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A probabilistic framework for security constrained reserve scheduling
of networks with wind power generation

Maria Vrakopoulou, Kostas Margellos, John Lygeros and Göran Andersson

Abstract— This paper proposes a novel probabilistic frame-
work to design an N-1 secure day-ahead dispatch, while deter-
mining the minimum cost reserves for power systems with high
wind penetration. To achieve this, we build on previous work,
and formulate a stochastic optimization program with chance
constraints, which encode the probability of satisfying the
transmission capacity constraints of the lines. To incorporate
then a reserve decision scheme, we take into account the
steady state behavior of the secondary frequency controller,
and hence consider the reserves to be a linear function of the
total generation-load mismatch. The overall problem results in
a chance constrained bilinear program; to achieve tractability,
two alternative convex reformulations are proposed, and the so
called scenario approach is employed. This approach is based
on sampling the uncertain parameter (in this paper the wind
power) while keeping the desired probabilistic guarantees. To
illustrate the effectiveness of the proposed technique we apply
it to the IEEE 30-bus network, and compare the alternative
reformulations in terms of cost and performance by means
of Monte Carlo simulations, corresponding to different wind
power realizations generated by a Markov chain based model.

I. INTRODUCTION

The expected increase in the installed wind power capacity

highlights the necessity of revisiting certain operational con-

cepts, like security and reserve scheduling, so as to take into

account the fluctuating nature of the wind. In a liberalized

power market structure both problems are tasks of the

Transmission System Operator (TSO). In a deterministic set-

up, security of a power system refers to its ability to survive

contingencies, while avoiding any undesirable disruption of

service [1], [2]. As a security measure, the so called N-1

security criterion is commonly used, under which the system

is considered to be N-1 secure if any single component

outage does not lead to an overloaded component, or to other

operational violations.

In the absence of uncertainty, many methods dealing

with security enhancement have been proposed [3], [4], [5],

[6], [7]. A more detailed literature review regarding such

deterministic approaches can be found in [8]. In a stochastic

framework though, most of the research so far has been
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either concentrated on the economic implications of security

[9], [10], or it has resorted to Monte Carlo based statistical

analysis [11], [12].

Stochastic reserve scheduling on the other hand, has

attracted significant attention since it plays an important

role, both from a technical and an economical point of

view. In view of maximizing the expected social welfare,

optimization of reserve power has been addressed in [13],

[14], [15], [16], in a security constrained market clearing

context. Using the same framework, [17], [18] formulated

a multi-stage stochastic program to determine the minimum

cost level of reserves, modeling the uncertain generation by

means of scenarios, and using reduction techniques to ensure

tractability of the problem.

In this paper, we design a probabilistically robust N-1 se-

cure day-ahead dispatch for the generating units, while deter-

mining the minimum cost reserves. In [8], we addressed the

problem of generating a probabilistically secure generation

dispatch, separately from the reserve scheduling one, which

was tackled in [19]. To achieve both objectives, we first

integrate as in [8] the security constraints, emanating from

the N-1 criterion, to a DC optimal power flow problem [20],

and formulate a stochastic optimization problem with chance

constraints. Subsequently, modeling the steady state behavior

of the secondary frequency controller, leads to representing

the reserves as a linear function of the total generation-load

mismatch, that may occur due to the difference between the

actual wind from its forecasted value, or as an effect of a

generator/load loss.

The resulting problem is a chance constrained, bilinear

program. To achieve tractability, two alternative reformula-

tions are proposed and are presented in detail in Section III.

Both approaches lead to a convex problem, that can be then

solved using the so called scenario approach (see Section

III.C), [21]. To evaluate the efficiency of the proposed

approach, both alternatives are compared in terms of cost

and performance by means of Monte Carlo simulations for

different wind power realizations, using a modified version

of the IEEE 30-bus network, retrieved from [22].

Section II introduces the formulation of the security con-

strained reserve scheduling problem as a chance constrained

optimization program. In Section III, two alternative convex

reformulations, and details regarding the “scenario approach”

are provided. Section IV illustrates the performance of the

proposed approach via a simulation study, whereas Section V

concludes the paper and provides directions for future work.
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II. PROBLEM FORMULATION

A. Definitions and problem set-up

For the analysis of the subsequent sections, we consider a

power network comprising NG generating units, NL loads,

Nl lines, and Nb buses. For the security constrained for-

mulation, we take into account any outage involving the

tripping of a branch, generator, or load. Denote by Nout =
NG+NL+Nl the total number of outages. Moreover, denote

by Il
out, IL

out, IG
out the set of indices corresponding to branch,

load and generator outages, respectively.

