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Abstract

For the first time, we apply the wavelet coherence methodology on biofuels (ethanol and
biodiesel) and a wide range of related commodities (gasoline, diesel, crude oil, corn, wheat,
soybeans, sugarcane and rapeseed oil). This way, we are able to investigate dynamics of
correlations in time and across scales (frequencies) with a model-free approach. We show
that correlations indeed vary in time and across frequencies. We find two highly correlated
pairs which are strongly connected at low frequencies – ethanol with corn and biodiesel
with German diesel – during almost the whole analyzed period (2003-2011). Structure of
correlations remarkably changes during the food crisis – higher frequencies become impor-
tant for both mentioned pairs. This implies that during stable periods, ethanol is correlated
with corn and biodiesel is correlated with German diesel mainly at low frequencies so that
they follow a common long-term trend. However, in the crisis periods, ethanol (biodiesel)
is lead by corn (German diesel) even at high frequencies (low scales), which implies that
the biofuels prices react more rapidly to the changes in their producing factors.
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1. Introduction

Relationship between biofuels and related fossil fuels and producing agricultural com-
modities and its analysis have become more challenging to study in recent years which
experienced strongly varying prices of all mentioned commodities. The so-called “food
crisis”, which was characteristic by sharply increasing prices of agricultural commodities
and crude oil as well as retail fuels and biofuels, captured a very wide academic and policy
attention during 2008 and it continues to form policy attitude toward the biofuels versus
food issues. The matter of food–fuels–biofuels interactions gained another dimension and a
research on possible squeeze-out e↵ect, i.e. whether the increasing prices of biofuels cause
prices of related agricultural commodities to raise as well, has become very frequent since
that time.

However, the results are in general quite ambiguous, which might be caused by the
fact that the authors usually use di↵erent models with di↵erent assumptions and restricted
commodity coverage coming to di↵erent results (Janda et al., 2012; Zilberman et al., 2012).
In this paper, we contribute to this discussion by providing a new comprehensive view on
the price-correlation dynamics of food-biofuels-fuels system. Using the wavelet coherence
analysis, we are able to capture complex price-correlation dynamics without restriction to
ad-hoc specified time or frequency frameworks used in the previous literature. Additional
advantage of our paper is a wide coverage of all biofuels related commodities including
crude oil, fossil fuels, both main types of biofuels and major agricultural feedstocks for
biofuels, which is a unique contribution to biofuels price transmission literature.

In the previous studies, Zhang et al. (2009, 2010) use VECM and mGARCH models to
analyze the US ethanol connections with corn, soybeans and gasoline to find no long-range
relationships. Also, they focus on Granger causality and uncover only weak short-term
e↵ects. McPhail (2011) uses structural VAR model to analyze relationship between the
US ethanol, crude oil and gasoline to show that a policy-driven increase in demand for
ethanol leads to lowering prices of both crude oil and gasoline. Busse et al. (2010) focus on
German biodiesel and its connections to rapeseed oil, soy oil and crude oil between 2002
and 2009 and argue that crude oil strongly influenced the prices of biodiesel and biodiesel
shocks transmitted into rapeseed oil prices. However, the results are regime-dependent.

A number of previous studies dealing with price transmission in food-energy systems
do not consider the prices of biofuels at all. Instead they just consider crude oil prices
and prices of agricultural commodities. Ciaian and Kancs (2011b) report cointegration
between crude oil and a range of food commodites, some of them being used in the pro-
duction of biofuels. Since their range of food commodities cointegrated with the prices of
crude oil grows over time, they provide supporting evidence to the hypothesis of increasing
importance of biofuels transmission channel in the link between energy and food markets
(Tyner, 2010; Ciaian and Kancs, 2011a).

Serra et al. (2010, 2011) and Serra et al. (2011) focus on cointegration between crude
oil, ethanol and related feedstock to find an equilibrium relationship between the com-
modities for the US market as well as the Brazilian market with a slower reaction to the
shocks found for the latter. Rajcaniova and Pokrivcak (2011) argue that the cointegration
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relationship between ethanol and related commodities exists only for years 2008 onwards,
finding no statistically significant relationship in preceding years 2005–2008. Pokrivcak
and Rajcaniova (2011) provide evidence for cointegration relationship between crude oil
and gasoline prices but they do not find any cointegration between the prices of ethanol
and gasoline, and ethanol and oil.

