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Wind Power Forecasting Error Frequency Analyses for 
Operational Power System Studies 

Anthony R. Florita, Bri-Mathias Hodge, and Michael Milligan 
National Renewable Energy Laboratory 

Golden, CO 80401; USA 

Abstract—The examination of wind power forecasting errors is 
crucial for optimal unit commitment and economic dispatch of 
power systems with significant wind power penetrations. This 
scheduling process includes both renewable and nonrenewable 
generators, and the incorporation of wind power forecasts will 
become increasingly important as wind fleets constitute a larger 
portion of generation portfolios. This research considers the 
Western Wind and Solar Integration Study database of wind power 
forecasts and numerical actualizations. This database comprises 
more than 30,000 locations spread throughout the western United 
States, with a total wind power capacity of 960 GW. Error analyses 
for individual sites and for specific balancing areas are performed 
using the database, quantifying the fit to theoretical distributions 
through goodness-of-fit metrics. Insights into wind-power 
forecasting error distributions are established for various levels of 
temporal and spatial resolution, contrasts made among the 
frequency distribution alternatives, and recommendations put forth 
for harnessing the results. Empirical data are used to produce more 
realistic site-level forecasts than previously employed, such that 
higher resolution operational studies are possible. This research 
feeds into a larger work of renewable integration through the links 
wind power forecasting has with various operational issues, such as 
stochastic unit commitment and flexible reserve level 
determination. 

Keywords—wind forecasting, error frequency, hyperbolic 
distribution, operational power system 

I. INTRODUCTION 
 The wind power supplying energy in power systems has 
increased greatly throughout the previous decade. Unlike 
conventional thermal units, the variability and uncertainty of 
wind power has led to concerns about how wind power is utilized 
in power system operations. In the United States, there have been 
a number of studies of the impact of larger penetrations of wind 
power on system operations [1]–[7]. One of the results of these 
studies has been the recognition that wind power forecasting is an 
important technology enabling greater wind power penetration 
because it reduces the uncertainty of the wind power output. 
Because wind power forecasting plays a critical role in these 
integration studies, a proper statistical characterization of wind 
power forecasting errors assumed in operational studies is 
necessary to ensure accurate results. 
 The wind power forecasts used in operational studies are 
often divided into two forecast periods: day ahead and hour 
ahead. These correspond to the decision time frames in the 

production cost models used to simulate system operations, and 
are modeled on a generalization of the Unit Commitment and 
Economic Dispatch (UCED) problem. In this paradigm, variable 
values, such as load and wind power, are forecast the day before 
to ensure that slow starting thermal units are available to meet the 
anticipated load. One hour before the realization, the variable 
values are forecast again so that dispatch decisions may be made. 
Generally speaking, commitment decisions determine whether a 
unit will be online, whereas dispatch decisions fine tune the 
output level of units that will be online. However, some fast-
starting units can be committed in the dispatch time frame, if 
necessary. Forecast errors in the unit commitment stage can have 
substantial economic consequences, if they are large enough that 
they cause a different commitment than would have been 
performed with an optimal forecast. For example, if the wind 
power is over-forecast by 500 MW, a cheaper, slow-starting coal 
unit, which would have been started if the forecast were more 
accurate, might need to be replaced by a more expensive fast-
starting natural gas unit. However, if the forecast error is only 1 
MW, the natural flexibility in the system will be able to make up 
the difference. For these reasons, most concern is placed on large 
forecast errors in the day-ahead time frame—i.e., the tails of the 
forecast error distribution have the greatest economic impact and 
there is more uncertainty in day-ahead forecasts. 

This research seeks to first ascertain a methodology for fitting 
wind power forecasting errors at various levels of temporal and 
spatial resolution, then to harness empirical data for updating 
existing (numerical) site-level forecasts to increase their fidelity 
to measured phenomena. Both topics strive toward aiding higher 
resolution operational power system studies. The forecasting 
errors are examined in the sense of frequency and are not 
examined time sequentially; however, the updated forecasts are 
inherently a time series while maintaining distribution moments 
informed by the empirical data. The data for wind power 
forecasts and numerical actualizations come from the Western 
Wind and Solar Integration Study (WWSIS), with more than 
30,000 locations spread throughout the western United States and 
a total wind power capacity of 960 GW. 

