Assessing the greenhouse impact of natural gas

3 L. M. Cathles, June 6, 2012

4 Abstract

5 The global warming impact of substituting natural gas for coal and oil is currently in 6 debate. We address this question here by comparing the reduction of greenhouse warming 7 that would result from substituting gas for coal and some oil to the reduction which could 8 be achieved by instead substituting zero carbon energy sources. We show that substitution 9 of natural gas reduces global warming by 40% of that which could be attained by the substitution of zero carbon energy sources. At methane leakage rates that are $\sim 1\%$ of 10 production, which is similar to today's probable leakage rate of $\sim 1.5\%$ of production, the 11 12 40% benefit is realized as gas substitution occurs. For short transitions the leakage rate 13 must be more than 10 to 15% of production for gas substitution not to reduce warming. and for longer transitions the leakage must be much greater. But even if the leakage was so 14 15 high that the substitution was not of immediate benefit, the 40%-of-zero-carbon benefit 16 would be realized shortly after methane emissions ceased because methane is removed auickly form the atmosphere whereas CO_2 is not. The benefits of substitution are 17 18 unaffected by heat exchange to the ocean. CO₂ emissions are the key to anthropogenic 19 climate change, and substituting gas reduces them by 40% of that possible by conversion to 20 zero carbon energy sources. Gas substitution also reduces the rate at which zero carbon 21 energy sources must be eventually introduced.

22 Introduction

- In a recent controversial paper, Howarth et al. (2011) suggested that, because methane is a
- 24 far more potent greenhouse gas than carbon dioxide, the leakage of natural gas makes its
- 25 greenhouse forcing as bad and possibly twice as bad as coal, and they concluded that this
- 26 undermines the potential benefit of natural gas as a transition fuel to low carbon energy
- sources. Others (Hayhoe et al., 2009; Wigley, 2011) have pointed out that the warming
- 28 caused by reduced SO₂ emissions as coal electrical facilities are retired will compromise
- some of the benefits of the CO₂ reduction. Wigley (2011) has suggested that because the
- 30 impact of gas substitution for coal on global temperatures is small and there would be

some warming as SO₂ emissions are reduced, the decision of fuel use should be based on
resource availability and economics, not greenhouse gas considerations.

33 Some of these suggestions have been challenged. For example Cathles et al. (2012) have 34 taken issue with Howarth et al. for comparing gas and coal in terms of the heat content of 35 the fuels rather than their electricity generating capacity (coal is used only to generate 36 electricity), for exaggerating the methane leakage by a factor of 3.6, and for using an 37 inappropriately short (20 year) global warming potential factor (GWP). Nevertheless it 38 remains difficult to see in the published literature precisely what benefit might be realized 39 by substituting gas for coal and the use of metrics such as GWP factors seems to complicate 40 rather than simplify the analysis. This paper seeks to remedy these deficiencies by 41 comparing the benefits of natural gas substitution to those of immediately substituting 42 low-carbon energy sources. The comparative analysis goes back to the fundamental 43 equation and does not use simplified GWP metrics. Because it is a null analysis it avoids 44 the complications of SO_2 , carbon black, and the complexities of CO_2 removal from the 45 atmosphere. It shows that the substitution of natural gas for coal and some oil would 46 realize $\sim 40\%$ of the greenhouse benefits that could be had by replacing fossil fuels with 47 low carbon energy sources such as wind, solar, and nuclear. In the long term this gas 48 substitution benefit does not depend on the speed of the transition or the methane leakage 49 rate. If the transition is faster, greenhouse warming is less. If the leakage is less, the 50 reduction of warming during the substitution period is greater, but regardless of the rate of 51 leakage or the speed of substitution, natural gas achieves $\sim 40\%$ of the benefits of low 52 carbon energy substitution a few decades after methane emissions associated with gas 53 production cease. The benefit of natural gas substitution is a direct result of the decrease in CO₂ emissions it causes. 54

The calculation methods used here follow Wigley (2011), but are computed using programs of our own design from the equations and parameters given below. Parameters are defined that convert scenarios for the yearly consumption of the fossil fuels to the yearly production of CO₂ and CH₄. These greenhouse gases are then introduced into the atmosphere and removed using accepted equations. Radiative forcings are calculated for the volumetric gas concentrations as they increase, the equilibrium global temperature

61 change is computed by multiplying the sum of these forcings by the equilibrium sensitivity

62 factor currently favored by the IPCC, and the increments of equilibrium temperature

63 change are converted to transient temperature changes using a two layer ocean thermal

64 mixing model.

65 Emission Scenarios

66 Greenhouse warming is driven by the increase in the atmospheric levels of CO₂, CH₄ and 67 other greehouse gases that result from the burning of fossil fuels. Between 1970 and 2002, 68 world energy consumption from all sources (coal, gas, oil, nuclear, hydro and renewables) 69 increased at the rate of 2.1% per year. In the year 2005 six and a half billion people 70 consumed ~440EJ (EJ= exajoules = 10^{18} joules, 1 joule = 1.055 Btu; EIA, 2011) of energy. 71 Oil and gas supplied 110 EJ each, coal 165EJ, and other sources (hydro, nuclear, and 72 renewables such a wind and solar) 55 EJ (MiniCAM scenario, Clark, 2007). In 2100 the 73 world population is projected to plateau at ~ 10.5 billion. If the per person consumption 74 then is at today's European average of \sim 7 kW p⁻¹, global energy consumption in 2100 75 would be 2300 EJ per year (74 TW). We start with the fuel consumption pattern at 2005 76 AD and grow it exponentially so that it reaches 2300 EI per year at the end of a "transition" 77 period. At the end of the transition the energy is supplied almost entirely by low carbon 78 sources in all cases, but in the first half of the transition, which we call the growth period, 79 hydrocarbon consumption either increases on the current trajectory (the "business-as-80 usual" scenario), increases at the same equivalent rate with gas substituted for coal and oil 81 (a "substitute-gas scenario), or declines immediately (the low-carbon-fast scenario). Coal 82 use is phased out at exactly the same rate in the substitute-gas and low-carbon-fast 83 scenarios, so that the reduction of SO₂ and carbon black emissions is exactly the same in 84 these two scenarios and therefor is not a factor when we compare the reduction in 85 greenhouse warming for the substitute-gas and the low-carbon-fast scenarios.

Figure 1 shows the three fuel scenarios considered for a 100 year transition:

In first half (growth period) of the *business- as-usual* scenario (A in Figure 1), fossil
 fuel consumption increases 2.9 fold from 440 EJ/yr in 2005 to 1265 EJ/yr over the

89	50 year growth period, and then declines to 205.6 EJ/yr after the full transition. The
90	mix of hydrocarbons consumed at the end of the transition produces \mbox{CO}_2 emissions
91	at the same 4.13 GtC/yr rate as at the end of the other scenarios. The total energy
92	consumption grows at 2.13 $\%$ per year in the growth period, and at 1.2 $\%$ over the
93	decline period. The growth period is a shifted (to start in 2005), slightly simplified,
94	exponential version of the MiniCAM scenario in Clark (2007). We increase the
95	hydrocarbon consumption by the same factors as in the MiniCAM scenario, and
96	determine the renewable growth by subtracting the hydrocarbon energy
97	consumption from this total. The growth-decline combination is similar to the base
98	scenario used by Wigley(2011).

99 In the *substitute-gas* scenario (B in Figure 1), gas replaces coal and new oil 100 consumption over the growth period, and is replaced by low carbon fuels in the 101 decline period. Gas replaces coal on an equal electricity-generation basis 102 $(\Delta H_{aas} = \Delta H_{coal} R_{coal} / R_{aas} = 234 \text{ EJ y}^{-1}$, see Table 1), and gas replaces new oil (165 EJ y)^{-1} 103 on an equal heat content basis. Gas use at the end of the growth period is thus 729 104 El y⁻¹, rather than 330 El y-1in the business-as-usual scenario. The growth of 105 renewable energy consumption is greater than in (A). Over the ensuing decline 106 period, oil consumption drops to 75 EJ y⁻¹ and gas to 175 EJ y⁻¹.

In the *low-carbon-fast* scenario (C in Figure 1), low carbon energy sources replace
 coal, new gas, and new oil over the growth period, and gas use grows and oil use
 decreases so that the consumption at the end is the same as in the substitute-gas
 scenario.

These scenarios are intended to provide a simple basis for assessing the benefits of substituting gas for coal; they are intended to be instructive and realistic enough to be relevant to future societal decisions. The question they pose is: How far will substituting gas for coal and some oil take us toward the greenhouse benefits of an immediate and rapid conversion to low carbon energy sources.

116

117 Figure 1 Three fuel consumption scenarios compared in this paper: (A) Fossil fuel use in the business-as-usual 118 scenario continues the present growth in fossil fuel consumption in the initial 50 year growth period before low 119 carbon energy sources replace fossil fuels in the decline period. (B) In the substitute-gas scenario, gas replaces 120 coal such that the same amount of electricity is generated, and substitutes for new oil on an equal heat energy 121 basis. (C) In the low-carbon-fast scenario, low carbon energy sources immediately substitute for coal and new oil 122 and gas in the growth period, and gas use declines and substitutes for oil in the decline period. Numbers indicate 123 the consumption of the fuels in EJ per year at the start, midpoint, and end of the transition period. The total 124 energy use is the same in all scenarios and is indicated at the start, midpoint, and end by the bold black numbers 125 in (C).

