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Abstract

This paper uses a new and unique dataset to identify the causal effect of 
marginal pricing in electricity markets on planned maintenance outages at U.S. 
nuclear generating units (NGUs) using reduced-form estimation.  The new data 
are from the Power Reactor Status Reports (PRSRs) that collect a daily 
snapshot of a NGU’s operation including the reactor power level (0-100%) and
identify planned maintenance outage periods. Using the PRSRs from 2001-
2008, the main regression specification finds that a one degree increase in the 
maximum daily temperature over 95 degrees (F) yields a 0.105 percentage 
point decrease in the daily probability of a NGU operating at less than 100% 
capacity, if the unit can sell electricity under a marginal pricing system (where 
temperature is used as a proxy for unobserved prices).  The NGU can save
production costs, as output-reducing maintenance is deferred to lower-demand 
periods.

Notes: My email addresses is dkarney2@illinois.edu.  I am grateful for comments and 
suggestions from George Deltas, Don Fullerton, and Darren Lubotsky; all remaining 
errors are my own.



Market prices can help align the incentives of individual economic agents with the

interests of society.  In wholesale electricity markets, economic theory predicts that 

marginal pricing leads producers to minimize generation costs.  One way producers 

reduce total cost is to reduce maintenance outages during high-demand periods.  

Nuclear generating units (NGUs) have high fixed costs and relatively low 

marginal costs, and so market pricing during high-demand periods allows them to earn 

large short-run profits.  They can maximize profit by minimizing production outages 

during high-demand periods.  The price signal to minimize outages during high-demand 

periods is missing from regulated pricing regimes.1 That is, marginal pricing yields

maintenance-allocation efficiency gains over other pricing systems, where they can plan

maintenance outages during low-demand periods.  The effect is a pure efficiency gain,

since no additional resources are used for a given amount of electricity production. The

total cost of generation falls because fewer high marginal cost EGUs need to operate to 

meet demand in peak periods. The existence and size of this maintenance-allocation

efficiency gain is an empirical question.

This paper uses a new dataset to identify the causal effect of marginal pricing in 

electricity markets on the number of planned maintenance outages during high-demand 

periods at U.S. nuclear generating units (NGUs) using reduced-form estimation.  The 

estimation result is used to calculate the size of the maintenance-allocation efficiency 

gain. The new data are from the Power Reactor Status Reports (PRSRs) collected by 

the Nuclear Regulatory Commission (NRC).  The PRSRs record a daily snapshot of a 

NGU’s operation, including the reactor power level (0-100%).  Importantly, the PRSRs

allow the researcher to distinguish among three reasons for a NGU not to be operating 

at full power: refueling period, unplanned maintenance, and planned maintenance.  The 

maximum daily Summer temperature at nuclear plants help identify periods of peak 

electricity demand.      

Using the PRSRs from 2001-2008, reduced-form estimation finds at that a one

degree increase in the maximum temperature during a Summer (June, July, and August)

on high temperature days yields a 0.105 percentage point decrease in the probability of 

a NGU operating at less 100% capacity, if the unit can sell electricity under a marginal 

pricing system.  This means the dollar value of the maintenance-allocation efficiency 

                                                
1 Cost-of-service pricing is one type of regulated price system where an electric utility receives a fixed 
price per unit electricity that is supposed to cover the average cost of generation across a portfolio of 
EGU-types plus a normal return.
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gain is $5.5 million annually (in 2010 dollars).  It is unclear how this result can be 

applied to other types of electricity generating units (EGUs).

The result in this paper provides a lower-bound for the maintenance-allocation 

efficiency gains due to market pricing in wholesale electricity markets.  It would be 

preferable to identify the effect on all U.S. EGUs, but the PRSRs only cover NGUs, and 

the reduced-form estimation methodology in this paper cannot be extended to all EGUs.  

Indeed, identifying the maintenance-allocation efficiency gains from marginal pricing at 

all EGUs requires a detailed structural model.2

Other studies find that markets do create efficiencies for U.S. electricity sector.  