Kristoufek et al. (2012a) analyze the biofuels markets with a use of minimum span-
ning and hierarchical trees to show that biofuels are very weakly connected to fossil fu-
els and relevant agricultural commodities in short-term but become more interrelated in
medium-term. The relations become stronger for the food crisis period onwards. Kristoufek
et al. (2012b) study the same dataset as the previous reference and focus on elasticities
and Granger causality and their price dependence. They find that corn causes changes
in ethanol prices while both elasticity and causality are price-dependent, and they find
biodiesel to be caused and elastic to the changes in German diesel prices and the e↵ects
are again price-dependent.

Evidently, the results di↵er considerably not only due to the model specifics but also due
to the analysis of sometimes di↵erent time scales (the most frequently analyzed scales range
from weekly to monthly or quarterly). Moreover, standardly used time series econometric
methods usually consider the frequency and time components separately. In this paper, we
utilize the wavelet approach, which allows to study the frequency components of time series
without losing the time information. Moreover, the wavelet methodology is constructed
to work with nonstationary data, which is a frequent issue in the financial time series
modeling (Roue↵ and Sachs, 2011).

We are the first ones to apply the wavelet coherence analysis on biofuels (ethanol and
biodiesel) and a wide range of related commodities (gasoline, diesel, crude oil, corn, wheat,
soybeans, sugarcane and rapeseed oil). Wavelets have been used several times in the anal-
ysis of commodities and energy markets. Connor and Rossiter (2005) were among the first
ones to use wavelets on the commodity markets. They studied price correlations using a
discrete form of wavelet transform. Relations between oil prices and economic activity with
wavelets were studied by Naccache (2011). However, that study was focused on very long
cycles. Recently, Vacha and Barunik (2012) applied continuous wavelet analysis to study
dynamic dependence between energy commodities. The wavelet method was compared
with multivariate concept of dynamic conditional correlation generalized autoregressive
conditional heteroscedasticity (DCC-GARCH).

We show that correlations indeed vary in time and across frequencies. We find two
highly correlated pairs which are strongly connected during almost the whole analyzed
period (2003-2011) at low frequencies – ethanol with corn and biodiesel with German diesel.
This asymmetric behavior of ethanol and biodiesel is quite an interesting phenomenon
since a simple technological reasoning could assume that both biofuels would have similar
correlation structures with respect to their agricultural feedstock and appropriate fossil
fuel substitute. However we show that this is not the case and that ethanol prices are
primarily connected with the price of its major US feedstock while the biodiesel prices are
most strongly connected with prices of its German fossil fuel substitute.

We discover that structure of correlations remarkably changes during the food crisis –
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higher frequencies become important for both mentioned pairs. This implies that during
the stable periods, ethanol is correlated with corn and biodiesel is correlated with German
diesel mainly at low frequencies so that they follow a common long-term trend. However,
in the crisis periods, ethanol (biodiesel) is lead by corn (German diesel) even at high
frequencies (low scales), which implies that the biofuels prices react more rapidly to changes
in their producing factors.

The rest of this paper is structured as follows. In Section 2, we provide the basic
definitions of the wavelet analysis – wavelets, wavelet transforms and coherence. In Section
3, the analyzed dataset is described and the results of wavelet analysis are discussed.
Section 4 concludes.

2. Methodology

In this section, we briefly introduce the continuous wavelet transform, wavelet coherence
and wavelet phase di↵erences. The wavelet transform decomposes the time series from a
time-domain to a time-frequency domain, i.e. using wavelets, we transform one dimensional
time series into a two-dimensional space. Contrary to the Fourier transform, the wavelet
transform uses a localized function with finite support – a wavelet – for the decomposition.
For this reason, wavelet transform has significant advantages over the Fourier transform
mainly when the object under study is nonstationary, or only locally stationary (Roue↵ and
Sachs, 2011). In the case we use just the Fourier transform, we obtain only the information
about the frequency components, but we completely loose the time information. Therefore,
in case a change in behavior arises in the middle of the investigated time series, we are not
able to localize where exactly this change occurs. When bivariate relation is studied, the
same problem with time localization applies, see Gençay et al. (2002); Percival and Walden
(2000); Ramsay (2002); Vacha and Barunik (2012) for details. The utilized wavelet analysis
overcomes these issues. Since the biofuels markets are relatively new, their behavior is very
dynamic and unstable as will be visible in the following sections and is as well documented
in Kristoufek et al. (2012a,b). Thus the need for the localized time-frequency wavelet
analysis of biofuels and related commodities is clearly evident.