II. METHODS AND DATA 
In this section, some background is provided on the primary 

statistics used to examine the forecast error distributions studied 
in this research. Additionally, the empirical data sets examined in 
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this work are described. The analysis was performed using the R 
statistical computing environment [8], using additional pertinent 
packages [9], [10]. 

A. Some Statistical Background 
Most work in wind power forecasting uses the first two 

standard moments, mean and variance, to describe the observed 
error distribution. Although these two metrics provide some 
important information about the distribution, further information 
is available from the third and fourth statistical moments: 
skewness and kurtosis. Skewness is a measure of the symmetry 
of the distribution; whereas kurtosis describes the relationship 
between the peak and tails of the distribution. A negative skew 
indicates a long left tail, with the bulk of the distribution on the 
right side. A leptokurtic distribution is one with a high kurtosis 
value; whereas a platykurtic distribution has a low kurtosis value. 
Observed kurtosis values are often compared to the kurtosis value 
of the normal distribution, which can be fully described by the 
first two statistical moments. This value is known as the excess 
kurtosis, and in what follows, the term excess kurtosis is used 
synonymously with kurtosis. Because particular interest is placed 
on the tails of the distribution, the analysis of these two moments 
will help enable a more accurate characterization of the error 
distribution. 

Recent research into the aforementioned wind power 
forecasting and related concerns [11]–[13] has shown the 
inadequacy of the Gaussian distribution for fitting errors of 
interest. It has also hinted at the applicability of the hyperbolic 
distribution. Nonetheless, for the data examined herein, 
numerous theoretical distributions were considered, including: 
Cauchy, Laplace, Beta, the Generalized Lambda, as well as many 
appropriate piecewise distributions. In the interest of brevity, 
only major results and insights were included. 

B. Investigated Data 
The primary data set examined in this work was produced by 

3TIER [14], [15], as part of the WWSIS Phase 1 [6]. Wind 
speeds at 100 m were simulated at 10-min intervals for the years 
2004, 2005, and 2006, at more than 30,000 locations in the 
Western United States, using a Numerical Weather Prediction 
model (NWP). These values were then converted to a wind 
power output value, using the SCORE-lite statistical correction 
methodology [15], [16], based on the assumption that each 
location contained 10 3-MW turbines. The 10-min values were 
averaged into hourly wind power output from each of the sites; 
henceforth these values will be referred to as the “actuals.” An 
additional run of the NWP was performed with different 
boundary conditions to produce day-ahead wind power forecasts 
for each of the sites selected. These values will be referred to as 
“forecasts” in what follows. It is noted that these forecasts were 
not subject to the same site-specific statistical processing 
normally applied to operational systems [14]. 

Although the simulated “actuals” and “forecasts” were 
obtained from state-of-the-art modeling techniques, it was 

desirable to bring empirical data into consideration. Thus, data 
have been analyzed from three distinct regions of the United 
States and results later made to bear on the “forecasts” for 
enhanced fidelity to reality; these more realistic forecasts are 
termed “updated forecasts.” The updated forecasts will be used in 
future operational studies addressing the UCED problem from 
various perspectives. The following describes the empirical data 
utilized for these concerns. 

The first data set comprises aggregated wind power output 
and forecasts from all of the active wind power plants in the 
Electric Reliability Council of Texas (ERCOT) interconnection 
during a 13-month period. The total wind capacity included in 
this data set is approximately 9,000 MW. This data set includes 
only day-ahead forecasts, made once a day at 16:00 the previous 
day. It is important to note that the day-ahead forecast is not at a 
consistent timescale and includes forecasts between 8 and 32 
hours in advance. The second data set considered consists of a 
year’s worth of day-ahead forecasts from the California 
Independent System Operator (CAISO) region. These forecasts 
are made at 05:30 and are valid for the following midnight-to-
midnight time frame, thus they represent periods 18 to 42 hours 
in advance. They include forecasts for 16 different wind plants 
with a total capacity of approximately 940 MW. The third data 
set used consists of the forecasts and output from a wind plant in 
the Xcel Energy Colorado territory. The wind plant studied has 
an approximate nameplate capacity of 300 MW. This data set 
includes three months of data from the summer and fall seasons 
with hourly forecasts produced every 15 minutes for the next 72 
hours. 

