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_ | Overview of Presentation:

United States 2005 Differences
10,000 =5,300kWhlyr
= $165/capita

, oAV, * Multiple renewable energy and energy
efficiency tools are available; but

implementation is varied in details and
effectiveness

US GDP/capita

« In this talk we will examine different policy and
technology tools, focusing on the US, Germany,
and California to keep these ideas rooted in
practice

« Smart analysis and modeling tools are needed
for the smart grid

« Transportation and stationary power, once
separate, and now seen increasingly as linked
through energy and climate and health/air
quality issues
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Building A Sustainable Electric System: Model and Policy Components

Power Plants Electric Grid Customers

Nuclear Power Plants Utility-scale Distributed

Storage Storage

Transmission Lines
Natural Gas Generatars

Distribution
Substations

Plug-in Electric
Vehicles

Wind Farms

Solar Farms / Power Plants
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Energy Intensity (E/GDP) in the US 1949 - 2007
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If Intensity dropped at pre-1973
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Actual 1972 - 2007 Intensity
drops at 2% per year
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CA Peak Power: Testimony by Goldstein and Rosenfeld (Dec. 1974)
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Per Capita Electricity Sales (not including self-generation)
(kWh/person) (2006 to 2008 are forecast data)
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0 Cal GSP/capita 18,760 33,536 79%
©O N § © ®® O N ¥ O 0O O N ¥ © 0o O N ¥ © 0o O N ¥ © ©
© © © © © N N N N N ©O © © ®© ©®© &6 6 0o 0O O © 0 © O o
@2 222222222222 2222222R 8 -8 K




Renewable Energy Portfolio Standards

(30 states + Washington, DC)

MN: 25% by 2025
(Xcel: 30% by 2020)

ME: 30% by 2000

VT: RE meets load

|_*WA: 15% by 2020

growth by 2012

ND: 10% by 2015

MT: 15% by 2015 | 2015

. IA: 105 MW

@ CO 20% by 2020 (10Us)

OR: 25% by 2025 (large utilities)
6% - 10% by 2025 (smaller utilities)

X *NV: 20% by 2015 | 2015

-.-.

I: requirement varies by
utility; 10% by 2015 goal

10% by 2020 (co-ops & large munis) .'-'.'.'-'.'.-'.'."

CA: 20% by 2010

|Mo 11% by 2020

33% by 2020

*t AZ: 15% by 2025

3.t NM: 20% by 2020 (I0Us)
10% by 2020 (co-ops)

'.‘|:|.|: 20% by 2020 |

S

't NC: 12.5% by 2021 (10Us)

10% by 2018 (co-ops & munis)

10% by 2017 - new RE
Bt NH: 23.8% in 2025 |
MA: 4% by 2009 +

1% annual increase
, [RI: 16% by 2020 |
ICT: 23% by 2020 |
kX NY: 24% by 2013 |
Kt NJ: 22.5% by 2021 |
kX PA: 18%" by 2020 |
Kt MD: 9.5% in 2022 |
Kt *DE: 20% by 2019 |

TX: 5,880 MW by 2015 |

p ¥t Minimum solar or customer-sited RE requirement

* Increased credit for solar or customer-sited RE

'PA: 8% Tier 1/ 10% Tier II (includes non-renewables)
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Kt DC: 11% by 2022 |
['VA: 12% by 2022 |

[ state RPS

State Goal

Solar water
heating eligible

March 2011
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" Why AB 32?
Climate Impacts...
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California Projected Impacts

/5% loss in snow pack

1-2 foot sea level rise
70 more extreme heat days/year

80% more ‘likely ozone’ days
55% more large forest fires
Twice the drought years



California Global Warming Solutions Act:
~25% cut in emissions by 2020

% Change from 1990 levels In CA:

50% = - Carbon
CEC Data loading order

40% “Business as Usual
“ AB 32 Scenario - ~60 GW
30% peak, 12 new
GW of DG
20% manadate
10% - EV mandate

0%]

-10

ol
/
1990 1995 2000 2005 2010 2015 2020

An integrated framework that uses sectoral targets
and a carbon market (first auction, November 2012
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California Climate Planning (2006 — 2050)
Integration across sectors

Four Actions to Reduce Emissions

GHG Intensity-Demand Diagram
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Interacting Aspects of California’s Energy / Climate Policy:

« A history of attention and innovation in energy efficiency:
« Appliance standards
« Ulility rate decoupling (the key integrative policy measure)
« Experiment (disastrous, but did not stop progress) with deregulation
« AB1493: 30% reduction in vehicle GHG emissions
« AB32: An integrative GHG reduction bill, reaching across the
economy; return to the 1990 baseline by 2020 (~ a 25% reduction)
« Executive Order 7-01: A Low Carbon Field Standard
« An electricity ‘loading order’ to prioritize energy efficiency and then
renewables before any fossil-fuel projects, and a CO2/kWh limit set
to match natural gas power plants
« SB375: Land use and planning to reflect climate goals
« A million solar roof mandate and buy-down program (70% of US
solar systems installed in California)
« A 12 GW Distributed Generation Mandate
« A million electric vehicle mandate
« A feed-in tariff (small systems)
A 2050 goal of 80% decarbonization from 1990 levels
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Residential New Constructlon