126 Table 1. Parameters used in the calculations. *I* is the energy content of the fuel, *R* the efficiency of conversion to

	<i>I</i> [EJ Gt ⁻¹]	<i>R</i> [EJ _e EJ ⁻¹]	$\xi [Gt_C EJ^{-1}]$	ζ[Gt _{CH4} EJ ⁻¹]
Gas	55	0.6	0.015	1.8x10 ⁻⁴ for a leakage of 1% of production
Oil	43		0.020	
Coal	29	0.32	0.027	1.2x10 ⁻⁴ for 5m ³ /t

127 electricity, and ξ and ζ the carbon and methane emissions factors. See text for discussion.

128

129 Computation Method and Parameters

130 Table 1 summarizes the parameters used in the calculations. *I*[EJ Gt⁻¹], gives the heat

energy produced when each fossil fuel is burned in exajoules (10¹⁸ joules) per gigaton (10⁹

tons) of the fuel. The values we use are from http://www.natural-

133 gas.com.au/about/references.html. The energy density of coal varies from 25-37 GJ/t,

depending on the rank of the coal, but 29 GJ/t is considered a good average value for

135 calculations.

136 $R[EJ_e EJ^{-1}]$ is the efficiency with which gas and coal can be converted to electricity in

137 exajoules of electrical energy per exajoule of heat. Gas can generate electricity with much

138 greater efficiency than coal because it can drive a gas turbine whose effluent heat can then

be used to drive a steam generator. Looking forward, older low efficiency coal plants will

140 likely be replaced by higher efficiency combined cycle gas plants of this kind. The electrical

141 conversion efficiencies we adopt in Table 1 are those selected by Hayhoe et al. (2002, their

142 Table II).

143 The carbon emission factors in gigatons of carbon released to the atmosphere per exajoule

144 of combustion heat, ξ [Gt_c EJ⁻¹], listed in the fourth column of Table 1 are the factors

145 compiled by the EPA(2005) and used by Wigley (2011).

146 Finally, the methane emission factors, ζ [Gt_{CH4} EJ⁻¹] in the last column of Table 1 are

147 computed from the fraction of methane that leaks during the production and delivery of

148 natural gas and the volume of methane that is released to the atmosphere during mining

149 and transport of coal:

150
$$\xi_{gas}[Gt_{CH4} EJ^{-1}] = L[Gt_{CH4-vented} Gt_{CH4-burned}^{-1}]/I[EJ Gt_{CH4-burned}^{-1}]$$
(1a)

151
$$\xi_{coal}[Gt_{CH4} EJ^{-1}] = V[m_{CH4}^3 t_{coal-mined}^{-1}]\rho_{CH4}[t_{CH4} m_{CH4}^{-3}]/I[EJ Gt_{coal-burned}^{-1}]$$
 (1b)

The density of methane in (1b) ρ_{CH4} = 0.71x10⁻³ tons per m³. We treat the methane vented to the atmosphere during the production and distribution of natural gas, *L*, parametrically in our calculations. The natural gas leakage, L, is defined as the mass fraction of natural gas that is burned.

- 156 We assume in our calculations that 5 m³ of methane is released per ton of coal mined. The
- 157 leakage of methane during coal mining has been reviewed in detail by Howarth et al.
- 158 (2011) and Wigley (2011). Combining leakages from surface and deep mining in the
- proportions that coal is extracted in these two processes, they arrive at 6.26 m³/t and 4.88
- 160 m³/t respectively. The value we use lies between these two estimates, and appears to be a
- 161 reasonable estimate (e.g., see Saghafi et al., 1997), although some have estimated much
- higher values (e.g, Hayhoe et al., 2002, suggest \sim 23 m³/t).
- 163 The yearly discharge of CO₂ (measured in tons of carbon) and CH₄ to the atmosphere,
- Q_C[Gt_C y⁻¹] and Q_{CH4}[Gt_{CH4} y⁻¹], are related to the heat produced in burning the fuels, H[E] y⁻¹
 ¹] in Figure 1:

166
$$Q_C[Gt_Cy^{-1}] = H[EJy^{-1}]\xi[Gt_CEJ^{-1}]$$
 (2a)

- 167 $Q_{CH4}[Gt_{C}y^{-1}] = H[EJ y^{-1}]\zeta[Gt_{CH4} EJ^{-1}]$ (2b)
- 168 The volume fractions of CO_2 and CH_4 added to the atmosphere in year t_i by (1) are:

169
$$\Delta X_{co2}(t_i)[ppmv \ y^{-1}] = \frac{Q_C[Gt_C \ y^{-1}]10^{15} \frac{W_{CO2}}{W_C} \frac{W_{air}}{W_{CO2}} \frac{V_{cO2}}{V_{air}}}{M_{atm}[t]}$$
(3a)

170
$$\Delta X_{CH4}(t_i)[ppbv y^{-1}] = \frac{Q_{CH4}[Gt_{CH4}y^{-1}]10^{18} \frac{W_{air}}{W_{CH4}} \frac{V_{CH4}}{V_{air}}}{M_{atm}[t]}.$$
 (3b)

- Here $M_{atm}[t] = 5.3 \times 10^{15}$ tons is the mass of the atmosphere, W_{CO2} is the molecular weight of
- 172 CO_2 (44 g/mole), and V_{CO2} is the molar volume of C_{O2} , etc. In (2a) the first molecular weight
- 173 ratio converts the yearly mass addition of carbon to the yearly mass addition of CO₂, and
- 174 the second mass fraction ratio converts this to the volume fraction of CO₂ in the
- 175 atmosphere. We assume the gases are ideal and thus $V_{CO2} = V_{air}$.
- 176 Each yearly input of carbon dioxide and methane is assumed to decay with time as follows:

177
$$\Delta X_{co2}(t_i + t) = \Delta X_{co2}(t_i) f_{co2}(t)$$

$$f_{co2}(t) = 0.217 + 0.259 e^{-t/172.9} + 0.338 e^{-t/18.51} + 0.186 e^{-t/1.186}$$
(4a)

178
$$\frac{\Delta X_{CH4}(t_i + t) = \Delta X_{CH4}(t_i) f_{CH4}(t)}{f_{CH4}(t) = e^{-t/12}},$$
 (4b)

- 179 where *t* is time in years after the input of a yearly increment of gas at *t_i*. These decay rates 180 are those assumed by the IPCC (2007, Table 2.14). The 12 year decay time for methane in 181 (4b) is a perturbation lifetime that takes into account chemical reactions that increase 182 methane's lifetime according to the IPCC (2007, §2.10.3.1). The decay of CO_2 described by 183 (4a) does not account for changes with time in the carbonate-bicarbonate equilibrium 184 (such as decreasing CO₂ solubility as the temperature of the ocean surface waters 185 increases) which become important at higher concentrations of atmospheric CO_2 (see NRC, 186 2011; Eby et al., 2009). Equation (4a) thus probably understates the amount of CO_2 that 187 will be retained in the atmosphere when warming has become substantial.
- 188 The concentration of carbon dioxide and methane in the atmosphere as a function of time is 189 computed by summing the additions each year and the decayed contributions from the 190 additions in previous years:

191

$$X_{CO2}(t_{i}) = \Delta X_{CO2}(t_{i}) + \sum_{j=1}^{i-1} \Delta X_{CO2}(t_{j}) f_{CO2}(t_{i} - t_{j})$$

$$X_{CH4}(t_{i}) = \Delta X_{CH4}(t_{i}) + \sum_{j=1}^{i-1} \Delta X_{CH4}(t_{j}) f_{CH4}(t_{i} - t_{j})$$
(5)

192 where $X_{CO2}(t_i)$ and $X_{CH4}(t_i)$ are volumetric concentration of CO₂ and CH₄ in *ppmv* and *ppbv* 193 respectively, *i* runs from 1 to t_{tot} where t_{tot} is the duration of the transition in years, and the 194 sum terms on the right hand sides does not contribute unless $i \ge 2$.

195 The radiative forcings for carbon dioxide and methane, ΔF_{CO2} [W m⁻²] and ΔF_{CO2} [W m⁻²] are 196 computed using the following formulae given in the IPCC (2001, §6.3.5):

$$197 \qquad \Delta F_{CO2} \left[W \, m^{-2} \right] = 5.35 \ln \frac{X_{CO2}(t_i) + X_{CO2}(t=0)}{X_{CO2}(t=0)} \\ \Delta F_{CH4} \left[W \, m^{-2} \right] = 0.036 \, \Psi_{CH4} \left(\left(\sqrt{X_{CH4}(t_i) + X_{CH4}(0)} - \sqrt{X_{CH4}(0)} \right) - \left(f \left((X_{CH4}(t_i) + X_{CH4}(0)), N_o \right) - f \left(X_{CH4}(0) \right), N_o \right) \right) \\ f \left(M, N \right) = 0.47 \ln \left(1 + 2.01 \times 10^{-5} \left(MN \right)^{-5} + 5.31 \left(MN^{-15} \right) + M \left(NM \right)^{1.52} \right)$$
(6)

198 We start our calculations with the atmospheric conditions in 2005: $X_{CO2}[t=0]=379$ ppmv,

199 X_{CH4} [t=0]=1774 ppbv, and the N₂O concentration, N₀ =319 ppbv. Ψ_{CH4} is a factor that 200 magnifies the direct forcing of CH₄ to take into account the indirect interactions caused by 201 increases in atmospheric methane. The IPCC(2007) suggests these indirect interactions 202 increase the direct forcing first by 15% and then by an additional 25%, with the result that 203 ψ_{CH4} = 1.43. Shindell et al. (2009) have suggested additional indirect interactions which increase ψ_{CH4} to ~1.94. There is continuing discussion of the validity of Shindell et al.'s 204 205 suggested additional increase (see Hultman et al., 2011). We generally use ψ_{CH4} =1.43 in 206 our calculations, but consider the impact of ψ_{CH4} to ~1.94 where it could be important.