All three data sets provide useful information. The day-ahead 
ERCOT and CAISO forecasts are important when performing the 
day-ahead unit commitment process. The Xcel forecasts provide 
useful information on how forecasts improve with decreasing 
forecasting horizon. The Xcel forecasts also show the forecast 
errors that can be expected during smaller operational timescales, 
though they lack the smoothing of a geographically diverse data 
set. Additionally, the Xcel data set consists of a single season, 
instead of at least one year for the other two data sets. It is 
important to note that all of the data sets use methodologically 
similar forecasting systems, based on NWP models with 
statistical post-processing, but the forecasts come from two 
different forecast providers. For the concerns of this article, as 
explained in a later section with greater detail, only statistical 
moments from the error distributions of the three empirical data 
sets were considered directly (through an interpolation approach) 
for producing the updated forecasts. 

An overview of the analysis of the wind power forecasting 
data set and its updating for the needs of WWSIS Phase 2 is 
provided in Fig. 1. This paper provides a summary of the crucial 
aspects of the research methodology and some final results; a 
forthcoming report provides greater detail. 
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Fig. 1. Overview of wind power forecasting analysis and production of updated forecasts that consider empirical data 

III. CHARACTERIZATION OF FORECASTING ERRORS 
To understand the implications of wind power forecasting 

errors in wind integration studies, a statistical characterization of 
the errors is helpful. This characterization can identify the range 
of errors expected, with their corresponding frequency. Such a 
characterization can be particularly useful for determining the 
operating reserves necessary to compensate for the forecasting 
errors. Here, two different levels of the wind forecasting data 
were examined: the forecasts at individual sites and forecasts 
aggregated throughout balancing areas. 

A. Individual Sites 
The forecasts that are most commonly used by wind power 

developers and plant operators are those created for individual 
wind plants. These forecasts may be used by operators to bid into 
the day-ahead market in areas where wind may participate in 
such a market. Here, the forecast errors for a typical 30-MW 
wind plant in the WWSIS data set were examined. Fig. 2 
illustrates the typical error frequency behavior from one of the 
30,000 sites, with mean = -1.139, var = 60.4, skew = -0.206, and 
kurt = 2.16. The distribution is leptokurtic, and its negative bias 
underestimates the actual production by ~3.8% on average; the 
negative skew compensates in terms of the whole distribution. 
The assumption of normality is obviously erroneous, and the best 
fit from the myriad of theoretical distributions considered came 
from the hyperbolic distribution. The hyperbolic distribution is 
common in financial modeling and applications. This may be 
intuitive to some readers because any forecasting can be thought 
of as actively chasing realizations of future measurements: with a 
physically driven, somewhat predictable process, there will be 

many relatively small errors and considerably fewer relatively 
large errors. 

B. Aggregation of Balancing Areas  
Although the forecasts at individual wind plants are important for 
wind plant operators, the aggregate forecast for all of the wind 
plants is an important consideration for the Independent System 
Operator (ISO) or Balancing Authority (BA). Here, all of the 
wind plant outputs and forecasts for each of the balancing areas 
were aggregated according to the high-wind scenario of WWSIS 
Phase 2. Aggregation throughout a wide geographic domain 
typically creates distributions that are more conventional than 
from individual plants, as more atmospheric phenomena are 
involved, and large forecasting errors become less correlated with 
increasing distance. Fig. 3 provides a typical example from a BA, 
with mean = 137.7, var = 5.84*10^5, skew = 0.122, and kurt = 
2.05. The distribution is leptokurtic, and its positive bias 
overestimates the actual production by ~2.6% on average; the 
positive skew compensates in terms of the whole distribution. It 
should be noted the error bias is less than that of the individual 
site, which would be expected according to the spatial and 
temporal smoothing effects previously noted. In addition to better 
forecasts at the larger scale because of aggregation and 
smoothing effects from averaging, there is a visually, and more 
importantly numerically, better fit for the tails of the distribution. 
This is fundamentally important because these extreme events 
drive the economics of the UCED problem and are of great 
interest in operational power system studies. 
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Fig. 2. The site-level forecasting errors and pdf fitting 

 

Fig. 3. The BA-level forecasting errors and pdf fitting 

C. Goodness-of-Fit Evaluation 
From simple visual inspection, the normal distribution is not 

helpful for the concerns of this research. In the interest of space, 
the numerous theoretical distributions considered for fitting the 
forecast errors were not considered here. 

