site-suitability analysis is a process used to determine the
appropriateness of a given area for particular use based on a
calculated raster or gridded values. The basic principle behind a
suitability analysis for the purposes of this project is to determine
the degree to which each area is suitable for solar PV development
on a utility-scale. Suitability was determined through amulti-factor
analysis of landscape characteristics derived from the parameters
suggested by the PVMapper Steering Committee including: prox-
imity to roads, rivers, and power lines; low slope; and high solar
irradiance.

2.3. Geoprocessing model

High density10 m cell-size raster layers were produced for each
suitability parameter. Proximity-to-feature layers were converted
from the vector format provided by OSM to 10 m raster data layers
using ArcGIS. Each 10 m raster layer created was built to exactly
match the 10 m slope layer raster cells for ease in layer calculations
performed at a later stage. Raster input data layers were reclassified
and combined using a weighted sum on a cell-by-cell basis using
map algebra [41]. We built and organized these operations using a
visual programming application called ModelBuilder included in
Esri's ArcGIS software package. ModelBuilder allows processes to
be organized together in sequences of geoprocessing tools, linking
the output of one tool into another tool as input as shown in the
geoprocessing workflow in Fig. 3.

To evaluate each area according to its distance to a specific
infrastructure feature, we derived a Euclidean distance raster from
each road, river, and power line raster using the Euclidean Distance
tool in ArcMap to evaluate proximity. The output of this process is
then used as the input for a reclassify function that groups distance
values into 9 bins and gives each bin an integer ranging from 1 to 9.
We chose 9 bins based on the Rice Rule for histogram binning
which suggests that the number of bins be equal to twice the cube
root of the number samplese in our case,100 samples. In this way a
new output raster is created for each parameter containing only
integer values from 1 to 9, each representing a step scale of dis-
tances to existing roads. We defined the distribution of bins or
categories for each parameter based on common maximum dis-
tances for each infrastructure feature. For roads, the 9 categories
were reclassified from a range of 0 kme6 km, rivers ranged from
0 km to 45 km, and power line distances ranged from 0 km to
85 km. The workflow diagram for the full suitability assessment
process is shown in Fig. 3.

When classifying distances to features it is important to expand
the processing extent to include features just beyond the county
borders. Fig. 3 shows the county mask feature buffered by 1 km to
include nearby features just outside county boundaries. The buff-
ered shape was then used as the extent to which processing
occurred. To restore the raster extent to the area of study, a mask of
the original county shape was applied during map algebra
calculations.

Slope and solar irradiance data were also reclassified to create
10 m raster layers containing integers ranging from 1 to 9. Solar
irradiance values were redefined by 9 evenly distributed categories
from 3 to 8 kwh/m2/day. We also assigned reclassified values to
slope characteristics into 9 evenly distributed categories ranging
from 0 to 90�. Cells with a value of 9 represent area of flat terrain or



Fig. 3. Geoprocessing workflow including data pre-processing, raster reclassification, and weighted suitability analysis.
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high irradiance value. Cells with a value of 1 represent terrain
containing steep slopes and areas of low solar exposure.

The reclassified raster datasets shown in Fig. 3 each contain
integer values ranging from 1 to 9 representing the suitability in-
side each layer. The next process, Weighted Sum, combines each of
these raster index layers based on the relative value each parameter
brings to PV development and operational costs. This step is
required because the index values of each parameter do not
necessarily correspond to each other directly in terms of actual
costs. Weights were developed using the 85th percentile values
shown in Table 1 e comparing the cost to construct .56 km of road
with the cost to install 17.3 km of water line and 32.7 km of power
line. A comparison shows that the needed power line and water
line construction cost are similar and about 80 percent of the cost of
building the needed road length. The cost associated with the
constructability issues that arise from steep slopes is difficult to
weigh, so we chose the weighted value for this parameter to be
equal to that of building a .56 km stretch of road. The value of solar
irradiance is also difficult to determine due to future advancements
in technology, but because solar exposure affects plant efficiency
for the entire design life of the facility, we chose to weight it 10
percent higher than road construction. Table 3 shows the weighted
values.

We determined a weighted sum model or multi-criteria deci-
sion analysis was the best method for analysis since each layer has
been evaluated cell by cell with an integer value from 1 to 9 that
denotes the benefits of each parameter. This model multiplies the
weighted value by each raster layer value that sums each corre-
sponding cell. The result is a raster layer containing values ranging
from 4.7, the lowest possible product, or 42.3, the highest possible
product of the weighted sum model. The weighted sum model
result was reclassified as “Poor”, “Good”, or “Excellent” suitability
to simplify display and interpretation in the final result maps.