2.1. The continuous wavelet transform

The continuous wavelet transform W
x

(u, s) is defined as a projection of a specific
wavelet1  (.) 2 L2(R) onto the examined time series x(t) 2 L2(R),

W
x

(u, s) =

Z 1

�1
x(t)

1p
s
 

✓
t� u

s

◆
dt, (1)

1We use the Morlet wavelet that belongs to the family of complex wavelets. Complex, or analytical,
wavelets have a real and a complex part, hence we can perform the phase analysis. The Morlet wavelet is
defined as  M (t) = 1

⇡1/4 e
i!0te�t2/2, where !0 denotes the central frequency of the wavelet. In our analysis,

we set !0 = 6, which is the value often used in the economic applications (Rua and Nunes, 2009).
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where u determines the exact position of the wavelet2. Scale parameter s controls how the
wavelet is stretched or dilated. If the scale is lower (higher), the wavelet is more (less)
compressed, therefore the wavelet is able to detect higher (lower) frequency components
of the examined time series x(t). A wavelet must fulfill the admissibility condition: C

 

=R1
0

| (f)|2
f

df < 1, where  (f) is the Fourier transform of a wavelet  (.). The time series
x(t) can be reconstructed using the wavelet coe�cients as

x(t) =
1

C
 

Z 1

0

Z 1

�1
W

x

(u, s) 
u,s

(t)du

�
ds

s2
, s > 0. (2)

Importantly, the continuous wavelet transform preserves energy of the analyzed time series,
i.e.,

kxk2 = 1

C
 

Z 1

0

Z 1

�1
|W

x

(u, s)|2 du
�
ds

s2
. (3)

We use this key property for the definition of the cross wavelet power and subsequently
of the wavelet coherence. For a more detailed introduction to wavelets, see Daubechies
(1988); Percival and Walden (2000).

Figure 1: Wavelet coherence example.

2This parameter helps to perfectly localize the behavior of the time series under study. In other words,
this is the extra parameter that we do not have in the Fourier transform.
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2.2. Wavelet coherence

Since we study the interactions between two time series, we introduce a bivariate setting
called wavelet coherence. As the first step, we define the cross wavelet transform and
subsequently the cross wavelet power.

The cross wavelet transform (Torrence and Compo, 1998) of two time series x(t) and
y(t) is defined as

W
xy

(u, s) = W
x

(u, s)W
y

(u, s), (4)

where W
x

(u, s) and W
y

(u, s) denote the continuous wavelet transforms of x(t) and y(t),
respectively, u defines a time position, and s denotes the scale parameter. Further, using
the cross wavelet transform, we obtain the cross wavelet power as |W

xy

(u, s)|. The cross
wavelet power represents the local covariance between the examined time series at the
specific scale u. In other words, it indicates where the time series have high common
power in the time-frequency domain.

Following Torrence and Webster (1999), we define the squared wavelet coherence coef-
ficient as:

R2(u, s) =
|S(s�1W

xy

(u, s))|2

S(s�1|W
x

(u, s)|2)S(s�1|W
y

(u, s)|2) , (5)

where S is a smoothing operator3. The squared wavelet coherence coe�cient is in the range
0  R2(u, s)  1. Values of the coherence close to one indicate strong correlation at a given
scale, while values close to zero indicate no correlation. The squared wavelet coherence
can be perceived as a local linear correlation between two time series at a particular scale.
Fig. 1 shows example of the wavelet coherence on three di↵erent scales and at di↵erent
time positions.

We test statistical significance of the wavelet coherence estimates using Monte Carlo
methods. The testing procedure is based on the approach of Grinsted et al. (2004) and
Torrence and Compo (1998). The significant areas of the wavelet coherence are bordered
with black thick line.