The radiative forcing of the greenhouse gas additions in (6) drives global temperaturechange. The ultimate change in global temperature they cause is:

$$209 \qquad \Delta T^{equil} = \Delta T_{CO2} + \Delta T_{CH4} = \lambda_s^{-1} \left(\Delta F_{CO2} + \Delta F_{CH4} \right), \tag{7}$$

where λ_s^{-1} is the equilibrium climate sensitivity. We adopt the IPCC, 2007 value $\lambda_s^{-1} = 0.8$, which is equivalent to assuming that a doubling of atmospheric CO₂[ppmv] causes a 3°C global temperature increase.

213 The heat capacity of the ocean delays the surface temperature response to greenhouse

forcing. Assuming, following Solomon et al (2011), a two layer ocean where the mixed

215 layer is in thermal equilibrium with the atmosphere:

216
$$C_{mix} \frac{\partial \Delta T_{mix}}{\partial t} = \lambda_s \left(\Delta T_{mix}^{equil} - \Delta T_{mix} \right) - \gamma \left(\Delta T_{mix} - \Delta T_{deep} \right)$$

$$C_{deep} \frac{\partial \Delta T_{mix}}{\partial t} = \gamma \left(\Delta T_{mix} - \Delta T_{deep} \right)$$
(8)

Here γ is the heat transfer coefficient for the flow of heat from the mixed layer into the deep layer in W K⁻¹ m⁻², and λ_s is the heat transfer coefficient into the mixed layer from the atmosphere (and the inverse of the equilibrium climate sensitivity). C_{mix} and C_{deep} are the heat storage capacities per unit surface area of the mixed and deep layers in J K⁻¹ m⁻². Defining $\Delta T'_{mix} = \Delta T^{equil}_{mix} - \Delta T_{mix}$, $\Delta T'_{deep} = \Delta T^{equil}_{mix} - \Delta T_{deep}$, $\bar{t} = t/\tau_{mix}$, and $\tau_{mix} = C_{mix}\lambda_s^{-1}$, we can write:

223
$$\frac{\partial}{\partial \bar{t}} \begin{pmatrix} \Delta T'_{mix} \\ \Delta T'_{deep} \end{pmatrix} = \begin{pmatrix} -(\gamma \lambda_s^{-1} + 1) & \gamma \lambda_s^{-1} \\ \gamma \lambda_s^{-1} C_{mix} C_{deep}^{-1} & -\gamma \lambda_s^{-1} C_{mix} C_{deep}^{-1} \end{pmatrix} \begin{pmatrix} \Delta T'_{mix} \\ \Delta T'_{deep} \end{pmatrix}.$$
 (9)

For the imposition of a sudden increase in greenhouse forcing that will ultimately produce an equilibrium temperature change of ΔT_{mix}^{equil} as described by (7), the solution to (8) is:

226
$$\Delta T_{mix} = \Delta T_{mix}^{equil} \left\{ 1 - \left(a \exp\left(\frac{-t}{e_m^{-1}} \tau_{mix}\right) + (1-a) \exp\left(\frac{-t}{e_d^{-1}} \tau_{mix}\right) \right) \right\}.$$
 (10)

- Here e_m and e_d are the magnitudes of the eigenvalues of the matrix in (9), and the coefficient, *a*, is determined by the initial condition that the layers are not thermally perturbed before the increment of greenhouse forcing is imposed.
- Insight is provided by noting that the eigenvalues and parameter *a* in (10) are functions of the ratios of heat transfer and heat storage parameters $\gamma \lambda_s^{-1}$ and $C_{deep} C_{mix}^{-1}$ only, and can be approximated to within ±10%:

$$a = 0.483 + 0.344 (1 - \gamma \lambda_s^{-1}), \ 0.2 < \gamma \lambda_s^{-1} \le 1$$

$$233 \qquad e_m^{-1} = (1 + \gamma \lambda_s^{-1})^{-1} \qquad .$$

$$e_d^{-1} = \frac{2C_{deep} C_{mix}^{-1}}{\sqrt{(\gamma \lambda_s^{-1})^{0.7}}}$$

$$(11)$$

234 It is unlikely that that heat will be transferred out the base of the mixed layer more 235 efficiently than it is into the top of the mixed layer because the transfer will be mostly 236 driven by winds and cooling of the ocean surface. For this reason the heat transfer coefficient ratio $\gamma \lambda_s^{-1}$ is almost certainly ≤ 1 and the reduction of temperature is greatest for 237 $\gamma \lambda_s^{-1} = 1$. For $\gamma \lambda_s^{-1} = 1$, the initial temperature change in the mixed layer will be about half 238 239 the change that will occur when the ocean layers are fully warmed, and the response time required to reach this equilibrium change (the time required to reach 2/3^{rds} of the 240 equilibrium value) will be about $\frac{1}{2}$ of the response time of the mixed layer (e.g., $e_{mix}^{-1} = \frac{1}{2}$). 241 For $\gamma \lambda_s^{-1} = 1$, the response time of the deep layer is twice the heat storage capacity ratio 242 times the response time of the mixed layer: $2C_{deep}C_{mix}^{-1}\tau_{mix}$. 243

The transient temperature change can be computed from the equilibrium temperaturechange in (7) by convolving in a fashion similar to what was done in (5):

246
$$T(t_i) = \sum_{j=1}^{i-1} \Delta T^{equil}(t_j) \left\{ 1 - \left(a \exp\left(\frac{-(t_i - t_j)}{e_m^{-1} \tau_{mix}}\right) + (1 - a) \exp\left(\frac{-(t_i - t_j)}{e_d^{-1} \tau_{mix}}\right) \right) \right\}, \quad (12)$$

where $i \ge j$. We do not use the approximations of equation (11) when we carry out the convolution in (12). Rather we solve for the actual values of the eigenvalues and parameter *a* from the matrix in (9) at each yearly increment in temperature change. For $\tau_{mix} = 5$ years, ΔT_{mix} will reach 0.483 ΔT_{mix}^{equil} with a decay time of 2.5 years and rise to ΔT_{mix}^{equil} with a decay time of 200 years.

The current consensus seems to be that $\gamma \lambda_s^{-1} = 1$ and the transient thermal response is about half the full equilibrium forcing value (NRC, 2011, §3.3). The ratio of the heat storage capacity of the deep to mixed layer, $C_{deep}C_{mix}^{-1}$ is probably at least 20, a value adopted by Solomon et al. (2011). Schwartz (2007) estimated the thermal response time of the mixed layer at ~5 years from the temporal autocorrelation of sea surface temperatures. This may be the best estimate of this parameter, but Schwartz notes that estimates range from 2 to 30 years. Fortunately the moderation of temperature change by the oceans does not

- impact the benefit of substituting gas for coal and oil at all. It is of interest in defining the
- 260 cooling that substitution would produce, however. We calculate the transient temperature
- 261 changes for the full range of ocean moderation parameters.
- 262 Equations (1) to (10) plus (12), together with the parameters just discussed define
- 263 completely the methods we use to calculate the global warming caused by the fuel use
- scenarios in Figure 1.

Figure 2 Changes in (A) carbon dioxide and (B) methane concentrations computed for the three fuel scenarios
 shown in Figure 1 and three different transition intervals (50 100 and 200 years). In this and subsequent figures
 the blue curves indicate the business-as-usual fuel use scenario, the green curves indicate the substitute-gas
 scenario, and the red curves the low-carbon-fast scenario. The numbers indicate the change in concentrations of

- 270 CO₂ and methane from the 379 ppmv for CO₂ and 1774 ppbv for CH₄ levels present in the atmosphere in 2005.
- 271 The calculation is based on L= 1% of gas consumption and V= 5 m³ methane per ton of coal burned.

272 Results

273 Figure 2 shows the additions of CO_2 in ppmv and methane in ppbv that occur for the 274 different fuel consumption scenarios show in Figure 1 for the three transition periods (50. 275 100 and 200 years). The methane leakage is assumed to be 1% of consumption. Five cubic meters of methane are assumed to leak to the atmosphere for each ton of coal mined. The 276 277 atmospheric methane concentrations track the pattern of methane release quite closely 278 because methane is removed quickly from the atmosphere with an exponentially decay 279 constant of 12 years (equation 4b). On the other hand, because only a portion of the CO_2 280 introduced into the atmosphere by fuel combustion is removed quickly (see equation 4a), 281 CO₂ accumulates across the transition periods and, as we will show below, persists for a 282 long time thereafter.