Table 4 shows the weighted sum value ranges and associated
reclassified values. Note that the “Excellent” category was defined
Table 3
Weighted values used to determine suitability.

Weighted Value

Existing road proximity 1
Existing power line proximity .8
Existing water source proximity .8
Slope 1
Solar irradiance 1.1
at the boundaries of values for all existing sites (i.e. all of the
existing sites had weighted sum suitability values between 32 and
42.3). The “Good” and “Poor” value ranges were chosen to split the
remaining land areas of the total study area evenly into these two
categories (i.e. half of the non-“Excellent” areas had weighted sum
suitability values between 26 and 32 and the remaining half of the
non-“Excellent” areas hadweighted sum suitability values between
4.7 and 26). These values were determined from the results of the
physical constraints model (Fig. 3), not including any social
acceptance constraints.

The geoprocessing workflow linking the weighted sum analysis
to the reclassify tool is shown in Fig. 3. The weighted sum tool was
restricted to process only within the confines of the original county
boundary. This ensures that final map results show only suitable
area inside the area of study, but still include the distance to fea-
tures outside the extent.

2.4. Public acceptance model

2.4.1. PVMapper survey
The integration of social attitudes moves beyond simplistic “not

in my backyard” (NIMBY) explanations that have been intensively
criticized in the renewable energy siting literature for assuming
opposition comes from ill-informed and purely provincial attitudes
and is largely a function of a project's proximity to a person's home
[25,26,42e44]. Stakeholders' motivations and reasons for both
opposition and support for particular projects are complex and
hinge on many factors such as informed knowledge of environ-
mental impact and land use [42]; visual disturbance [45]; trust,
perceived equity and fairness [46]; “framing,” [47] local economic
development and jobs [48]; and as many recent studies have
investigated, attachment to place [26,49].

The present study's approach focuses on one aspect, and ex-
tends the concept of place attachment from “place protective” to
“land use and feature protective.” This approach is additionally
novel because widespread utility-scale solar development globally
is a new phenomenon in just the last few years; most siting
Table 4
Weighted site suitability status values.

Weighted sum values Reclassified values

4.7e26 Poor
26e32 Good
32e42.3 Excellent
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research has focused on wind energy because it is the most prev-
alent around theworld. Solar research has tended to focus on public
support for solar as a technology and at the national level [50].

Included in the scope of the PVMapper project is the formal
integration of socio-political attitudes and economical solar site
suitability designed from data retrieved from a specially designed
2012 public opinion survey. The survey was administered to a na-
tional sample with oversampling in the southwestern US, where
large MW utility-scale development was beginning to occur and
future projects were being proposed. This population was most apt
to have knowledge of solar technology and had experienced the
effects of development.

Part of the public opinion survey was designed to gauge the
public's preferred distances or buffers, between solar facility and a
variety of land features including residential areas, agricultural
lands, cultural resources, wildlife breeding grounds, recreation
areas, and existing solar facilities. The survey questions defined 4
categories of distances for response: less than a mile, 1e5 miles,
6e10 miles, and more than 10 miles. These categories define the
minimum acceptable distance between the land feature and a po-
tential solar facility. For example, if a respondent chose less than a
mile, the minimum acceptable distance between the feature and
the solar generation facility was less than a mile, and any distance
greater was acceptable. The responses for preferred buffer dis-
tances also acted as a measure or proxy for intensity of feeling. For
example, a majority of responses at a more than a 10 mile distance
from a given land use or feature inferred a high level of opposition
intensity if infrastructure was to be sited in close proximity.

Fig. 4 shows the results representing minimal acceptable dis-
tances from each feature to solar power plant construction. For
Fig. 4. Survey results for support distances

Fig. 5. Geoprocessing workflow f
residential areas, a solar power plant built more than 6 miles away
is supported by 72% of those surveyed. For breeding or nesting sites,
a large majority of respondents believe that only 10 or more miles
away is suitable for PV development and about 49% of those sur-
veyed believe a solar development location needs to be at least 6
miles away from recreational areas. Sixty-five percent of the public
believe solar power development within 5 miles of agricultural
land is acceptable.