For instance, Kliet and Terrell (2001) find that the average U.S. EGUs would reduce 

operating costs 13% if the electricity market was deregulated.  In addition, Knittel 

(2002) finds that non-market efficiency incentive programs also lead to reduced fuel 

costs.  In a study of coal-fired power plants in the Eastern U.S., Douglas (2006) finds 

that wholesale markets reduced costs by 2 to 3 percent.    

The paper proceeds as follows.  Section 1 provides important background 

information about the U.S. electric power sector.  It describes important characteristics 

of electricity supply and demand, briefly reviews the history of deregulation and how a 

wholesale market operates, and discusses the role of nuclear generating units in the 

electricity sector.  Section 2 builds a formal model to show the maintenance-allocation 

efficiency gains from marginal pricing compared to regulated pricing.  Section 3 details

the identification strategy to find the causal effect of marginal pricing on the allocation

efficiency gains at U.S. nuclear generating units.  Section 4 describes and summarizes 

the multiple datasets used in this paper, including an extensive description of the NRC’s 

Power Reactor Status Reports. Section 5 provides the empirical results.  Section 6 adds

interpretation of the results and discusses the implications.

                                                
2 EGUs sometimes do not generate due to a lack of demand and by definition no maintenance-allocative 
efficiency gains can accrue in such circumstances because no other EGU would need to take the place of 
unit on maintenance outage in order to meet demand.
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1 Background

1.A Supply and Demand

The U.S. Energy Information Agency (EIA) reports that in 2009 the United States 

power sector had 14,959 EGUs with a total nameplate capacity over 1.046 million 

megawatts (MW) that produced 3,813.3 billion kilowatt-hours (kWh) of electricity per 

year. Thus, the U.S. electric power sector had an aggregate annual capacity factor of

42% in 2009, which means that on average less than half of the total available capacity

is generating electricity.3  The inability to store electricity economically and the large 

variation in electricity demand across seasons leads to the low aggregate annual

capacity factor.  Furthermore, reserve margin requirements – regulatory minimums for

total EGU capacity in service areas – insure that capacity exceeds the maximum

expected instantaneous demand, to help prevent black-out and brown-outs.  A service 

area is the geographic region to which an EGU can provide electricity without 

significant transmission costs. 

Figure 1 shows the seasonality of electricity demand using 2010 projections 

from the U.S. Environmental Protection Agency (EPA) for national electricity demand 

by hour.  The vertical axis measures the total national electricity demand in 1000 MWs.  

Figure 1 demonstrates that electricity demand is highest in Summer (due to increased

air-conditioning usage).  Demand is lowest in the Spring and Fall due to mild weather, 

while demand is slightly elevated in the Winter as a result of electric heating used in 

some parts of the United States.  Furthermore, Figure 1 shows considerable daily 

variability, as electricity usage ebbs in the early morning hours and increases during the 

late afternoon. It also shows weekly cycles, as electricity usage falls on weekends when 

many businesses and offices are closed.

As a result of variable demand, together with storage limitations, the electricity 

power sector deploys a variety of EGU types with different cost and performance 

characteristics.  At one extreme are EGUs with high fixed-cost and relatively low 

variable-cost known as “baseload” units.  These baseload units run at high annual 

capacity factors in order to spread their fixed costs over many hours of generation.  The 

baseload capacity in many regions of the U.S. is comprised of nuclear-powered, coal-
                                                
3 The annual capacity factor is (Total Generation in Year)/(Total Unit Capacity × Number of Days in 
Year × 24 hours).
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fired, and hydro-electric units.  In some U.S. regions, natural gas-fired units called

combined-cycle units also add to baseload generation.  At the other extreme are EGUs

with low fixed-cost and relatively high variable-cost, known as “peaker” units that only 

operate in high-demand periods and have very low annual capacity factors.

Figure 1: U.S. National Electricity Demand by Hour (2010 Projection)

(Source: U.S. Environmental Protection Agency)

1.B History of Deregulation

Traditionally, the U.S. electric power sector consists of vertically integrated investor-

owned utilities that granted monopoly status for their service area by regulators.4    

These regulated monopolies operate the generating units, own the transmission lines, 

and service customers.  Public utility commissions (PUCs) set electricity prices.  In 

general, the prices are set to cover the long-run average cost of the natural monopoly 

plus economic profit (i.e. cost-of-service pricing).  Until the mid-1990s, vertically 

                                                
4 See Joskow (2007) for a primer on regulatory reform in the U.S. electricity sector.
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integrated monopolies sold over 90 percent of electricity in the United States [Fabrizio, 

Rose, and Wolfram (2007)]. 