288 reduction achieved by the low-carbon-fast scenario.

Figure 3 shows the radiative forcings corresponding to the atmospheric gas concentrations
shown in Figure 2 using equation (6). The methane forcing is a few percent of the CO₂
forcing, and thus is unimportant in driving greenhouse warming for a gas leakage rate of
1%.

293 Figure 4 shows the global warming predicted from the radiative forcings in Figure 3 for various degrees of heat loss to the ocean. We take the equilibrium climate sensitivity λ_s^{-1} = 294 295 0.8 (e.g., a doubling of CO2 causes a 3°C of global warming). The faster transitions produce 296 less global warming because they put less CO₂ into the atmosphere. The thermal 297 modulation of the oceans can reduce the warming by up to a factor of two. For example, 298 Figure 4A shows the global warming that would result from the business-as-usual scenario 299 if there were no heat losses to the ocean ranges from 1.5°C for the 50 year transition to 300 3.3°C for the 200 year transition. Figure 4C indicates that heat exchange to the oceans 301 could reduce this warming by a factor of two for the long transitions and three for the 50 302 year transition. A warming reduction this large is unlikely because it assumes extreme 303 parameter values: a deep ocean layer with a heat storage 50 times the shallow mixed layer, 304 and a long mixing time for the shallow layer (τ_{mix} = 50 years). Figure 4B indicates the more 305 likelv ocean temperature change moderation based on mid-range deep layer storage ($C_{deep}C_{mix}^{-1}$ =20) and mixed layer response time (τ_{mix} = 5 years) parameter values. 306

307 The important message of this figure for the purposes of this paper, however, is not the 308 amount of warming that might be produced by the various fuel scenarios of Figure 1, but 309 the indication that the reduction in greenhouse warming from substituting gas for coal and 310 oil is not significantly affected by heat exchange with the ocean or by the duration of the 311 transition period. The same percent reduction in global warming from substituting gas for 312 coal and oil is realized regardless of the duration of the transition period or the degree of 313 thermal moderation by the ocean. The benefit of substituting gas is a percent or so less for 314 the short transitions, and the ocean moderation reduces the benefit by a percent or so, but 315 the benefit in all circumstances remains \sim 38%. Heat loss into the oceans may reduce the 316 warming by a factor of two, but the benefit of substituting gas is not significantly affected.

318

319 Figure 4. Global warming produced by the forcings in Figure 3 computed using equations (7, 10, and 12). The 320 blue curves indicate temperature changes under the business-as-usual scenario for 50, 100 and 200 year 321 transition durations, and the green and red curves indicate the temperature changes for the substitute-gas and 322 low-carbon-fast scenarios. The colored numbers indicate the temperature changes, and the black numbers the 323 reduction in temperature achieved by the substitute-gas scenario expressed as a fraction of the temperature 324 reduction achieved by the low-carbon-fast scenario. (A) The warming when there is no thermal interaction with 325 the ocean (or the ocean layers thermally equilibrate very quickly). (B) Warming under a likely ocean interaction. 326 (C) Warming with a very high ocean thermal interaction. The ocean mixing parameters are indicated in (B) and 327 (C). All calculations assume gas leakage is 1% of consumption and the IPCC methane climate sensitivity.

328 Figure 5 compares the methane forcing of the substitute-gas scenario to the CO_2 forcing of 329 the business-as-usual scenario for the 50 and 100 year transition durations. The forcing 330 for the 1% methane curves are the same as in Figure 3, but is continued out to 200 years 331 assuming the fuel use remains the same as at the end of the of the transition period. 332 Similarly the business-as-usual curve is the same as in Figure 3 continued out to 200 years. 333 The figure shows that the methane forcing increases as the percent methane leakage 334 increases, and becomes equal to the CO₂ forcing in the business-as usual scenario when the 335 leakage is $\sim 15\%$ of consumption for the 50 year transition and 30% of consumption for the 336 100 year transition. At the end of the transition the methane radiative forcings fall to the 337 level that can be steadily maintained by the constant methane leakage associated with the 338 small continued natural gas consumption. The CO₂ forcing under the business-as-usual 339 scenario fall a bit and then rise at a slow steady rate, reflecting the proscription that 26% of 340 the CO₂ released to the atmosphere is only very slowly removed and 22% is not removed at 341 all (equation 3a). This slow rise emphasizes that even very low releases of CO_2 can be of 342 concern. The methane in the atmosphere would rapidly disappear in a few decades if the 343 methane venting were stopped, whereas the CO₂ curves would flatten but not drop 344 significantly. Finally, Figure 5A shows that the greater methane climate sensitivity 345 proposed by Shindell et al (2009) (ψ_{CH4} =1.94) would make a 10% methane venting 346 equivalent to a 15% venting with ψ_{CH4} =1.43 (the IPCC methane climate sensitivity).

348 Figure 5. Radiative forcings of CO₂ for the business as usual scenario (blue curves) and for CH₄ for various gas 349 leakage rates in the substitute-gas scenario (green curves). The 1% methane curves and the business as usual 350 curves are the same as in Figure 3 except the vertical scale is expanded and the curves are extended from the end 351 of the transition to 200 years assuming the gas emissions are the same as at the end of the transition past 100 352 years. The methane forcings plateau at the levels corresponding to the atmospheric concentration supported by 353 the steady CH₄ emissions. The CO₂ forcing increases because an appreciable fraction of the CO₂ emissions are 354 removed slowly or not at all from the atmosphere. The methane forcings all assume the IPCC methane climate 355 sensitivity (ψ_{CH4} =1.43) except the single red curve, which assumes the methane climate sensitivity suggested by 356 Shindell et al. (2009) (ψ_{CH4}=1.94).

Figure 6. Impact of methane leakage on global warming for transition periods of (A) 50, (B) 100, and (C) 200 years. As the leakage rate (green percentage numbers) increase, the warming of the substitute-gas scenario (green curves) increases, the blue business-as-usual and green substitute-gas curves approach one another and then cross, and the percentage of the warming reduction attained by the fast substitution of low carbon energy sources decrease and then become negative. The warmings assume the same exchange with the ocean as in Figure 4B.

357

Figures 6 illustrates how the benefits of substituting gas for coal and oil disappear as the
methane leakage increases above 1% of total methane consumption. The figure shows the
global warming calculated for the ocean heat exchange show in Figure 4B. As the methane
leakage increases, the green substitute-gas scenario curves rise toward and then exceed the
blue business-as-usual curves, and the benefit of substituting gas disappears. The gas

- 369 leakage at which substituting gas for oil and coal warms the earth more than the business-
- 370 as-usual scenario is smallest (L~10%) for the 50 year transition period and largest
- $(L\sim35\%)$ for the 200 year transition period.

372 Figure 7 summarizes how the benefit of gas substitution depends on the gas leakage rate. 373 For the IPCC methane climate sensitivity ($\psi_{CH4}=1.43$), the benefit of substituting gas goes to 374 zero when the gas leakage is 44% of consumption (30% of production) for the 200 year 375 transition, 24% of consumption (19% of production) for the 100 year transition, and 13% 376 of consumption (12% or production) for the 50 year transition. For the Shindell et al. 377 climate sensitivity corresponding to ψ_{CH4} =1.94, the crossover for the 50 year transition 378 occurs at a gas leakage of \sim 9% of consumption, and reasonable ocean thermal mixing 379 reduces this slightly to $\sim 8\%$ of consumption (7.4% of production). This last is 380 approximately the cross-over discussed by Howarth et al. (2011 and 2012). In their papers they suggest a methane leakage rate as high as 8% of production is possible, and therefor 381 382 that natural gas could be as bad (if compared on the basis of electricity generation) or twice 383 as bad (if compared on a heat content basis) as coal over a short transition period. As 384 discussed in the next section, a leakage rate as high as 8% is difficult to justify. Figure 7 385 thus shows the significance of Shindell's higher methane climate sensitivity to Howarth's 386 proposition. Without it, an even less plausible methane leakage rate of 13% would be 387 required to make gas as bad or twice as bad as coal in the short term. Over the longer term, 388 substitution of gas is beneficial even at high leakage rates- a point completely missed by 389 Howarth et al.

390

391 Figure 7. The reduction of greenhouse warming attained by substituting natural gas for coal and oil (substitute-392 gas scenario), expressed as a percentage of the reduction attained by immediately substituting low carbon fuels 393 (low-C-fast scenario), plotted as a function of the gas leakage rate. At leakage rates less than ~1%, the benefit of 394 substituting natural gas is >40% that of immediately substituting low carbon energy sources. The benefit 395 declines more rapidly with leakage for short transitions. The top three curves assume an IPCC methane climate 396 sensitivity (ψ_{CH4} =1.43). The bottom two show the impact of the greater methane climate sensitivity suggested by 397 Shindell et al (2009) (ψ_{CH4} =1.94). The ocean mixing curve adds the small additional impact of thermal exchange 398 with the oceans at the rate shown in Figure 4B to the ψ_{CH4} =1.94 curve immediately above it.