* All new residential construction in California
will be zero net energy by 2020.
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California Investor owned Utility (IOU) Investment in Energy
Efficiency

1,000 Crisis Climate planning
51, Performance - . |
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Complex Power Systems: High Temporal and
Spatial Resolution Modeling

Energy Policy 43 (2012) 436-447

Contents lists available at SciVerse ScienceDirect

Energy Policy

FR journal homepage: www.elsevier.com/locate/enpol

High-resolution modeling of the western North American power system
demonstrates low-cost and low-carbon futures

James Nelson ®P, Josiah Johnston P, Ana Mileva P, Matthias Fripp ¢, lan Hoffman P9,

b . . . b,e,x
Autumn Petros-Good *°, Christian Blanco ¢, Daniel M. Kammen #"¢

2 Renewable and Appropriate Energy Laboratory, University of California, Berkeley, CA 94720-3050, United States

® Energy and Resources Group, University of California, Berkeley, CA 94720-3050, United States

¢ Environmental Change Institute, Oxford University, South Parks Road, Oxford, OX1 3QY, UK

d Electricity Markets and Policy Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
€ Goldman School of Public Policy, University of California, Berkeley, CA 94720-3050, United States

http://rael.berkeley.edu/switch
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The SWITCH-WECC Model (Energy Policy, 2012)
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Figure 1. Optimization and data framework of the western North American SWITCH model, WECC: Western Electricity Coordinating Council.
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New Generation & Storage Options in SWITCH
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The SWITCH-WECC Model (Energy Policy, 2012)
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Figure 6. Base Cost scenario hourly power system dispatch at 54% of 1990 emissions in 2026-2029. This scenario
corresponds to a $70/tCO, carbon price adder. The plot depicts six hours per day, two days per month, and twelve months.
Each vertical line divides different simulated days. Optimizations are offset eight hours from Pacific Standard Time (PST) and

consequently start at hour 16 of each day. Total generation exceeds load due to distribution, transmission, and storage
losses. Hydroelectric generation includes pumped storage when storing and releasing.
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The SWITCH-WECC Model (Energy Policy, 2012)

CARBON COST AND
DECARBONIZATION:
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Base Cost scenario CO,
emissions relative to 1990
emission levels (A) and yearly
power generation by fuel (B) in
2026-2029 as a function of
carbon price adder. As shown in
panel A, the climate stabilization
target of 450 ppm is reached at a
carbon price adder of $70/tCO..
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The SWITCH-WECC Model (Energy Policy, 2012)
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2026-2029
$701CO,
450 ppm target

fuel within each load
area and average
transmission flow
between load areas in
2026-2029 at 54% of
1990 emissions for the
Base Cost scenatrio.
This scenario
corresponds to a $70/
tCO, carbon price
adder. Transmission
lines are modeled along
existing transmission
paths, but are depicted
here as straight lines for
clarity. The Rocky
Mountains run along
the eastern edge of the
map, whereas the
Desert Southwest is
located in the south of
the map.




At 450 ppm target

n 2026-2029. Low Nuclear Low CSP CosV/
Base Cost Cost Low Gas Price High Gas Price High PV Cost  High PV Cost
1200
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- 1100
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Nelson, J. et al., Energy Policy, 43 (2012) 436—447 | http://rael.berkeley.edu/switch




US has twice the German insolation endowment
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German total additions more than 5x US size, Germany’s 2011
additions nearly 4x US market
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PV capacity additions (MW)
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70% of US solar market is CA
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US Soft-Balance of Systems cost make up nearly all the cost difference

Soft-BOS cost comparison for residential PV

4 fit
$ 3.60 profi
35 0.35 other costs
3 e
¥ permitting fee
25
= 1.73 =Pl
= 2
. ® marketing and
o 1.5 advertisement
™ customer acquisition
1 ]
$002'g1 " system design engineering
0.5 - '
- L ¥ installation labor
USA 2011 Germany 2011
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Critical peak pricing and the demand-side

Average Residential Response to Critical Peak Pricing

CPP Event
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* Transportation:
« Options for reducing GHG emissions from transportation subsectors
* Provide snapshots of 80% reduction in transport emissions

 Create a spreadsheet tool for developing scenarios and calculating
emissions
- Transportation Kaya identity

Transport )( Energy )( Carbon )

CO = | Population
2,Transport ( P )( Person Transport Energy

T E C

Transport intensity Energy Intensity Carbon Intensity
(e.g., VMT/capita) (e.g., MJ/mile) (e.g. gCO,-eq/MJ)
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