Since wavelets are in fact filters, we have to deal with boundary conditions. This
problem arises at the beginning and at the end of a dataset, where the filter analyzes
nonexistent data. In our work, we solve this problem by augmenting the dataset with a
su�cient number of zeros. The area where we pad the dataset with zeros is called the cone
of influence. It is graphically represented by a cone bordered by a bold black line in our
figures. For more details, see Torrence and Compo (1998), Grinsted et al. (2004).

2.3. Phase

Since the wavelet coherence coe�cient is squared, we cannot distinguish between nega-
tive and positive correlation. For this reason, we use the wavelet coherence phase di↵erences

3Smoothing is achieved by convolution in both time and scale, see Grinsted et al. (2004) for more
details.
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Figure 2: Wavelet phase example.

which indicate delays in the oscillation between the two examined time series. Following
Torrence and Webster (1999), we define the wavelet coherence phase di↵erence as

�
xy

(u, s) = tan�1

✓
={S(s�1W

xy

(u, s))}
<{S(s�1W

xy

(u, s))}

◆
. (6)

Phase di↵erences are indicated by black arrows in our figures. In case the two examined
time series move together, they have a zero phase di↵erence on a particular scale and the
arrows point to the right. If the time series are in anti-phase, i.e, they are negatively
correlated, then the arrows point to the left. Arrows pointing down indicate that the first
time series leads the second one by ⇡

2 , whereas arrows pointing up means that the second
time series leads the first one by ⇡

2 . A mixture of positions is common. For example, an
arrow pointing up and right means that the time series are in phase, with the second time
series leading the first one. As an illustration, see Fig. 2 where the case of zero phase
di↵erence and phase shift by ⇡

2 are depicted.

3. Data and results

We analyze time and frequency dependent correlations (wavelet coherence) between
biofuels and related commodities. Since our focus is on biodiesel and ethanol, we include
only relevant agricultural commodities, which are used for their production, and only rele-
vant fossil fuels, which are their respective natural substitutes. Our dataset thus contains
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Table 1: Analyzed commodities

Commodity Ticker Contract type

Biodiesel BIOCEUGE Spot, Germany
Corn C1 Futures, CBOT

Crude oil CO1 Futures, ICE
Ethanol ETHNNYPR Spot, FOB

Rapeseed Oil RPSOCRDU Futures, EU Mill
Soybeans S1 Futures, CBOT
Sugarcane SB1 Futures, ICE
Wheat W1 Futures, CBOT

consumer biodiesel (BD), ethanol (E), corn (C), wheat (W ), soybeans (S), rapeseed oil
(RS), sugarcane (SC), crude oil (CO), German diesel (GD) and the US gasoline (USG).
Corn, wheat and sugarcane are the feedstock for ethanol; soybeans and rapeseed oil are
the feedstock for biodiesel. As ethanol is mainly the US domain and its natural substi-
tute is gasoline, we include the US gasoline. In a similar way, biodiesel is predominantly
the EU domain and its substitute is diesel, thence German (as the biggest EU economy)
diesel is included. Crude oil (Brent) is included as well because it serves as a production
factor for all fuels in our dataset, or at least indirectly. This basic structure of the biofuels
system has been validated by our previous analysis in Kristoufek et al. (2012a). Majority
of the dataset was obtained from the Bloomberg database (Table 1), rapeseed oil from
the DataStream database, and the two fossil fuels were obtained from the U.S. Energy
Information Administration and represent the countries’ average price. As the price series
of the biofuels are very illiquid, we analyze weekly data for a period between 24.11.2003
and 28.2.2011 (Monday closing prices).

Fig. 3 shows weekly logarithmic prices for all analyzed commodities. The retail fos-
sil fuels are obviously highly correlated with crude oil and the normalized prices almost
overlap. Strong increasing trend in prices is observed for the period between 2007 and a
middle of 2008 which corresponds to the food crisis period (Hochman et al., 2011). For the
ethanol and related agricultural commodities, the highest prices are connected to the half
of 2008. Corn and wheat even reach their maxima in this period. Even though ethanol
experienced increasing prices in the food crisis period, these prices are only mildly higher
than the heights of 2007 and are even much lower than the maximum in 2006. Sugarcane
seems rather unconnected with the rest of the ethanol feedstock commodities and shows
the highest variability while reaching its maximum at the break of 2010 and 2011. For the
biodiesel and its feedstock commodities, we observe that biodiesel itself has a relatively
stable price with slow increasing trend between 2004 and the end of 2005 followed by the
period between 2006 and the second half of 2007, where the prices remained very stable.
During the food crisis, the price of biodiesel rocketed reaching the peak in the middle of
2008 and returning to the previous levels the following year. Rapeseed oil follows relatively
similar path to biodiesel but is much more volatile while soybeans are even more variable
in time. Again, the period of food crisis is connected to strong local maxima of the three
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Figure 3: Logarithmic prices. Logarithmic prices are normalized so that the minimum value is subtracted
making the series more easily comparable.