The problem formulation of the next section is based on

the following assumptions: 1) A standard DC power flow

approach [23] is adopted. 2) Wind generation is located

at a single bus of the network. 3) No load uncertainty is

considered. The first assumption is rather standard for this

type of problems, whereas the last two are included so as to

simplify the presentation of our results, and could be easily

captured by the proposed algorithm.

Under these assumptions, for every outage i =
0, 1, . . . , Nout, (i = 0 is used for the base case) the power

flow equations and the power injection vector can be written

as P i
f = Bi

fθ, P i = Bi
BUSθ, where P i

f ∈ R
Nl contains

the power flows of each line, and P i ∈ R
Nb and θ ∈ R

Nb

denote the active power injections and the voltage angles at

every bus of the network respectively. Matrices Bi
f , which

include the imaginary parts of the admittance of each net-

work branch, and Bi
BUS , which denote the nodal admittance

matrix of the network, are both topology related quantities,

and hence depend on the outage i. For the situation that there

is no outage (i = 0) or i ∈ IL
out∪IG

out, B
i
f = Bf ∈ R

Nl×Nb

and Bi
BUS = BBUS ∈ R

Nb×Nb , whereas in other cases their

dimension should be changed appropriately.

For each i = 0, 1, . . . , Nout we eliminate θ from P i
f , P

i,

so as to represent the power flows P i
f as a function of the

power injections P i. To achieve this, since Bi
BUS is singular

with rank Nb − 1, we choose one angle as the reference one

and set it to zero. Without loss of generality let θNb
= 0. Let

B̃i
BUS ∈ R

(Nb−1)×(Nb−1), θ̃ ∈ R
Nb−1, P̃ i ∈ R

Nb−1 denote

the remaining parts of Bi
BUS , θ, and P i respectively. We

then have θ̃ = (B̃i
BUS)

−1P̃ i, and using θ =
[
θ̃ 0

]T
, we

get P i
f = Bi

f

[
(B̃i

BUS)
−1P̃ i 0

]T
.

The power injection vector P̃ i can be written in a generic

form as

P̃ i =
[
IiGCG(PG +Ri) + CwPw + IiLCLPL

]
Nb−1

, (1)

where [·]Nb−1 denotes the first Nb − 1 rows of the quantity

inside the brackets. PG ∈ R
NG , Pw ∈ R, and PL ∈ R

NL

denote the generation dispatch, the wind power in-feed and

the load, respectively. Ri ∈ R
NG is a power correction term,

which is related to the reserves of each generator and will

be defined in the next subsection. Matrices CG, Cw, CL are

of appropriate dimension, and their element (i, j) is “1”

if generator j (respectively wind power/load) is connected

to the bus i, and zero otherwise. IiG ∈ R
Nb×Nb is an

identity matrix, and based on the outage i, one of its diagonal

elements will turn to zero, with index corresponding to the

bus that the tripped generator is connected. Matrix IiL ∈
R

Nb×Nb is defined in a similar way.

B. Reserves representation

Reserves are needed to balance generation-load mis-

matches, which may occur due to a difference between

the actual wind power and its forecasted value, or as an

effect of a generator/load loss. Such imbalances between load

and generation induce frequency deviations and activate the

primary frequency controller. Secondary frequency control

(or Automatic Frequency Control, AGC) is then activated and

adjusts the production of the generators so as to compensate

for the remaining frequency error and bring the tie-line power

exchange back to the scheduled value. Specifically, the AGC

output is distributed in a weighted way to certain generators.