The PVMapper survey allows for site suitability based on tech-
nical, economical, and environmental factors to be analyzed ac-
cording to the potential social acceptance as a function of feature
proximity. The method used to locate areas of high suitability with
high percentage of public acceptance was to build a public
acceptability layer. The goal of a public acceptance model is to build
a raster that contains the lowest percentage of potential social
acceptance in each cell according to the proximity of the five fea-
tures of study outlined by the PVMapper survey. This model was
designed to produce a high-density result that matches the suit-
ability raster already created. This was done specifically to overlay
the suitability layer and social acceptance layer to demonstrate
areas of high suitability and high social acceptance contrast to areas
of high suitability and potential public resistance.

2.4.2. Model details
Data used to define locations of residential area and agricultural

area were derived from land use raster data retrieved from the U.S.
Department of Agriculture's National Agricultural Statistics Service.
We extracted cells containing values that represent residential
areas and agricultural areas to create a residential data layer and an
agricultural data layer. Breeding and Nesting location data was
between solar facility and land uses.

or social acceptance model.
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defined by the U.S. Fish and Wildlife Services' Geospatial Services
and was extracted as polygon shape files. Recreational Boundaries
were defined by the U.S. Department of the Interior Bureau of Land
Management. The National Register of Historic Places containing
geographical locations of registered historic sites was downloaded
from the U.S. National Park Service.
Fig. 6. Site suitability based on physical constraints for Lassen C
We built the social acceptancemodel usingModelBuilder within
the area of study defined for this project as the southwestern U.S.
We used each feature layer collected to create 5 Euclidean distance
raster datasets with 10 m cell-size and snapped to site suitability
raster. The distance raster datasets were reclassified to represent
the categorical public acceptance percentages for each cell. For
ounty, Navajo County, Apache County, and Modoc County.
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example, we reclassified the distance from residential areas such
that all cells within 1mile of a residential areawere replaced with a
value of .21 to represent 21% of respondents that feel areas of 1 mile
or less to be acceptable for solar site development. Similarly, all
areas between 1 and 5 miles of residential areas are represented
Fig. 7. Results of social acceptance model showing low acce
with a .57 to show that 57% of people believe 5 miles or less to be
acceptable area for solar power development, this was continued
for the other values.

After reclassification there were five raster datasets that repre-
sent the public acceptance percentage according to proximity to
ptance (light areas) to high acceptance (darker areas).
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each respective feature. We then combined these datasets into one
layer using the minimum value of acceptance for each location as
the output. This meant that for any location in the area of study
there is a value representing the least accepted area for all five input
factors. Fig. 5 shows the geoprocessing work for these steps.

The completed Social acceptance model represents the mini-
mum percentage of public acceptance for each area according to
Fig. 8. Site development suitabi
the proximity to certain features such as endangered species
habitat and nesting sites, historical landmarks, residential area,
agricultural area and recreational area. This model is useful in
combination with the suitability model developed. The goal is to
analyze the social acceptance of areas with high geographical and
economical suitability for solar PV plant development. This goal
was satisfied by using simple map algebra to multiply the weighted
lity including social factors.



Table 5
Comparison of models with and without social considerations.

Suitability
Category

Results without
social data

Results including
social data

Area (km2) Percent of
total area

Area (km2) Percent of
total area

Apache AZ Poor 512 1% 36,922 86%
Good 11,286 26% 5986 14%
Excellent 31,325 73% 215 <1%

Navajo AZ Poor 1934 5% 29,531 77%
Good 12,647 33% 8284 21%
Excellent 23,880 62% 646 2%

Lassen CA Poor 721 3% 20,321 97%
Good 9925 47% 729 3%
Excellent 10,409 50% 5 <1%

Modoc CA Poor 1197 6% 18,153 94%
Good 9871 51% 1230 6%
Excellent 8353 43% 38 <1%

Duchesne UT Poor 3133 22% 14,423 100%
Good 6810 47% 27 0%
Excellent 4506 31% 0 <1%

Uintah UT Poor 2395 12% 19,916 100%
Good 10,225 51% 65 0%
Excellent 7361 37% 0 <1%

Eureka NV Poor 1427 8% 17,114 93%
Good 8408 46% 1195 7%
Excellent 8408 46% 4 <1%

Pershing NV Poor 2062 8% 23,582 88%
Good 12,878 48% 3135 12%
Excellent 11,895 44% 117 <1%

Elbert CO Poor 16 <1% 7835 100%
Good 2614 33% 31 <1%
Excellent 5236 67% 0 <1%

Kit Carson Poor 4 <1% 9355 100%
Good 1698 18% 4 <1%
Excellent 7656 82% 0 <1%

Chaves NM Poor 68 <1% 20,417 90%
Good 4594 20% 2020 9%
Excellent 17,984 80% 209 1%