399 What is the gas leakage rate

400 The most extensive syntheses of data on fugitive gases associated with unconventional gas 401 recovery is an industry report to the EPA commissioned by The Devon Energy Corporation 402 (Harrison, 2012). It documents gas leakage during the completion of 1578 unconventional 403 (shale gas or tight sand) gas wells by 8 different companies with a reasonable 404 representation across the major unconventional gas development regions of the U.S. Three 405 percent of the wells in the study vented methane to the atmosphere. Of the 1578 406 unconventional (shale gas or tight sand) gas wells in the Devon study, 1475 (93.5%) were 407 green completed - that is they were connected to a pipeline in the pre-initial production 408 stage so there was no need for them to be either vented or flared. Of the 6.5% of all wells 409 that were not green completed, 54% were flared. Thus 3% of the 1578 wells studied 410 vented methane into the atmosphere.

411 The wells that vented methane to the atmosphere did so at the rate of 765 412 Mcsf/completion. The maximum gas that could be vented from the non-green completed 413 wells was estimated by calculating the sonic venting rate from the choke (orifice) size and 414 source gas temperature of the well, using a formula recommended by the EPA. Since many 415 wells might vent at sub-sonic rates, which would be less, this is an upper bound on the 416 venting rate. The total vented volume was obtained by multiplying this venting rate by the 417 known duration of venting during well completion. These vented volumes ranged from 418 340 to 1160 Mscf, with an average of 765 Mscf. The venting from an average 419 unconventional shale gas well indicated by the Devon study is thus ~ 23 Mscf (= 0.03 x 765 420 Mscf), which is similar to the 18.33 Mcf EPA (2010) estimates is vented during well 421 completion of a conventional gas well (half vented and half flared). Since venting during 422 well completion and workover conventional gas wells is estimated at 0.01% of production 423 (e.g., Howarth et al., 2011), this kind of venting is insignificant for both unconventional and 424 conventional wells.

425 The unconventional gas leakage rate indicated by the Devon data is very different from the 426 4587 Mscf the EPA(2010) inferred was vented during well completion and workover for 427 unconventional gas wells from the amount of gas captured in a very limited number of 428 "green completions" reported to them by industry through their GasSTAR program. In 429 their 2010 background technical support document the EPA assumed that this kind of 430 "green" capture was very rare, and that the gas was usually either vented or flared. 431 Assuming further that the gas was vented 50% of the time, the EPA concluded that 4587 432 Mscf was vented to the atmosphere and that unconventional wells vent 250 times 433 (=4587/18.3) more methane during well completion and workover than conventional gas 434 wells. The EPA (2010) study is a "Background Technical Support Document" and not an 435 official report. It was probably never intended to be more than an outline of an approach 436 and an initial estimate, and the EPA has since cautioned that they have not reviewed their 437 analysis in detail and continue to believe that natural gas is better for the environment than 438 coal (Fulton, 2011). Nevertheless the EPA(2010) report suggested to many that the 439 leakage during well completion and workover for unconventional gas wells could be a 440 substantial percentage ($\sim 2.5\%$) of production, and many accepted this suggestion without

further critical examination despite the fact that the safety implications of the massive
venting implied by the EPA numbers should have raised questions (e.g., Cathles et al.,
2012a,b).

444 Once a well is in place, the leakage involved in routine operation of the well site and in 445 transporting the gas from the well to the customer is the same for an unconventional well 446 as it is from a conventional well. What we know about this leakage is summarized in Table 447 2. Routine site leaks occur when valves are opened and closed, and leakage occurs when 448 the gas is processed to removing water and inert components, during transportation and 449 storage, and in the process of distribution to customers. The first major assessment of 450 these leaks was carried out by the Gas Research Institute (GRI) and the EPA in 1997 and 451 the results are shown in the second column of Table 2. Appendix A of EPA(2010) gives a 452 detailed and very specific accounting of leaks of many different kinds. These numbers are 453 summed into the same categories and diaplayed in column 3 of Table 2. EPA(2011) found 454 similar leakage rates (column 4). Skone (2011) assessed leakage from 6 classes of gas 455 wells. We show his results for unconventional gas wells in the Barnett Shale in column 5 of 456 Table 2. His other well classes are similar. Venkatish et al (2011) carried out an 457 independent assessment that is given in column 6. There are variations in these 458 assessments, but overall a leakage of $\sim 1.5\%$ of production is suggested. Additional 459 discussion of this data and its compilation can be found in Cathles et al. (2012) and Cathles 460 (2012).

Table 2. Leakage of natural gas that is common to both conventional and unconventional gas wells in perent ofgas production.

	GRI-EPA	EPA	EPA	Skone	Venkatish
	(1997)	(2010)	(2011)	(2011)	et a. (2011)
Routine site leaks	0.37%	0.40%	0.39%		
Processing	0.15%	0.12%	0.16%	0.21%	0.42%
Transportation & storage	0.48%	0.37%	0.40%	0.40%	0.26%
Distribution	0.32%	0.22%	0.26%		0.22%
Totals	1.32%	1.11%	1.21%		

463

464 Based on the above review the natural gas leakage rate appears to be no different during 465 the drilling and well preparation of unconventional (tight shales drilled horizontally and 466 hydrofractured) gas wells than for conventional gas wells, and the overall leakage from gas 467 wells is probably <1.5% of gas production. In their controversial paper suggesting that gas 468 could be twice as bad a coal from a greenhouse warming perspective, Howarth et al (2011, 469 2012) suggested routine site leaks could be up to 1.9% of production, leakage during 470 transportation, storage, and distribution could be up to 3.6% or production, and gas 471 leakage from unconventional gas wells during well completion and workover could be 472 1.9% of production. Adding 0.45% leakage for liquid unloading and gas processing, the 473 suggested gas leakage could be 7.9% of production, enough to "undercut the logic of its use 474 as a bridging fuel in the coming decades, if the goal is to reduce global warming."

475 The basis given by Howarth et al. (2011) for their more than 5 fold increase in leakage 476 during transportation, storage, and distribution is: (a) a leakage in Russian pipelines that 477 occurred during the breakup of the Soviet Union which is irrelevant to gas pipelines in the 478 U.S., and (b) a debate on the accounting of gas in Texas pipelines that concerns royalties 479 and tax returns (Percival, 2010). Howarth et al. suggest in this Texas case that the industry 480 is seeking to hide methane losses of more than 5% of the gas transmitted, but the 481 proponents in the article state "We don't think they're really losing the gas, we just think 482 they're not paying for it". In their 5 fold increase in routine gas leaks (from the average 483 level in Table 2 of 0.38% to 1.9%), Howarth's et al. (2011) cite a GAO study of venting from 484 wells in onshore and offshore government leases that does not distinguish venting from 485 flaring. Lacking this distinction, it is not surprising that it conflicts dramatically with the 486 summaries in Table 2. We have already discussed leakage during well completion and 487 workover and noted that the Devon data indicate Howarth et al.'s 1.9% leakage at this 488 stage is hugely exaggerated (the Devon data indicates the leakage is $\sim 0.01\%$ and similar to 489 that from conventional gas well completions and workovers).

There have been a number of papers published recently that offer support for Howarth's
high leakage estimates. Hughes (2011) re-interpreted data presented in a widely

492 distributed NETL powerpoint analysis by Skone (2011). By lowering Skone's Estimated 493 Ultimate Recoveries (EUR) for the Barnell Shale from 3 Bcf to 0.84 Bcf while keeping the 494 same estimate of leakage during well completion and gas delivery. Hughes increased 495 Skone's leakage estimates from 2 to 6% of production- a level which falls midway between 496 Howarth's low and high gas leakage estimates. However leakage is a fraction of well 497 production (a well that does not produce cannot emit), and thus is it bogus to reduce the 498 EUR (the denominator) without also reducing the numerator (the absolute leakage of the 499 well). Skone's data must be evaluated on its own terms, not simply adjusted to fit someone 500 else's conclusions.

501 Petron et al. (2012) analyzed air samples at the 300 m high Bolder Atmospheric 502 Observatory (BAO) tower when the wind was toward it from across the Denver-Julesburg 503 Basin (DJB). Gases venting from condensate (condensed gas from oil and wet gas wells) 504 stock tanks in the DIB are rich in propane relative to methane, whereas the raw natural gas 505 venting from gas wells in the DIB contain very little propane. From the intermediate ratio 506 of propane to methane observed at the BAO tower and estimates of leakage from the stock 507 tanks, Petrone et al. calculate that to dilute the propane leaking from the stock tanks to the 508 propane/methane ratio observed at the tower, $\sim 4\%$ of methane produced by gas wells in 509 the DJB must vent into the atmosphere. The air sampled at the BAO tower is certainly not 510 simply a mix of raw natural gas and stock tank emissions from the DIB as Petron et al. 511 assume, however. If this were the case there would be no oxygen in the air at the BAO 512 tower location. The background atmosphere must certainly mix in with these two (and 513 perhaps other) gas sources. Background air in the Denver area contains ~ 1800 ppb 514 methane and very little propane. Mixing with the background atmosphere could dilute the 515 stock tank emissions to the propane/methane ratio observed at the BAO tower with no 516 leakage from gas wells in the DJB required at all. Contrary to their suggestion, the BAO 517 tower data reported by Petrone et al. place no constraints at all on the gas leakage rates in 518 the DJB what so ever. More details are in Cathles (2012).