Hence, in the new steady state value, the power setpoint of

these generators is changed by a certain percentage of the

active power imbalance. In the current energy market, this

percentage is the result of contracting agreements between

producers and the TSO concerning the secondary frequency

control reserves. The product of these weights with the worst

case imbalance results in the amount of reserves that each

generating unit should provide. In the sequel we will refer

to the vector that includes these weights as the distribution
vector. To encode the change of the generating output, we

define the power correction term Ri,

Ri = (2){
dup max+(−P i

m)− ddown max+(P
i
m) if i ∈ Il

out ∪ IL
out

d̃iup max+(−P i
m)− d̃idown max+(P

i
m) if i ∈ IG

out

where max+(·) = max(·, 0). Variable P i
m ∈ R denotes

the generation-load mismatch, which for each outage is

defined as

P i
m =

{ Pw − P f
w if i ∈ Il

out or i = 0
Pw − P f

w + P i
L if i ∈ IL

out

Pw − P f
w − P i

G if i ∈ IG
out

For line outages, P i
m is just the deviation of wind power

from the forecast P f
w , whereas for load/generator outages

the power of the lost component is also taken into account.

Note that P i
L, P

i
G ∈ R denote the element of PL ∈ R

NL ,

PG ∈ R
NG which corresponds to the failed component i.

Vectors dup, d̃
i
up ∈ R

NG
+ , (ddown, d̃idown ∈ R

NG
+ ) represent

the distribution vectors. The sum of their elements is one,

and if a generator is not contributing to the AGC, the

corresponding element in the vector is zero. The indices up

and down are used to distinguish between the up and down

spinning reserves. For every generator outage i ∈ IG
out a

different distribution vector is defined. The reason is that in

such cases, a different component of d̃iup, d̃
i
down turns to zero

(the one corresponding to the outage), and the other elements

are recalculated so that they sum to one.

Having defined the correction term Ri, the worst case

up-down spinning reserves of each generating unit can be

calculated in a similar way, but considering the worst case
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values of P i
m. This can be done by taking the extreme

values of the correction term among all contingencies, and

using probabilistic bounds for the wind power error (see next

section). For example, if we are given y, y ∈ R+ such that

−y ≤ Pw − P f
w ≤ y (probabilistic bounds of this type will

be computed in the next subsection), we have

Rup = max
(
dupy, max

i∈IG
out

d̃iup(y + P i
G)

)
, (3)

Rdown = max
(
max
i∈IL

out

ddown(y + P i
L),

max
i∈IG

out

d̃idown(y − P i
G)

)
, (4)

where the maximum operators in (3), (4) are assumed to

apply elementwise. These expressions for the reserves are

valid since it was assumed that all elements of the distribu-

tion vectors are non-negative (i.e. no network congestion).

C. Probabilistic security constrained reserve scheduling

We consider an optimization horizon Nt = 24 with

hourly steps, and introduce the subscript t in our notation

to characterize the value of the quantities defined in the

previous section for a given time instance t = 1, . . . , Nt.

Let C1, C2, Cup, Cdown ∈ R
NG be generation and reserve

cost vectors, and [C2] denote a diagonal matrix with vector

C2 on the diagonal. As also defined in [20], a quadratic form

for the production cost is considered, whereas motivated by

[17] the reserve cost was considered to be linear.

For each step t of the optimization problem, de-

fine the vector of decision variables to be xt =[
PG,t, dup,t, ddown,t, [d̃

i
up,t]i∈IG

out
, [d̃idown,t]i∈IG

out
, y

t
, yt

]T
∈ R

2N2
G+3NG+2. The resulting optimization problem is given

by

min
xt:t=1:Nt

Nt∑
t=1

(
CT

1 PG,t + PT
G,t[C2]PG,t

+ CT
upRup,t + CT

downRdown,t

)
, (5)

subject to

1) Power balance constraints: For all t = 1, . . . , Nt,

1T (CGPG,t+CwP
f
w,t−CLPL,t) = 0. Following the discus-

sion of the previous subsection, this constraint encodes the

fact that the power balance in the network should be always

satisfied when Pw,t = P f
w,t.

2) Generation limits: For all t = 1, . . . , Nt, Pmin ≤ PG,t ≤
Pmax, where Pmin, Pmax ∈ R

NG denote the minimum and

maximum generating capacity of each unit.

3) Distribution vector constraints: For all t = 1, . . . , Nt

dup,t, ddown,t ≥ 0, (6)

d̃iup,t, d̃
i
down,t ≥ 0, for all i ∈ IG

out, (7)

1T dup,t = 1,1T ddown,t = 1, (8)

1T d̃iup,t = 1,1T d̃idown,t = 1, for all i ∈ IG
out. (9)

Recall that the element of d̃iup,t, d̃
i
down,t corresponding to the

tripped generator of the failure i is set to zero. Note that, as

AGC

d1

d2

dn

n generators participating
in AGCΔ Δf, Ptie-line

distribution vector

d=[d ,d ,...,d ]1 2 n
T

Update according
to proposed
reformulation 1 or 2

outage

Pw

Proposed reformulation 1

- select and from a look-up table
- calculate

Proposed reformulation 2

- select from a look-up table

existing setup

Fig. 1. Schematic diagram of the reserve scheduling algorithm.

discussed in Section II.B, finding a feasible solution in case

of congestion may require removing constraints (6), (7).