San Juan NM Poor 0 <1% 18,926 85%
Good 2354 11% 3219 15%
Excellent 19,847 89% 56 <1%

J. Brewer et al. / Renewable Energy 81 (2015) 825e836 835
sum value data produced by the suitability workflow by the social
acceptance percentage before categorizing suitability according to
Table 4. For example, if an area suitability valuewas calculated to be
42, a high suitability value, it was then multiplied by its social
acceptance percentage value of .4 or 40% to be equal to 16.8. In this
way an area of high suitability with low percentage of acceptability
becomes an area of low suitability. The resulting map produced can
help developers find suitable areas while avoiding areas that could
produce public push back or general social disapproval.

3. Results and discussion

3.1. PV suitability results

The PV site suitability model and map product defines the areas
of the southwest U.S. region that satisfy the technical, economical,
and environmental goals of this study. The weighted values of
potential irradiance, slope considerations, and necessary existing
infrastructure show areas with high potential output relative to
constructability and cost efficiency. Weighted values produced
based on this model are shown in terms of “poor”, “good”, and
“excellent” for four specific counties in Fig. 6. Note that these initial
results do not include social acceptance factors, but are strictly
representative of physical constraints.

3.2. Social acceptance model results

The lasting implications of this study reside in the dynamic of
predicting likely public acceptance or resistance in regard to land
use and land features, or more accurately, public preferences. The
social acceptancemodel presented here is intended to attach values
representing the absence of public resistance to visually definable
geographical coordinates. The reverse is also true because the
model may be used to ascribe resistance values to visual maps; a
map incorporating both visualizes public preferences.

The 2012 PVMapper survey used as the underlying source for
this model was designed to capture American sentiments toward
solar development in general. However, this study was directed
specifically at the proximity of suitable land to areas of high envi-
ronmental controversy. The value of this model is in the identifi-
cation of the seemingly excellent potential in any siting model that
may intrude on areas that can spark public resistance. Developers
are made aware early in their own internal decision process as to
potential controversy, allowing them to look for alternatives or to
place special attention on public engagement and discussions for
that use and location. AHJs can use the information to provide
meaningful input and guidance to developers seeking to obtain
permits and local assent. In sum, public attitudes toward solar
development are essential to cost efficiency of PV production and to
gain momentum in the continuing battle for energy market share.
The map shown below in Fig. 7 shows the gradient of expected
public resistance values.

3.3. Resulting county overlay

Table 2 shows counties with high suitability density and total
area selected for further, high resolution analysis. For each selected
county, the suitability data were extracted and multiplied by the
public acceptance factor defined above. The result of this operation
can be interpreted as the suitable area for solar PV development
that has the least risk of encountering public resistance. The
distinction between high economic, environmental, and technical
potential and that same potential demonstrated with limited
negative public attitudes is essential to the financial success of solar
power production. By comparing Fig. 8 to Fig. 6, one can readily see
the high percentage of otherwise suitable area should be avoided in
light of potential public resistance. The social acceptance factor is
presented here as very conservative to avoid the unpredictable
culture of public opinion. In this way the models outlined in this
paper lead to defining areas carrying all the criteria necessary with
a high degree of confidence.

The amount of suitable area categorized as “Excellent” is
significantly reduced by current public attitudes toward utility
scale PV development. Although this study does not cover all
possible public concerns regarding solar development, it does allow
for future developers to consider aspects to siting that could cause
significant public outcry. An important finding of this study and
addition to the field of knowledge is that public concerns are to be
far reaching and have reduced the amount of suitable area by as
much as 78% in some counties. Table 5 compares the output of the
models with and without social data.
4. Conclusions

The goals of this study included determining likely acceptable
and economically viable locations for utility-scale solar projects. By
developing models with and without multi-criteria social accep-
tance, in-depth preliminary siting analysis can be done that allows
for the avoidance of solar development from areas that can cause
constructability and public issues. These issues hamper the solar PV
industry with both added cost and decreased efficiency. This paper
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presented the methods and results from a GIS-based spatial multi-
criteria solar siting assessment study done for the southwest U.S.
region. Suitability was assessed through economic, technical,
environmental, and social factors to determine areas of the study
region that contain both excellent terrain with proximity to fea-
tures that reduce the cost of construction and are in harmony with
the environmental sentiments of the public. Using this model de-
velopers will understand the limitations associated with current
social opinion regarding environmental issues. Avoiding unfore-
seen public resistance will overall reduce the soft costs associated
with solar development.
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