519 Certainly there is more we could learn about natural gas leakage rates. The issue is
520 complicated because gas is used in the transmission process so shrinkage of product does
521 not equate to venting. In addition there are conventions and practices that make scientific

assessment difficult. Despite the difficulties, however, it appears that the leakage rate isless than 2% of production.

524 **Discussion**

525 We have verified our computations by comparing them to predictions by Wigley's (2011) 526 publically available and widely used MAGICC program. Although there are some internal 527 differences, Table 3 shows that the \sim 40% reduction in greenhouse warming we predict is 528 also predicted by MAGICC when scenarios similar to the one we consider here are input to 529 both MAGICC and our programs. The MAGICC calculations start at 1990 AD so we consider 530 the temperature increases from 2000 to the end of the period. Fuel use is increased and 531 reduced linearly rather than exponentially, and the fuel use at the start, midpoint, and end 532 of the transition simulations are slightly different than in Figure 1. The temperature 533 changes for the 200 year cycle agree very well. Wigley's MAGICC temperature change 534 predictions become progressively lower than ours as the transition interval is shortened. 535 This may be because MAGICC includes a small ocean thermal interaction, whereas the 536 calculations we report in Table 3 do not.

Table 3. Temperature changes predicted by Wiglely's(2011) MAGICC program for linear changes in fuel use similar to the scenarios in Figure 1 compared to equilibrium (no ocean thermal interaction) global warming predictions by the program described and used in this paper. The first three rows compare the temperature changes of the two programs. The last row shows the reduction in greenhouse warming achievable by substituting natural gas for coal and oil as a percentage of the reduction that would be achieved by the rapid substitution of all fossil fuels with low carbon energy sources.

	200 year cycle		100 year cycle		40 year cycle	
Program	MAGICC	This paper	MAGICC	This paper	MAGICC	This paper
B-as-usual	3.85	3.68	2.3	2.56	1.05	1.5
Swap gas	2.85	2.85	1.65	1.94	0.80	1.12
Low C fast	1.7	1.70	0.85	1.09	0.38	0.58
% reduction	42%	42%	45%	42%	37%	41%

544 Incorporation of the indirect contributions to methane's radiative forcing through ψ_{CH4} in 545 equation (6) was validated by comparing values of GWP computed by (13) to published 546 values summarized in Table 4.

$$GWP = \frac{\Psi_{CH4} \frac{\partial \Delta F_{CH4}}{\partial C_{CH4}[ppbv]} MW_{CO2} \int_{t=0}^{t} f_{CH4} dt}{\frac{\partial \Delta F_{CO2}}{\partial C_{CO2}[ppbv]} MW_{CH4} \int_{t=0}^{t} f_{CO2} dt}$$
547 (13)

548 GWP is the relative global warming impact of a kg of CH4 compared to a kg of CO₂ added to 549 the atmosphere, when considered over a period of time t. The radiative forcings (ΔF) are 550 defined by (6), the removal of the gases from the atmosphere (f) by (4a and b), and MW_{CO2} 551 is the molecular weight of CO₂. The ψ_{CH4} factor of 1.43 in the second column of Table 4 552 combines the indirect forcing caused by CH₄-induced production of ozone (25% according 553 to IPCC, 2007) and water vapor in the stratosphere (additional 15% according to the IPCC, 554 2007). With this factor the GWP listed in Table 2.14 of the IPCC (2007) are replicated as 555 shown in the second row of Table 4. The ψ_{CH4} factor of 1.94 in the second column was 556 determined by us such that it approximately predicts the increased forcings suggested by 557 Shindell et al. (2009) as shown in the bottom row of Table 4. We do not use GWPs in our 558 analysis and use them here only to justify the values of ψ_{CH4} used in our calculations.

- Table 4 The GWP calculated from (6 and 13) for the value of ψ_{CH4} in column 2 are compared to GWP (in
- 560 parentheses) given by the IPCC (2007) and Shindell et al. (2009).

	ψ_{CH4}	t=20 years	t=100 years	t=500 years
Direct methane forcing from (6)	1	51.5	17.9	5.45
IPCC (2007, §2.10.3.1, Table 2.14)	1.43	73.5 (72)	25.8(25)	7.8 (7.6)
Shindell et al. (2009)	1.94	99(105)	35(33)	10.5

- 561
- 562 The most important message of the calculations reported here is that substituting natural
- 563 gas for coal and oil is a significant way to reduce greenhouse forcing regardless of how long
- 564 (within a feasible range) the substitution takes (Figure 4). For methane leakages of $\sim 1\%$ of

565 total consumption, replacing coal used in electricity generation and 50% of the oil used in 566 transportation with natural gas (very feasible steps that could be driven by the low cost of 567 methane alone with no government encouragement) would achieve $\sim 40\%$ of the 568 greenhouse warming reduction that could be achieved by transitioning immediately to low 569 carbon energy sources such as wind, nuclear, or solar. A faster transition to low-carbon 570 energy sources would decrease greenhouse warming further, but the substitution of 571 natural gas for the other fossil fuels is equally beneficial in percentage terms no matter how 572 fast the transition.

573 The basis for the $\sim 40\%$ reduction in greenhouse forcing is simply the reduction of the CO₂ 574 put into the atmosphere. When gas leakage is low, the contribution of methane to 575 greenhouse warming is negligible (Figure 3), and only the CO_2 input counts. The reduction 576 in CO_2 vented between the business-as-usual and the substitute-gas scenarios is 44.1% of 577 the reduction between the business-as-usual to the low-carbon-fast scenarios. This 578 fraction is independent of the transition period; it is the same whether the transition 579 occurs over 50 years or 200 years. Because the losses of CO₂ from the atmosphere 580 (equation 4a) are proportional to the amount of CO_2 in the atmosphere, the relative 581 amounts of CO_2 at the end of the transition are similar to the proportions added. For the 582 same transition interval almost the same proportional amounts of CO_2 are removed for all 583 scenarios. Thus the fractional substitute-gas reduction in CO2 in the atmosphere at the 584 end of all the transition intervals remains 44.1% although there are some variations in the 585 second decimal place. The curves shown in Figure 7 intersect the y-axis (0% gas leakage) 586 at fractions slightly different from 44.1% because the radiative forcing is non-linear with 587 respect to CO_2 concentration (equation 5a). The longer transition periods show larger non-588 linear effects because they put more CO_2 into the atmosphere. The nearly direct 589 relationship between reductions in the mass of CO_2 vented and the decrease in global 590 warming is a powerful conceptual simplification that is particularly useful because it is so 591 easy to calculate, a point made by Allen (2009).

The global warming reduction from swapping gas for the other fossil fuels of course

593 decreases as methane leakage increases. But at low leakage rates, the benefit of

substituting natural gas remains close to 40%. In the context of swapping gas for coal, the

extra methane emitted by low levels of leakage has such a trivial climate effect that it neednot be considered at all.

597 Sulfur dioxide additions are not a factor in our analysis because the substitute-gas and low-598 carbon-fast scenarios reduce the burning of coal over the growth period in an identical 599 fashion. Thus both introduce SO_2 identically, and the small warming effects of the SO_2 , 600 which will occur no matter how coal is retired, cancel in the comparison. In the real world 601 the "aerosol benefit" of coal must be removed eventually (unless we are to burn coal 602 forever), and the sooner it is removed the better both because the small warming its 603 removal will cause will have less impact when temperatures are cooler, and, much more 604 importantly, because replacing coal soon will reduce CO_2 emissions and lead to much less 605 global warming in the longer term.

606 Wigley's (2011) decrease in greenhouse warming for the natural gas substitution he 607 defines is similar to that we compute here. At 0% leakage, Wigley(2011, his Figure 3) 608 calculates a 0.35°C cooling which would be a 0.45°C cooling absent the reduced SO₂ 609 emissions he considers. We calculate a cooling of ~ 0.62 °C for 0% leakage. Our cooling is 610 greater than his at least in part because our gas substitution scenario reduces the CO_2 611 emissions more than his. From nearly the same start, our gas substitution reduces CO_2 612 emissions from the business-as-usual 200 year transition cycle by 743 GtC whereas Wigley 613 reduces CO₂ by 425 GtC.

614 There are of course uncertainties in the kind of calculations carried out here, but these 615 uncertainties are unlikely to change the conclusions reached. Carbon dioxide is almost 616 certainly not removed from the atmosphere exactly as described by equation (3). The 617 uptake of CO₂ may well slow as the climate warms. Carbon dioxide is less soluble in warm 618 water and the haline circulation may slow as the sea surface temperature increases. The 619 increase in terrestrial CO₂ uptake from CO₂ fertilization may be reduced by nitrogen 620 limitations. A good discussion of these issues is provided in NRC(2011). Eby et al. (2009) 621 have suggested based on sophisticated coupled global models that \sim 50% of the introduced 622 CO_2 may be removed with a time constant of 130 years and 50% with an exponential time 623 constant of 2900 years. Modifications of equation (3) that reduce CO_2 uptake as the climate

warms will make the benefits of not putting CO₂ into the atmosphere, for example by
substituting gas for coal, even greater, and the arguments presented here stronger.