During the late-1990s and early-2000s, the U.S. electric power underwent 

significant restructuring and deregulation.  Many vertically integrated utilities were 

required to sell generating units to non-utility companies and to participate in wholesale 

electricity market.  These markets clear via auction mechanisms where unit operators 

submit bids indicating at what price they are willing to supply power and then the bids 

create a supply curve.  EGUs dispatch and begin generating electricity when the 

quantity demand reaches their bid in the supply curve.  The marginal unit effectively

sets the price per unit of electricity.  The regulation or deregulation of electricity 

utilities occurs at the state level, and thus the United States does not have a uniform 

regulation of the electric power sector.  California’s electricity crisis in 2000-2001 led 

to roll-back of deregulation in many states and a halt to planned deregulation in other 

states [Borenstein et. al. (2002); Wolak (2003)].  

The PJM Interconnection in the Eastern U.S. is one of the world’s largest 

wholesale electricity markets.5  Figure 2 plots a 30-day moving average of peak day-

ahead prices in the PJM Interconnection during 2010 (specifically the PJM West 

Pennsylvania hub).  The day-ahead price is a good approximation of the actual price.  

The figure shows that electricity prices are highest during Summer months and lowest 

in the Spring and Fall, following pattern of demand in Figure 1.  That is, Figure 2 helps 

demonstrate the positive correlation between seasons and peak electricity prices, since 

high Summer temperatures increase the demand for electricity.  In order to meet the 

high demand, electric utilities must run the low fixed-cost, high-variable cost “peaker” 

units.  

                                                
5 The acronym “PJM” used to stand for “Pennsylvania-New Jersey-Maryland”, but the PJM 
Interconnection market now includes additional states.
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Figure 2: 2010 PJM Interconnection Wholesale Prices (30-day moving average)

(Source: PJM West Pennsylvania Hub prices via EIA Wholesale Data.)

1.C Nuclear Units

Nuclear generating units are an important part of baseload capacity in the United States,

with 104 NGUs located at 66 plants in 31 states (where more than one reactor can be 

sited at single power plant).  Table A-1 in Appendix A lists all operational NGUs with

name, state, type, capacity, construction start date, and commercial operation start date.  

Among the operational U.S. NGU fleet of 104 units, the youngest unit began 

construction in early-1977 (River Bend-1), and the last unit to become commercially 

operational occurred in mid-1996 (Watts Bar-1).  Important issues in the energy 

security and climate change policy debates in the U.S. include the relicensing of 

existing nuclear reactors to extend their operating lifetime and the commissioning of 

new NGUs.

The approximately 100,000 MW of nuclear capacity constitutes only 10% of

total U.S. power sector capacity, but NGUs produced nearly 20% of total electricity in 
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2009, achieving an annual average capacity factor at 90.4%, a rate much higher than the 

average EGU.  Thus NGUs provide a disproportionate share of total generation 

compared to their capacity.  In addition, an average NGU has a much higher capacity 

than an average EGU: the average NGU is 970 MW, the average coal-fired unit is 250 

MW, the average combined-cycle unit is 125 MW, and the average gas-fired “peaker” 

units is 25 MW.  Thus, if an NGU does not operate on a high-demand day, then nearly 

40 “peaker” units must come online to satisfy demand.6

Figure 3 shows the spatial distribution of NGUs in the United States.  The figure 

comes from the Nuclear Regulatory Commission, the U.S. federal agency responsible 

for regulating NGU operations.  The four regions in the figure are NRC administrative 

regions.  While the Eastern U.S. has a large concentration of NGUs, Illinois (IL) has the 

most units (11) with the largest NGU capacity (11,440 MW).  However, South Carolina 

(SC) and Alabama (AL) come first and second, respectively, in capacity per capita.  

Nuclear power constitutes a large share of capacity and generation in some regions of 

the country.