4) Probabilistic constraints: For all t = 1, . . . , Nt

P

(
Pw,t ∈ R| − P

i

line ≤ Bi
f

[
(B̃i

BUS)
−1P̃ i

t

0

]
≤ P

i

line,

Pmin ≤ P i
G,t +Ri

t ≤ Pmax,

−y
t
≤ Pw,t − P f

w,t ≤ yt,

for all i = 0, . . . , Nout

)
≥ 1− ε, (10)

where P̃ i
t is defined in (1), Ri

t is given in Section II.B, and

y
t
, yt ≥ 0 for all t = 1, . . . , Nt are the probabilistic bounds

of the wind power error i.e. difference between the wind

power and its forecasted value.

The first constraint inside the probability is the standard

transmission capacity constraints for each outage i. The

second constraint provides guarantees that the scheduled

generation dispatch plus the reserve contribution Ri
t will

not result in a new operating point outside the generation

capacity limits. The last constraint of (10) enables us to

compute probabilistic bounds on the maximum positive and

negative wind deviation.

It should be noted that implicitly an additional function-

ality in the operation of the secondary frequency controller

was assumed. Namely, in the case of a generator outage the

operator of the system needs to monitor both the production

of the tripped plant and the deviation of the wind power form

its forecasted value, and using (2) as a look-up table, select

the appropriate distribution vector, among those computed in

the optimization problem (Fig. 1).

III. A TRACTABLE PROBLEM FORMULATION

There are two main challenges when attempting to solve

problem (5)-(10). The first arises from the presence of

bilinear terms due to the products of d̃iup,t, d̃
i
down,t and PG,t

in (2) and (5). The second one arises from the presence
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of the chance constraint (10). To tackle the latter, the so

called scenario approach will be employed in Section III.C.

To alleviate the non-convexity introduced by the bilinearity

two alternative convex reformulations will be introduced in

Sections III.A and III.B.

A. Proposed reformulation 1

Assume that in the case where i ∈ IG
out we can distinguish

between the mismatch that corresponds to wind deviation and

the one which occurs due to a generator outage. For i ∈ IG
out,

we would thus have

R̃i
t = d̃1,iup,t max

+
(P f

w,t − Pw,t)

− d̃1,idown,t max
+
(Pw,t − P f

w,t) + d̃2,iup,tP
i
G,t. (11)

No d̃2,idown,t vector needs to be introduced, since P i
G,t

is always positive. By reformulating (3)-(4) in a simi-

lar way, d̃2,iup,tP
i
G,t becomes the only bilinear term, which

appears both in the constraints and the objective func-

tion. Setting zit = d̃2,iup,tP
i
G,t ∈ R

NG as a new

decision variable, and defining the new decision vec-

tor x̃t = [PG,t, dup,t, ddown,t, [d̃
1,i
up,t]i∈IG

out
, [d̃1,idown,t]i∈IG

out
,

[zit]i∈IG
out

, y
t
, yt]

T ∈ R
3N2

G+3NG+2, makes the problem (5)-

(10) linear in zit , and hence convex (with a chance constraint).

Once the solution to this problem is computed, d̃2,iup,t is

calculated as d̃2,iup,t = zit/P
i
G if P i

G is not equal to zero,

and is zero otherwise.

For real time operation, the look-up table interpretation

(discussed in Section III.C) may be adopted. Given then a

mismatch P i
m,t = (Pw,t − P f

w,t) − P i
G,t, the participation

of each unit in compensating P i
m,t can be determined a

posteriori by R̃i
t/1

T R̃i
t. This requires knowledge of the

mismatch terms.