Focus was placed on ensuring the hyperbolic distribution met 
standards associated with a goodness-of-fit statistic for all BAs 
and a subset of selected sites of interest to the WWSIS Phase 2 
high-wind scenario, after “best fits” were determined. All 
implementations of distribution fitting relied on a maximum 
likelihood routine using the Nelder-Mead simplex method for the 
appropriate initialization [9]. To ensure the robustness of the fit 
parameters, the routine was evaluated 1,000 times (for each BA 
and selected site) as part of a bootstrapping approach 
programmed by the authors, the final result being the best 
estimates of the four hyperbolic parameters for every BA and 
selected site. 

The goodness-of-fit statistic utilized [17] a Cramer-von 
Mises statistic as follows: 
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It has a null hypothesis that the sample comes from the 
hyperbolic distribution, which is accepted/rejected after four 
distinct calculation steps: 

1) The maximum likelihood estimates are obtained; 
2) The Cramer-von Mises statistic is calculated; 
3) Tabular values of W^2 are consulted at significance level 

alpha and the null hypothesis is accepted or rejected; and 
4) The p-value of the test can be calculated by interpolation, 

if necessary. 
The null hypothesis was accepted at the alpha = 0.05 significance 
level for all BAs and each selected site. This validated the 
applicability of the hyperbolic distribution for the forecast error 
data under investigation for WWSIS Phase 2. It should also be 
noted that the hyperbolic distribution provided a superior fit at 
the “bus” and “plant” aggregation levels of Fig. 1 than all the 
theoretical distributions previously discussed and considered as 
part of this research. 

IV. COMPARISON WITH OPERATIONAL 
To fully understand the implications of the simulated wind power 
forecasts used in wind integration studies, an understanding of 
how they compare with the errors observed in real operational 
forecasting systems is necessary; the empirical data was 
previously described in Section II-B. Understanding where the 
simulated forecast errors differ allows the identification of their 
limitations for use in wind integration studies. Furthermore, the 
empirical data can be harnessed to create more realistic forecast 
error distributions that help increase model fidelity of wind 
integration studies; the updated and more realistic forecasts will 
be termed the “updated forecasts,” and are necessary only at the 
site level because of the topology and required inputs of such 
power system studies. Therefore, the methodology illustrated in 
Fig. 1 relied on extracting crucial information (i.e., statistical 
moments) from the empirical operational forecasting system data, 
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then used it to produce the updated forecasts superior to those 
from WWSIS Phase 1 [6]. The updated forecasts are currently 
being used as part of various ongoing UCED investigations 
involving wind integration. 
 One of the fundamental problems with wind integration 
studies is that researchers are evaluating a future that does not yet 
exist. One of the implications of this reality is that although 
actual wind power forecasting errors for all of the 960 GW of 
installed wind capacity considered in the WWSIS would be 
preferred, we must create these errors, keeping in mind important 
features that should be represented as close to the current state as 
possible. With only limited empirical operational forecasting 
information available, it is therefore necessary to interpolate data 
to infer reasonable values for modifying the forecasts to produce 
the updated forecasts. To be able to numerically compare the 
important features of the error distributions, the first four 
statistical moments were chosen. 

In the process of updating the forecasts to a more faithful 
representation of reality (i.e., still erroneous but not containing 
statistical anomalies), a key assumption made was that the bias 
and skew of the updated forecast error distribution should be 
equal to zero. That is, there was no physical reason the forecasts 
should, on average, over- or under-forecast, and there was no 
reason to expect a higher frequency of over- or under-forecast 
events. Therefore, in the conversion process, primary focus was 
placed on obtaining realistic magnitudes of variance and kurtosis, 
as these were the main statistical features of interest from an error 
frequency viewpoint. To produce the updated forecasts, the 
partitioning of the errors in a time series fashion was a function 
of the original forecast errors. This was meant to maintain the 
majority of the site-to-site correlations that were a product of the 
NWP forecast generation process. An overview of the conversion 
process follows in the next section. 

V. CONVERSION PROCESS 
A visual representation of the updating process for modifying 

the original WWSIS Phase 1 forecasts to produce the updated 
forecasts is shown near the bottom of Fig. 1. The goal was to 
produce more realistic site-level forecasts, updating the original 
forecasts through the reliance on operational system data (i.e., 
statistical moments) and the standardization/extraction of 
statistical anomalies. A step-by-step process description follows. 

The first step was to obtain the best hyperbolic fit to the BA-
level data; examples and reasoning for this at both the BA and 
site levels were discussed above. However, an additional driver 
was the manner in which the forecasts would be used in the 
WWSIS Phase 2 study. The study uses a zonal transmission 
model, meaning that forecasts are essentially aggregated at the 
BA level. With the distribution fit, the four moments were saved 
from each BA. 