Figure 3: Location of U.S. Nuclear Generating Units

(Source: U.S. Nuclear Regulatory Commission)

                                                
6 Source: National Electric Energy Data System (NEEDS) v.4.10
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2 Model
This section builds a formal model to show the maintenance-allocation efficiency gains

from marginal pricing compared to regulated pricing.  The model assumes certainty and 

only examines the short run, with the number and characteristics of EGUs fixed.  In 

addition, the model addresses neither bidding behavior in a game theoretical structure

nor issues of market power.7  Yet this simple model is enough to demonstrate that 

marginal pricing creates an incentive to maximize NGU output during high-demand 

periods by deferring output-reducing maintenance to low-demand periods. Specifically,

the opportunity cost of not generating in a high-demand period is larger for a NGU 

under marginal pricing than under regulated pricing.  Furthermore, under regulated

pricing a NGU is indifferent between performing output-reducing maintenance in high-

demand periods or in low-demand periods.  Finally, the model shows that marginal 

pricing aligns the incentives of the NGU operator with society welfare, since marginal 

pricing decreases the total cost of generation for a given total quantity demand.

Distinguish three types of EGUs by their marginal cost: very-low (V), low (L), 

and high (H).  The costs are given Vc , Lc , and Hc , where  HLV ccc  .  Each type has 

a fixed quantity given by  Vq ,  Lq , and  Hq , respectively.  The very low-type represents 

NGUs.  Let  )(QS   be the supply curve created by ordering EGUs from lowest to 

highest marginal cost (where Q is the total quantity of electricity supplied).   Let  HD   

and  LD   be high and low levels of total demand for electricity, respectively, so  

HL DD  .  Assume demand is perfectly inelastic, and assume it takes all the low-cost 

EGUs and some of the medium-cost EGUs to satisfy demand in the low-demand case, 

but that all those units plus some of the high-cost EGUs are needed to satisfy the high-

demand case.8  Given marginal pricing,  )( HH DSP  is the high-demand price and  

)( LL DSP  is the low-demand price.  Assume the regulated price   RP falls between 

the high-demand and low-demand prices, HRL PPP  .  

                                                
7 Market power can be an important factor, as Mansur (2008) finds that wholesale market inefficiencies 
brought on by market power can increase costs 3% - 8% above competitive levels.  
8 Recall this model is built to analyze how NGUs perceive the demand, and since NGUs make up a 
relatively small portion of total capacity and electricity demand always exceeds that capacity.  Thus 
demand from the NGU perspective is always vertical.
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Next, assume all NGUs require planned maintenance that takes the unit offline.

Also, assume a NGU operator wants to maximize profit and has the ability to schedule

planned output-reducing maintenance.  Thus, an operator can choose to schedule 

maintenance either in the high- or low-demand period.

Figure 4 provides a graphical representation of the model.  Without lost of 

generality, assume the first x amount of the type-V belongs to a single NGU.  In the 

short-run, profit for this NGU is just the difference between price and marginal cost

(given by the supply curve) and multiplied by its capacity.  Thus, under marginal 

pricing and during a high-demand period, the type-V NGU’s profit is the area A+B+C

in Figure 4, while the marginal profit falls to area C only if demand is low.  Meanwhile, 

given regulated pricing, the NGU’s profit is always area B+C, regardless of demand.  

Therefore, ranking profits finds:

       HMHRLRLM DDDD  (1)

where     is short-run profit given the demand level, and the superscript denotes 

regulated (R) or marginal (M) pricing.  

The ranking of short-run profits confirms two facts about the model. First, 

maximizing profit under marginal pricing requires scheduling output-reducing 

maintenance for low-demand periods, when not operating has the lowest opportunity

cost. Second, profits are the same under regulated pricing regardless of demand.      