Using this reformulation, a convex problem is achieved at

the expense of a more conservative reserve schedule. This is

due to the fact that Pw,t − P f
w,t, P

i
G,t are treated separately,

leading to reserves of higher cost. To see this, consider the

case where Pw,t−P f
w,t ≥ 0. The proposed formulation would

lead to |Pw,t−P f
w,t|+ |P i

G,t| MW of reserves, whereas only

|Pw,t − P f
w,t − P i

G,t| MW are needed.

B. Proposed reformulations 2

In this subsection we overcome the bilinearity problem

by using an iterative algorithm (see Algorithm 1). We first

attempt to identify a feasible solution of the problem, by

starting from an arbitrarily chosen power schedule P 0
G,t

(stages are decoupled, so we focus on a specific time

instance). At iteration k of the algorithm, we fix P k,i
G,t only

in (2) to the value obtained in the previous iteration. Solving

then (5)-(10) a new solution xk
t is computed, and P k

G,t is

updated accordingly. If the algorithm converges, its fixed

point xk∗
t will be a feasible solution of the initial problem.

At a second step, we use an alternating iterative

scheme to refine the resulting feasible solution in

terms of cost. At iteration k we first fix d̃k,iup,t, d̃
k,i
down,t

to the values obtained at the previous step of the

Algorithm 1
1: ——– Part 1 ——–

2: Initialization.

3: Set P 0
G,t (e.g. P 0

G,t = 0),

4: k = 1.

5: Repeat until convergence
6: Set P k,i

G,t = P k−1,i
G,t , ∀i ∈ IG

out, only in (2),

7: Compute xk
t solving (5)-(10),

8: Update P k
G,t,

9: k = k + 1.

10: end
11: Return converged solution xk∗

t

12: ——– Part 2 ——–

13: Initialization.

14: Set d̃0,iup,t = d̃k
∗,i

up,t, d̃
0,i
down,t = d̃k

∗,i
down,t, ∀i ∈ IG

out,

15: k = 1.

16: Repeat until convergence
17: Set d̃k,iup,t = d̃k−1,i

up,t , d̃k,idown,t = d̃k−1,i
down,t, ∀i ∈ IG

out, in (2),

18: Compute
[
P k
G,t, d

k
up,t, d

k
down,t, y

k

t
, yk

t

]T
solving (5)-(10),

19: Fix P k
G,t in (5)-(10),

20: Solving (5)-(10), compute[
dkup,t, d

k
down,t, [d̃

k,i
up,t]i∈IG

out
, [d̃k,idown,t]i∈IG

out
, yk

t
, yk

t

]T
21: k = k + 1.

22: end

algorithm, and obtain
[
P k
G,t, d

k
up,t, d

k
down,t, y

k
t
, ykt

]T
by

solving (5)-(10). We then fix P k
G,t to the computed

value in all equations it appears, and solve for[
dkup,t, d

k
down,t, [d̃

k,i
up,t]i∈IG

out
, [d̃k,idown,t]i∈IG

out
, yk

t
, ykt

]T
instead. The entire process is then repeated until

convergence. For a better understanding, Fig. 2 shows

how the power dispatch of each unit, and the obtained

objective value change per iteration, for the benchmark

problem introduced in the next section. After 3 iterations

the first part converges, whereas for the second one only

one iteration is needed. As expected, the cost is decreasing

monotonically in the second part.

Note that the first part of Algorithm 1 is a heuristic scheme

applied to identify a feasible solution, and no convergence

guarantees can be provided. The second part of the algo-

rithm converges monotonically, since it is a bilinear descent

iteration; the limit point however is not guaranteed to be the

global optimum of the original bilinear problem. Note that

every optimization involved in Algorithm 1 is now convex.

C. The scenario approach

Using either of the previous reformulations, a convex

chance constrained optimization program is constructed. To

obtain a solution for this problem, we use the so called

scenario approach [24]. The scenario approach replaces the

chance constraint with a finite number of hard constraints,

while offering probabilistic performance guarantees. The

resulting problem is convex and can be then solved efficiently

using existing numerical tools [25]. The authors of [21]
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Fig. 2. Illustration of Algorithm 1 for one hour of the simulated data,
initialized with P 0

G,t = 0. For the first part, the power dispatch of each
unit and the obtained objective value converge after 3 iterations, whereas
for the second one only 1 iteration is needed.