The second step was to use the empirical operational data to 
interpolate what the moments should be (from empirical data 
and a curve fit) as a function of a given BA’s capacity; the 

moments from the original forecast errors and the empirical 
interpolation were roughly similar. Analysis of the data revealed 
that the variance and kurtosis values of both the operational and 
original WWSIS forecast data was strongly correlated with the 
wind capacity considered, an indirect measure of the geographic 
diversity. 

The third step involved determining the values of the 
hyperbolic parameters, with the location (mean) and asymmetry 
(skew) parameters assumed null, as discussed above, such that 
the empirical-derived operational moments could be matched in 
an optimal fashion. The optimization process involved a particle 
swarm routine programmed by the authors to evaluate a moment 
matching subroutine until convergence on the optimal 
hyperbolic parameters. The result was that the character of the 
original forecast errors (with hyperbolic distribution) was 
maintained, minus the statistical anomalies, and the empirical 
data concerning moments was imparted on the updated forecast 
error distribution. Because of histogram binning, the updated 
forecast error density showed only minor visual differences from 
the original of Fig. 3, and was therefore not provided here; 
however, there were distinct numerical differences. Figs. 4 and 5 
illustrate the numerical differences between the WWSIS Phase 1 
forecast errors and the updated theoretical ones, which took 
empirical data into account and were not biased or skewed. 
From the figures, typical site-level examples of minor and 
significant differences were noted, respectively. Fig. 4 shows a 
case where the updated forecast errors (i.e., the theoretical 
distribution signified by the line) were only slightly different 
than the original WWSIS forecast errors—mostly in the tails, 
where there were less than a dozen samples/hours per year; the 
update was minimal. Fig. 5 shows a case were the updates were 
significantly different than the original WWSIS forecast 
errors—the original forecast error data was hyperbolic but 
anomalous because of one sample year of hourly data that was a 
function of one forecasting instance, and was not indicative of 
realistic and quality site-level forecasts. The latter was the 
reason for updated forecasts, as well as time/computation limits 
on such minor stochastic considerations. 

The fourth step involved determining the error at each hour of 
the year according to its quantile. This was achieved by stepping 
through the original WWSIS forecasts, determining its quantile 
at that hour, and mapping that to the quantile of the theoretical 
distribution to allow the determination of the updated error at 
each hour. The process is illustrated in Fig. 6 for one hour in the 
95% quantile. 

The fifth and final step was to take the 8,760 hourly errors 
and partition them to the site level to produce the updated 
forecasts. This could be accomplished in one of two ways, both 
of which were executed: (1) The hourly error could be uniformly 
distributed to each site, and/or (2) The hourly error could be 
distributed to each site according to its relative error, i.e., the 
site’s hourly error as a proportion of total BA error from the 
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original WWSIS error forecasts. The sign of the error was 
maintained from the original to the updated forecasts. 

 
Fig. 4. Quantile-quantile plot of updated (theo.) forecast errors 
and the original WWSIS data: minor differences 

 
Fig. 5. Quantile-quantile plot of updated (theo.) forecast errors 
and the original WWSIS data: significant differences 

 
Fig. 6. The BA-level forecast errors mapped (according to 
quantile and sign) from the original WWSIS distribution to the 
updated forecast distribution 

VI. CONCLUSIONS AND FUTURE WORK 
In this work, we compared the forecast error distributions from 
the WWSIS data set with those taken from operational 
forecasting systems. The results of the analysis enabled the 
modification of the forecasts from the original WWSIS data set 
to more accurately reflect the current state in wind power 
forecasting. This is important especially because there were 
significant differences in the tails of the error distributions, i.e., 
the largest forecasting errors that have the most economic 
impact. Sensitivity studies are planned in the WWSIS Phase 2 to 
quantify the economic impacts of the improved wind forecasts. 
The modified forecasts will be made publicly available 
alongside the original WWSIS data. In a broader context, this 
work highlights the need for accurate portrayal of wind power 
forecasting errors in high wind penetration integration studies. 
This is an often overlooked aspect of these studies that can 
significantly influence the results of production cost simulations. 
Future work will look to further disaggregate the wind power 
forecasting errors into different categories where similar results 
can be expected, e.g., based on weather conditions. This will 
further increase the fidelity of the wind power forecasts used in 
wind integration studies. 
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