626 The transmission of heat from the mixed to the deep layer of the oceans is an unknown 627 which has a strong impact on transient global warming. For example, if heat entered the 628 deep layer with 10% of the ease with which it enters it from the atmosphere so that $\gamma \lambda_{s}^{-1} \sim 0.1$, the deep layer would largely loose its cooling effectiveness (e.g., *a* in equation 11) 629 630 would have a value of 0.91). The transient response to CO₂ forcing would be rapid (occur 631 at 0.91 τ_{mix}), and the ocean would reduce the equilibrium global temperature change by 632 only 9%. The relative rates at which heat is transferred into the mixed layer and out of it 633 into the deep layer would appear to be an important area for further investigation, 634 especially because it impacts our ability to infer proper values in the equilibrium climate 635 forcing (see discussion in NRC, 2011). Ocean heat exchange does not affect the 636 comparative benefit of substituting gas, so uncertainties in the ocean heat exchange aer not 637 of concern to the conclusions we reach here.

638 The calculations made here avoid the use of GWP factors. The deficiencies in the GWP 639 approach are discussed well by Solomon et al. (2011). As is apparent from (13), the GWP 640 metric requires that the time period of comparison be specified. For a short time period, a short lived gas like methane has a high GWP (e.g., it is 72 times more potent in terms of 641 642 global warming than CO₂ when compared over a 20 year). The notion that methane 643 emissions have 72 times the global warming impact of CO₂ would tempt eliminating 644 methane emissions immediately, and worrying about reducing CO₂ emissions later. On the 645 other hand for a 500 year period, the global warming impact of a kilogram of vented 646 methane is only 7.6 that of a kilogram of CO_2 (GWP_{CH4}=7.6, see Table 4), and this low 647 impact would suggest dealing with CO₂ emissions first and the methane emissions later, 648 perhaps even substituting gas for coal and oil. As Solomon et al. point out the GWP metric 649 speaks only to the time period for which it is calculated and sheds no light on the whether 650 CO₂ or CH₄ should be reduced first.

Figure 8. Temperature change for scenarios in Figure 1 when a transition period is 100 years is followed by a 400 year period with no burning of fossil fuels. Methane leakage in the transition is 10% of gas consumption and Shindell's greater methane forcing and heat exchange with the ocean are included. Extra methane venting in the substitute-gas scenario produces warming greater than the business-as-usual scenario up to almost the end of the transition, but the benefits of reducing carbon emissions by substituting gas emerge very quickly thereafter.

657 Figure 8 illustrates the fundamental dilemma. It shows that even when methane leakage is 658 so large (L=10% of consumption) that substituting gas for coal and oil increases global 659 warming in the short term, the benefit of gas substitution returns in the long term. The 660 short term heating caused by methane leakage rapidly dissipates after emissions of CO₂ 661 and CH_4 cease at 100 years. CH_4 is rapidly removed from the atmosphere, but CO_2 is not. 662 The result is that 50 years or so after the termination of venting (beyond 150 years in 663 Figure 8), the benefit of gas emerges unscathed. At a 10% leakage rate and a 100 year 664 transition period, the substitute-gas scenario produces a small amount more warming than 665 the business-as-usual scenario at 70 years, but after 150 years the gas substitution reduces 666 global warming much more because it has reduced the amount of CO_2 vented to the 667 atmosphere. Figure 8 shows how dangerous a metric such as GWP can be. Even for

668 methane emissions of 9% of production and Shindell's forcings, substituting gas for coal is 669 worthwhile in the long term. Analyses that rely only on GWP factors, such as that of 670 Howarth et al. (2011), miss this mix of impacts completely, and see only the damage of 671 extra methane emissions in the short term or the benefits of gas substitution in the long 672 term, depending on the GWP interval selected. Fortunately it is very easy to carry out the 673 necessary convolution integrals (equations 5 and 11) as done here and avoid GWP metrics 674 altogether. As stated by Solomon et al. (2011) and others who they cite, GWP factors 675 should simply not be used to evaluate fuel consumption scenarios.

676 Finally, framing the fuel use scenarios in terms of exponential growth and decline as we 677 have done here allows the feasibility of implementing the various scenarios to be examined 678 in a preliminary fashion. Figure 9 shows the rate of growth of low carbon energy resources 679 that is required by the fuel histories in Figure 1 for a 100 year transition. Growth at more 680 than 5% per year would be challenging. Figure 9 shows that the low-carbon-fast scenario 681 in Figure 1 requires an immediate $\sim 16\%$ per year (but rapidly declining) growth in low 682 carbon energy sources. The growth rate of low carbon energy sources at the end of the 683 growth period of the business-as-usual scenario is an even greater 24% per year. Because 684 there is time to plan, this could be reduced by phasing in low carbon energy sources toward 685 the end of the fossil fuel growth period. The substitute-gas scenario has a much lower 686 growth requirement at this stage, which would make this scenario substantially easier to 687 accommodate.

688 Any decision to substitute gas for coal and oil of course involves economic and social 689 consideration, as well as climate analysis. Natural gas can enable the transition to wind or 690 solar energy by providing the surge capacity when these sources fluctuate and backup 691 when these sources wane. Because of its wide availability and low cost, economic factors 692 will encourage gas replacing coal in electricity generation and oil in segments of 693 transportation. It is a fuel the U.S. and many other countries need not import, so its 694 development could increase employment, national security, and a more positive balance of 695 payments. On the other hand, cheap and available gas might undermine the economic 696 viability of low carbon energy sources and delay a transition to low carbon sources. From a 697 greenhouse point of view it would be better to replace coal electrical facilities with nuclear

- 698 plants, wind farms, or solar panels, but replacing them with natural gas stations will be
- 699 faster, cheaper and achieve 40% of the low-carbon-fast benefit if the leakage is low. How
- this balance is struck is a matter of politics and outside the scope of this paper. What can
- 701 be said here is that gas is a natural transition fuel that could represents the biggest
- 702 available stabilization wedge available to us.

Figure 9. The growth rate of low carbon energy sources deduced from Figure 1 plotted as a function of time for a
100 year transition. Growth rates more than 5% per year such will be challenging to achieve on a global basis.

706 Conclusions

707 The comparative approach taken in this paper shows that the benefit of substituting

- natural gas depends only on its leakage rate.
- 1. For leakage rates $\sim 1\%$ or less, the substitution of natural gas for the coal used in
- electricity generation and for 55% of the oil used in transportation and heating achieves

40% of the reduction that could be attained by an immediate transition to low-carbonenergy sources.

713 2. This 40% reduction does not depend on the duration of the transition. A 40% reduction
714 is attained whether the transition is over 50 years or 200 years.

715 3. For leakage rates $\sim 1\%$ or less, the reduction of greenhouse warming at all times is

related directly to the mass of CO₂ put into the atmosphere, and therefore to reduce

717 greenhouse forcing we must reduce this CO_2 input. Complexities of how CO_2 is removed

and reductions in SO_2 emissions and increases in carbon black and the like do not change

this simple imperative and should not be allowed to confuse the situation.

720 4. At low methane leakage rates, substituting natural gas is always beneficial from a 721 greenhouse warming perspective, even for forcings as high as have been suggested by 722 Shindell et al. (2009) and used by Howarth et al. (2011). Under the fastest transition that is 723 probably feasible (our 50 year transition scenario), substitution of natural gas will be 724 beneficial if the leakage rate is less than about 7% of production. For a more reasonable 725 transition of 100 years, substituting gas will be beneficial if the leakage rate is less than 726 \sim 19% of production (Figure 7). The natural gas leakage rate appears to be presently less 727 than 2% of production and probably $\sim 1.5\%$ of production.

5. Even if the natural gas leakage rate were high enough to increase greenhouse warming

(e.g., the leakage was 10% of methane consumption or 9% of methane production),

730 substituting gas would still have benefits because the reduction of CO_2 emissions would

731 lead to a greater reduction in greenhouse warming later (Figure 8).

6. Gas is a natural transition fuel because its substitution reduces the rate at which low
carbon energy sources must be later introduced (Figure 9) and because it can facilitate the
introduction of low carbon energy sources.

The policy implications of this analysis are: (1) reduce the leakage of natural gas from

production to consumption so that it is $\sim 1\%$ of production, (2) encourage the rapid

substitution of natural gas for coal and oil, and (3) encourage as rapid a conversion to low

carbon sources of energy as possible.

739 Acknowledgements

740 This paper was greatly improved by three excellent reviews, two anonymous and one by 741 Ray Pierrehumbert. Ray pointed out the importance of ocean mixing, suggested casting 742 fuel use in terms of exponential growth and decline, and drew my attention to important 743 references (as did the other reviewers). I am indebted to my prior co-authors in this 744 subject (Milton Taam, Larry Brown, and Andrew Hunter) for continuing very helpful 745 discussions, and to members of the gas industry who pointed out data and helped me 746 understand the complexities of gas production. Milton Taam drew my attention to the 747 MAGICC program and showed me how easy it was to use, and also pushed persistently for 748 the broader view of methane substitution shown in Figure 8. The paper would not be what 749 it is without the contribution of these individuals and I thank them for their input.