However, when the NGU of size x is unavailable to meet demand, the social cost 

from increased total generation cost depends only the level of demand and not on the

pricing regulation; regardless of the pricing regime, area D is the increased cost of using 

a type-L unit instead of the type-V unit in the low-demand case, while area E+F+G is 

the increased cost in the high-demand case (using a type-H unit instead of the type-V 

unit).9 The change in total cost   TC   when the NGU of x size is unavailable to meet 

demand can be ranked:

       .HMHRLRLM DTCDTCDTCDTC  (2)

                                                
9 Noting areas D and G are the same size in Figure 4.
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Comparing expression (2) with (1) shows that marginal pricing aligns the incentives of 

the NGU operator with society welfare, while regulated pricing does not.  Under 

regulated pricing an operator has the same opportunity cost of maintenance in both 

demand scenarios      HRLR DD  , but the social cost of the NGU outage is 

higher in the high-demand scenario      LRHR DTCDTC  .  Thus, maintenance 

may occur when it is relatively costly to society.  Alternatively stated, marginal pricing 

offers a low opportunity cost of maintenance in the low-demand period 

    HMLM DD  corresponds with small increases in the total cost of generation

    HMLM DTCDTC  , and therefore aligning the incentives of the NGU operator 

with the interests of society.

The maintenance-allocation efficiency gain is the reduction in total generation 

costs when planned maintenance occurs in low-demand periods instead of in high-

demand periods.

Figure 4: Model Diagram
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3 Identification
This section develops the identification strategy used to determine the causal effect of 

marginal pricing in electricity markets on the maintenance-allocation efficiency gain at 

U.S. NGUs.  At any particular moment, a given operational electricity generating unit

may not generating electricity for many reasons that can be placed into three general 

categories:

1. Not Dispatched: able to generate but does not do so for lack of demand;

2. Unplanned Outage: not able to generate, for unplanned reasons such as 

emergency repairs;

3. Planned Outage: not able to generate, for planned reasons, usually related to 

scheduled maintenance.  For nuclear units, refueling the reactor is an example.  

NGUs are baseload units with low variable-costs and thus always dispatch when 

available.  That is, when an NGU is not generating, I assume that either a planned or 

unplanned outage has occurred (hereafter known at the “full-dispatch” assumption).  

Also, my identification strategy requires that demand and therefore the wholesale price

is exogenous for an NGU. Under these assumptions, the ideal experiment to test 

whether marginal pricing leads to maintenance-allocation efficiency gain can be 

described as follows.  To begin, randomly assign each NGU to either marginal pricing 

or regulated pricing.   Next, measure output at the NGUs as demand varies.   The model 

above predicts in service areas with marginal pricings that high demand and thus high 

prices provide an incentive for NGUs to decrease output-reducing maintenance in high-

demand periods by scheduling planned outages for low-demand periods. However, the 

ideal experiment did not occur. Instead, deregulation occurred on a state-by-state basis 

leading to the possibility of selection.10  Yet, even without the random assignment of the

treatment variable, identification of the causal effect of marginal pricing on allocative 

efficiency is still possible after addressing several issues that complicate the 

identification.

First, the actual demand for each NGU’s service area is unobserved.  As a proxy 

variable to indicate periods of high demand, I use the maximum daily temperature 

(MAX) in Summer months of June, July, and August (where the binary variable 

SUMMER is 1, and 0 otherwise).  

                                                
10 One possibility is that NGUs with higher expected profits from marginal pricing lobbied harder for 
deregulation.  
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Second, the pricing treatment may not be randomly assigned.  However, weather 

is random and thus serves as exogenous variation in order obtain an unbiased estimate 

of the maintenance-allocation efficiency gain.  In addition, all NGUs were planned long 

before the beginning of deregulation in the U.S. electricity sector, and thus no strategic 

building of NGUs to take advantage of market pricing was possible.  In fact, actual 

pricing regulations differ by state, and the full set of regulations are usually more 

complicated than the dichotomous marginal pricing or regulated pricing.  By way of 

previewing the data section, I use a binary measure called the Exempt Wholesale 

Generator (EWG) status that take the value 1 if a NGU is allowed to sell electricity on a 

wholesale market (see the complete description of EWG below).  When  EWG=1, I 

interpret this as the NGU participating in a wholesale market with marginal pricing.

Third, the model in section 2 predicts that a higher demand implies a higher 

opportunity cost of maintenance.  Under marginal pricing, however, the relationship 

between demand and price is not linear due to the shape of the supply curve.  Therefore, 

I apply the non-linear function f(·) to the variable MAX, where f(·) may be parametric or 

non-parametric.