commodities.
Out of all 45 possible pairs of commodities in our dataset, we focused only on two biofu-

els branches – the ethanol (ethanol, corn, wheat, sugarcane, crude oil and the US gasoline)
and biodiesel branch (biodiesel, soybeans, rapeseed oil, crude oil and German diesel) – and
analyzed only the relevant connections as a follow-up to our previous results (Kristoufek
et al., 2012a). As we are primarily interested only in pairs including a biofuel, we were left
with 9 pairs to analyze. Wavelet coherence analysis is applied on the logarithmic returns
of weekly prices.

Starting with the ethanol branch, we found that out of five analyzed pairs, only the
ethanol – corn pair shows economically interesting and statistically significant results. In
Fig. 4, we present wavelet coherence for the ethanol branch. There are several features
needing further description – the wavelet coherence can be seen as correlation between
analyzed commodities and here, the hotter the color, the higher the correlation; regions of
statistically significant correlations are bordered with a bold black line (against the null
hypothesis of red noise, i.e. AR(1)-noise); and the direction of correlations is marked by
an arrow as described in the previous section. From the picture, we can tell than in the
first half of the analyzed sample, ethanol and corn are only weakly correlated and this
statistically significant correlation occurs only for scales approximately between a quarter
and one year in the period between half of 2005 and half of 2007. In this period, corn
clearly leads ethanol. Note that when the arrow points straight upwards, then corn leads
ethanol by ⇡

2 , i.e. by one quarter of the corresponding scale. With this in mind, we can
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Figure 4: Wavelet coherence for ethanol and related commodities.
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say that corn leads ethanol by approximately two months in the second half of 2005 while
the leading period, i.e. a lag between the two series, was decreasing from 2006 onwards
and even reached insignificant correlations at all scales at the break of 2007 and 2008.
Starting from 2008, we observe a rapid increase of correlations at almost all scales. Note
that this period is connected to very high prices of all the analyzed commodities – the
food crisis. For lower frequencies (higher scales), we observe that corn and ethanol are
highly correlated but it is not clear which commodity is the leading one. The higher the
frequency gets, the more visible it becomes that corn leads ethanol. Moving forward in
time, we can see that from the beginning of 2009 onwards, the dominating frequencies
lower considerably and the relationship becomes the most evident approximately between
one and three quarters of the year. However, compared to the relationships before the
food crisis, we find no dominance between the two. For the remaining pairs, i.e. E–W ,
E–CO, E–SC and E–USG, we find no economically interesting and significant relations
between the series and if so, these are rather short-term and can be hardly distinguished
from random occurrences as shown in Figs. 1-2.

Moving to the biodiesel branch, we find that the pair with the most pronounced in-
teractions is the biodiesel and German diesel one. In Fig. 5, we can see that the most
dominant scale is approximately 32 weeks for almost whole analyzed period. Biodiesel
and German diesel are positively correlated and in majority of cases, German diesel is the
leading series. However, the length of the lag between commodities is on average shorter
than for E–C case, i.e. biodiesel reacts faster to changes in German diesel than ethanol
does to the changes in corn. In the beginning of 2007, German diesel started a growth rally
which culminated in a half of 2008. This period is connected with more complex dynamics
of correlations between GD and BD with scales of significant correlations broadening to
a range between 5 and 50 weeks. German diesel remains the leader of biodiesel for practi-
cally all significant scales in this period. For high frequencies between 5 and 10 weeks, we
observe a strong leadership of German diesel where the leading period length gets as low
as 1–2 weeks. This implies that when the price of German diesel is very high, biodiesel
reacts to its changes very quickly. When prices of German diesel get back to the pre-crisis
levels – from the beginning of 2009 onwards – the dominance of longer scales becomes
apparent again. Similarly to the ethanol–corn case, when we compare the pre-crisis and
post-crisis correlations at the low frequencies, we have German diesel as a clear leader in
the former but no obvious leadership in the latter period. Quite similar, yet much weaker
connections are observed for biodiesel and crude oil pair. However, significant connections
are visible for only very specific time periods and compared to the BD–GD and E–C
pairs, the coherence is much less evident. Nevertheless, crude oil is identified as a leading
series of biodiesel for these significant periods and the series are positively correlated most
of the time. The remaining pairs, i.e. BD–S and BD–RO, show practically no significant
co-movements.
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4. Conclusions and discussion