750 **References**

- Allen, MR, Frame DJ, HuntingforC, Jones CD, Lowe JA, Meinshause M, and Meinshausen N
- (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne,
 Nature, 458 (7242), 1163–1166, doi:10.1038/nature08019.
- Cathles LM, (2012) Perspectives on the Marcellus gas resource: What benefits and risks areassociated with Marcellus gas development?,
- 756 <u>http://blogs.cornell.edu/naturalgaswarming/</u>
- 757 Cathles LM, Brown L, Taam M, Hunter H (2012a) A commentary on "the greenhouse-gas
- footprint of natural gas in shale formations" by RW Howarth, R Santoro, and A Ingraffea,
- 759 Climatic Change, DOI:10.1007/s10584-011-0333-0.
- 760 <u>http://www.springerlink.com/content/x001g12t2332462p/</u>
- Cathles LM, Brown L, Hunter A, and Taam M (2012b) Press release: response to Howarth et
 al.'s reply (February 29,2012),
- 763 <u>http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/cathles/Natural%20Gas/Respo</u>
- 764 <u>nse%20to%20Howarth's%20Reply%20Distributed%20Feb%2030,%202012.pdf</u>
- 765 Clarke LE, Edmonds JA, Jacoby HD, Pitcher H, Reilly JM, Richels R (2007) Scenarios of
- 766 Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1a of

- 767 Synthesis and Assessment Product 2.1. A Report by the Climate Change Science Program
- and the Subcommittee on Global Change Research, Washington, DC, 154pp

Eby M, Zickfeld K, Montenegro A, Archer D, Meissner K J, and Weaver AJ (2009) Lifetime of

- anthropogenic climate change: millennial time scales of potential CO2 and surface
- temperature perturbations. Journal of Climate 22 (10):2501-2511,
- 772 DOI:10.1175/2008JCLI2554.1.
- EIA(2011) International Energy Outlook 2011, World total energy consumption tables,
- 774 <u>http://www.eia.gov/oiaf/aeo/tablebrowser/#release=IE02011&subject=1-</u>
- 775 <u>IEO2011&table=1-IEO2011®ion=0-0&cases=Reference-0504a_1630</u>.
- EPA (2005) Compillation of air pollution emission factors, vol. 1, Stationary point and and

area sources: Report AP-42, Office of Air and Radiation, U. S. EPA, Research Triangel
Park, NC 27711.

- EPA (2010). Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas
- 780 Industry. Background Technical Support Document. U.S. Environmental Protection
 781 Agency, Washington DC.
- 782 <u>http://www.epa.gov/climatechange/emissions/downloads10/Subpart-W_TSD.pdf</u>
- 783 EPA (2011) Inventory of greenhouse gas emissions and sinks 1990-2009, EPA 430-R-11-
- 784 005, 55 p, <u>http://epa.gov/climatechange/emissions/usinventoryreport.html</u>
- Fulton M, Mellquist N, Kitasei S, and Bluestein J (2011) Comparing greenhouse gas
- emissions from natural gas and coal. 25 Aug 2011. Worldwatch Institute/Deutsche Bank.
- 787 <u>http://lockthegate.org.au/documents/doc-305-comparing-life-cycle-greenhouse-gas-</u>
- 788 <u>db.pdf</u>
- GRI-EPA (1997) Methane Emissions from the natural gas industry, Project Summary,
- Harrison NR, Shires TM, Wessels JK, and Cowgill RM, EPA/600/SR-96/080.
- 791 <u>http://www.docstoc.com/docs/19963708/Methane-Emissions-from-the-Natural-Gas-</u>
- 792 <u>Industry</u>.

- Harrison M (2012) Revised Attachment 3: Gas well completion emissions data, URS
- Corporation Report (aka the URS Devon Study), <u>http://anga.us/media/241555/anga-</u>
 <u>axpc%20nsps%20memo%20revised.pdf</u>
- Hayhoe K, Kheshgi HS, Jain AK, Wuebbles DJ (2002) Substitution of natural gas for coal:
 climatic effects of utility sector emissions. Climatic Change 54:107–139.
- Howarth R, Santoro T, and Ingraffea A (2011) Methane and the greenhouse gas footprint of
- natural gas from shale formations, Climatic Change, DOI 10.1007/s10584-011-0061-5.
- 800 <u>http://www.springerlink.com/content/e384226wr4160653/</u>
- 801 Howarth RW, Santoro R, and Ingraffea A (2011). Methane and the greenhouse gas footprint
- of natural gas from shale formations. Climatic Change Letters, doi: 10.1007/s10584-
- 803 011-0061-5. <u>http://www.springerlink.com/content/e384226wr4160653/</u>
- 804 Hughes D (2011) Lifecycle greenhouse gas emissions from shale gas compared to coal: an
- analysis from two conflicting studies, Post Carbon Institute, 21p,
- 806 <u>http://www.postcarbon.org/report/390308-life-cycle-greenhouse-gas-emissions-from</u>.
- 807 Hultman N, Rebois D, Scholten M, and Ramig C (2011). The greenhouse impact of
- 808 unconventional gas for electricity generation. Environ. Res. Lett. 6: 044008,
- 809 doi:10.1088/1748-9326/6/4/044008. http://iopscience.iop.org/1748-
- 810 <u>9326/6/4/044008/</u>
- 811 IPCC (1990), Houghton JT, Jenkins GJ, and Ephraums JJ (eds.), Report prepared for
- 812 Intergovernmental Panel on Climate Change by Working Group I, Cambridge University
- 813 Press, Cambridge, Great Britain, New York, NY, USA and Melbourne, Australia , 410 p.
- 814 <u>http://www.ipcc.ch/publications and data/publications and data reports.shtml</u>
- 815 IPCC (1996), Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, and
- 816 Maskell K, ed., Climate Change 1995: The Science of Climate Change, Contribution of
- 817 Working Group I to the Second Assessment Report of the Intergovernmental Panel on
- 818 Climate Change, Cambridge University Press, ISBN 0-521-56433-6 (pb: 0-521-56436-0)
- 819 <u>http://www.ipcc.ch/publications and data/publications and data reports.shtml</u>

- 820 IPCC (2001), Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K,
- and Johnson CA, ed., Climate Change 2001: The Scientific Basis, Contribution of Working
- Group I to the Third Assessment Report of the Intergovernmental Panel on Climate
- 823 Change, Cambridge University Press, ISBN 0-521-80767-0,
- 824 http://www.grida.no/publications/other/ipcc%5Ftar/?src=/climate/ipcc_tar/wg1/ind
- ex.htm (pb: 0-521-01495-6).
- 826 <u>http://www.ipcc.ch/publications and data/publications and data reports.shtml</u>
- 827 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working
- 828 Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
- 829 Change [Solomon, S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, and
- 830 Miller HL(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New
- 831 York, NY, USA.
- 832 <u>http://www.ipcc.ch/publications and data/publications and data reports.shtml</u>
- 833 Moore B (2011), Re: Oil and natural gas sector consolidated rulemaking, Docket ID No.
- 834 EPA-HQ-QAR-2010-0505 (with attached data set documenting gas leakage from
- unconventional gas wells of 7 companies).
- 836 NRC (2011) Climate stabilization targets: Emissions, concentrations, and impacts over
- decades to millennia, National Acadamies Press, Washington, D.C., 285p.
- 838 <u>http://www.nap.edu/catalog.php?record_id=12877</u>
- 839 Petron G, Frost GJ, Miller BR and 27 others (2012) Hydrocarbon emissions characterization
- 840 in the Colorado Front Range- a pilot study, Jour. Geophys. Res.,
- 841 doi:10.1029/2011JD016360.
- 842 <u>http://www.agu.org/journals/jd/jd1204/2011JD016360/2011JD016360.pdf</u>
- 843 Saghafi A, Williams DJ, and Lama RD (1997) Worldwide Methane Emissions from
- 844 Underground Coal Mining, Proceedings of the 6th International Mine Ventilation
- 845 Congress May 17-22, Chapter 69 Methane Drainage, CSIRO, p 441-445.

- 846 Schwartz, SE (2007) Heat capacity, time constant, and sensitivity of the Earth's climate
- system, Journal of Geophysical Research, 112, D24S05, 12p.,
- 848 doi:10.1029/2007JD008746
- 849 Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved
- attribution of climate forcing to emissions. Science 326:716–718.
- 851 Skone TJ (2011) "Life Cycle Greenhouse Gas Analysis of Natural Gas Extraction & Delivery
- in the United States", oral presentation at Cornell University, May 12, 2011,
- 853 http://cce.cornell.edu/EnergyClimateChange/NaturalGasDev/Documents/PDFs/SKONE
- 854 _NG_LC_GHG_Profile_Cornell_12MAY11_Final.PDF
- 855 Solomon S, Pierrehumbert R, Matthews D and Daniel JS (2011) Atmospheric composition
- 856 irreversible climate change and mitigation policy, World Climate Research Programme,
- 857 39 p., <u>http://conference2011.wcrp-climate.org/positionpapers.html</u>
- 858 Venkatesh A, Jaramillo P, Griffin WM, and Matthews HS (2011) Uncertainty in life cycle
- greenhouse gas emissions from United States natural gas end users and its effects on
- 860 policy, Environ. Sci. Technol., 45, 8182-8189.
- 861 http://pubs.acs.org/doi/abs/10.1021/es200930h
- 862 Wigley TML (2011) Coal togas: the influence of methane leakage, Climatic Change, DOI
- 863 10.1007/s10584-011-0217-3.
- 864 Wigley TML (2011) MAGICC/SCIGEN, <u>http://www.cgd.ucar.edu/cas/wigley/magicc/</u>