provide a bound on the number of scenarios one needs to

generate to maintain these ε-type guarantees. That is

Ns ≥ 2

ε

(
ln

1

β
+Nd

)
, (12)

where ε ∈ (0, 1) is the violation parameter determining the

desired probability level (see (10)). Variable Nd denotes

the number of decision variables, which for this case is

equal to the dimension of xt (similarly for x̃t). Parameter β
characterizes the confidence with which, the solution of the

problem will violate the chance constraint with probability

at most ε.
The number of scenarios Ns grows with the number of

decision variables. Following [26], for a given ε and β, we

could first compute probabilistic bounds for Pw,t − P f
w,t,

and then use them to compute the solution of the robust

counterpart of (5)-(10). That way, we only need to use Ns

with Nd = 2, since we have only two decision variables. This

modification leads to an equivalent problem, in the sense that

that the same probabilistic guarantees are achieved, but by

generating less scenarios.

IV. SIMULATION RESULTS

In this section we evaluate the performance of our ap-

proach by applying it to the IEEE 30-bus network [22]. The

benchmark includes Nb = 30 buses, NG = 6 generators,

Nl = 41 lines, and is modified to include a wind power

generator connected to bus 22. To generate the required wind

power scenarios we employed a Markov chain-based model,

as in [27], [19], whereas to compute the solution of the

problem numerically, the solver CPLEX [25] was used via

the MATLAB interface YALMIP [28].

We first compare the two alternative reformulations in

terms of cost. Fig. 3 shows the cost of the production and

the cost of the reserves for one day of the simulated data.

It should be remarked that for both methods, the total cost

(solid line) is determined mainly by the cost of the generation

schedule (dashed line), whereas their difference indicates the

2 4 6 8 10 12 14 16 18 20 22 24
3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

5200

time(h)

co
st

($
)

solid line: production + reserves cost, dashed line: production cost

reformulation 1
reformulation 2

Fig. 3. Total cost (solid line) and cost of the generation schedule
(dashed line); the difference indicates the cost of the reserves. The “red”
curves correspond to reformulation 1, which leads to slightly lower total
cost compared to reformulation 2 (“blue”). For both reformulations the
production cost is the same, hence the dashed lines overlap. For the scenario
approach we used ε = 0.1 and β = 10−4.
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Fig. 4. Distribution of the percentage of cost improvement, when using
reformulation 1 against reformulation 2 for 30 days of hourly measured
data.

cost of the reserves. For both approaches the production cost

is the same, hence the dashed lines overlap. As expected,

the total costs follows closely the load profile that was used

throughout the simulations. Despite its conservative nature,

the proposed reformulation 1 (“red”) leads to slightly lower

total cost compared to reformulation 2 (“blue”). This is

explained by the fact that in the first case the global optimum

is identified, whereas the iterative procedure of Algorithm 1

might get stuck in local optima. Fig. 4 depicts the distribution

of the percentage of cost improvement, using reformulation

1 against reformulation 2 for 30 days of hourly measured

data. These correspond to different forecast and actual wind

power data, which were extracted from a normalized wind

power data-set corresponding to the total wind power in-feed

of Germany over the years 2007 − 2008. This is different

from the data used to train the Markov chain-based model of

the wind power error dynamics, which was used to generate

scenarios.

Irrespective of the reformulation, the amount of daily load

shed (“red”) and wind generation spilled (“blue”) is shown

in Fig. 5, as this was computed using the actual wind power

data (not included in the scenarios used for optimization

purposes). The empirical probability of load shedding or

wind generation spillage, calculated as the number of hours
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Fig. 5. Load shedding (“red”) and wind generation spillage (“blue”) per
day, for 30 days of the simulated data.

that these actions had to be executed over the total number

of simulated hours (30× 24), was found to be 3.75%. Apart

from the cases of load shedding and wind generation spillage

no other insecure instance was encountered.

V. CONCLUDING REMARKS

In this paper a new methodology for solving security

constrained reserve scheduling problems for systems with

fluctuating generation, is proposed. Two different convex

reformulations are derived, and the resulting chance con-

strained optimization program is solved using the scenario

approach. The proposed reformulations were evaluated via

Monte Carlo simulations on the IEEE 30-bus network.

Current work concentrates toward identifying a more suit-

able convex reformulation of the problem, and studying the

convergence properties of the iterative, heuristic alternative.

Moreover, we aim to substitute the underlying DC power

flow set-up with a convex AC optimal power flow model,

and investigate the potential of decentralizing the developed

algorithm.
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