We analyzed the interconnections in ethanol and biodiesel systems with a use of the
wavelet coherence analysis, which has never been done before. By doing so, we were
able to uncover how correlations between pairs of commodities evolve in time and across
frequencies. This way, we overcame the basic problem of standardly used methodologies,
i.e. focusing on either the time or frequency domain. Moreover, we did not have to impose
any restrictions on the underlying processes as the used methodology is model-free.

Figure 5: Wavelet coherence for biodiesel and related commodities.

Starting with a wide range of the biofuels-related commodities, and covering the most
important producing factors and the fossil fuel substitutes for ethanol and biodiesel, we
find that the only economically important and statistically significant connections come
up between ethanol and corn, and German diesel and biodiesel. For both pairs, we find
that the most dominant frequency is around 32 weeks, i.e. approximately half of a year,
which holds for almost the whole analyzed period 2003–2011. We also find that a structure
of correlations changes with respect to the food crisis between 2007 and 2008, which was
connected to unprecedentedly high prices of almost all biofuels feedstock commodities.
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During this period, the strong interactions in the pairs broadened to higher frequencies as
well and the leadership of the producing factors (corn and German diesel) became more
apparent. In the crisis period, the leadership of corn relative to ethanol is apparent only
for the short scales whereas the German diesel leadership with respect to biodiesel is visible
at practically all significant scales.

Interesting distinction between the two pairs of commodities lies in the di↵erence in
leadership shifts before and after the food crisis. For ethanol, we observe that corn evidently
leads the biofuel at lower frequencies for the pre-crisis period but after the crisis, we find
no such strong leadership but only a strong positive correlation between the two. The
structure of correlations thus visibly changed after the crisis. Quite similarly, the leadership
of German diesel with respect to biodiesel di↵ers before and after the crisis – the phase
shift between the two becomes weaker in time at low frequencies. However, the change is
not as noticeable as for the ethanol–corn pair.

Importantly, we find no evidence for potential squeeze-out e↵ect of agricultural com-
modities by biofuels, which is of high economic, political and also social interest. On
contrary, we find that if some leader-follower relationship is found, the producing factor
(corn and German diesel) is the leader of the biofuel (ethanol and biodiesel) in a majority
of the cases (both in time and across frequencies), and not vice versa.

Note that results presented here nicely integrate and validate partial results of our
previous research in Kristoufek et al. (2012a) and Kristoufek et al. (2012b). In Kristoufek
et al. (2012a), we show that from the whole period 2003–2011 viewpoint, there are hardly
any correlations between biofuels and the rest of the system at weekly frequency, which
changes when we decrease the frequency to one month so that the correlations increase.
Importantly, we show that correlations are much stronger for the crisis and post-crisis
periods even for high frequencies. This is practically the same result we find with the
wavelet coherence analysis. In Kristoufek et al. (2012b), we find that ethanol is lead by
corn and biodiesel is lead by German diesel with a use of Granger causality tests, while
other connections remain very weak. Again, this is what we show in this paper where
we integrate separate correlation and causality techniques, which we used in the earlier
papers, by wavelet coherence methodology. Summarizing the results together, we arrive at
the very convincing evidence that ethanol (biodiesel) is mainly connected to and lead by
corn (German diesel) while the intensity of leadership and magnitude of correlation vary
in time and seem to be dependent on corn (German diesel) prices.

Our results show that the wavelet coherence technique is an exceptionally promising
technique for analyzing not only biofuels but also the time and frequency dynamics of
other commodities. While we introduce this technique in the price domain, it could be
obviously used for equally interesting biofuels quantities related analysis as soon as the
biofuels markets trading reach such maturity that su�ciently frequent quantity data would
be available.
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