Fourth, nuclear generating units generally operate only at 100% of capacity or at 

0% of capacity otherwise; that is, a NGU is usually either “on” or “off”.  Thus, it makes 

sense to define a binary outcome variable to indicate when a NGU is operating at less 

than 100% output (L100) instead of a continuous output variable. In other words, L100

takes the value 1 if the NGU is operating at less than 100% capacity.  In addition, 

assume that the researcher can identify when a NGU performs planned maintenance, 

and then define the variable MAINT to take the value 1 if  L100=1 because of planned 

maintenance.

Therefore, equation (3) is the basic reduced form equation estimated in this 

paper.

 
   
  EWGMAXSUMMER

EWGMAXEWGSUMMERMAXSUMMER

EWGMAXSUMMERMAINT







f7

f65f4

3f210







(3)

The parameter of primary interest is 7 .  If a maintenance-allocation efficiency gain 

exists, then the model can rejects null hypothesis that 07  , in favor of  07  .  The 

implication is that during high-demand periods, if a NGU is an Exempt Wholesale 
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Generator, then it has fewer instances of operating at less than 100% of capacity due to

planned maintenance.  The magnitude of  7 enables one to calculate of the size of the 

maintenance-allocation efficiency gain.  

4 Data
The first part of this section describes the new dataset used here: the NRC’s Power 

Reactor Status Reports.  The second part summarizes the auxiliary datasets that provide

information about NGU characteristics and temperature.

4.A Power Reactor Status Reports

4.A.1 PRSRs Introduction

The Nuclear Regulatory Commission (NRC) is the Federal agency responsible for 

regulating commercial nuclear power plants in the United States.  The NRC collects 

daily information between 4 a.m. and 8 a.m. about each of the 104 operational NGUs.  

Each day, the NRC releases a preliminary Power Reactor Status Report (PRSP) with 

each unit’s reactor power level (0-100%).  Additional information is released in a final 

report after a 28 day lag.  I collect the daily PRSPs for all 104 NGUs from 1999-2008,

for a total of 379,912 observations.  Table 1 describes the fields included in the final 

daily PRSPs.  (Figure A-1 in the Appendix A provides an example of the raw data as

found on the NRC’s website.)

Table 1: NRC Power Reactor Status Reports (PRSRs) Fields

Name Data Type Description
Date MM/DD/YYYY The date of the observation.
Unit Name Text Field Unique name for each of the 104 NGUs.
Power Level Positive

Integer (0-100)
Percentage of power reactor operating capacity for that 
Date.

Down Date MM/DD/YYYY If a NGU has a 0 Power Level, Down Date records the
beginning Date in the current sequence of 0 Power Level.

Comment Text Field Description of the reason why a Power Level is less than 
100.

Report Change Binary (0/1) Equals 1 if the PRSR changed within the past 24 hours.
Scrams Positive 

Integer (0,1,2…)
Number of reactor scrams within past 24 hours, where a 
“scram” is an unplanned reactor shut-down.
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The PRSR Power Level provides a good measure of the daily generation at each

NGU despite being observed only once per day.  At a monthly aggregate level, official 

U.S. Energy Information Agency (EIA) generation data confirms that the PRSR Power 

Level provides a good estimate of total generation.  The reason is that EIA generation

data at the NGU-level has a 0.995 correlation with PRSR Power Levels converted into 

electricity output using NGU capacity and summed by month.11  At the annual 

aggregate level, total NGU generation calculated using the PRSRs deviate from official 

EIA data by less than 0.5 percent for every observed year. Also, the PRSRs match know 

events, such as the black-out that occurred across most of the Northeastern U.S. on 

August 14, 2003, where PRSRs record reactor scrams at many Northeastern NGUs on 

that date. A “scram” is an unplanned, immediate shutdown of a nuclear reactor.12

Figure 5 plots the percentage of days observed at each Power Level for all 

NGUs from 1999-2008.  The figure shows that NGUs operate at 100 Power Level for 

nearly 80% of the daily observations, and at 0 Power Level for approximately 10% of 

the observations. The remaining Power Levels are clustered near the 100% level.

Hence, NGUs are generally either entirely “on” at full power or entirely “off”. From 

1999-2008, the 104 U.S. NGUs had only 23.5% of days with Power Level less than 100 

(i.e. L100=1).

                                                
11 This correlation statistic only applies for the years 2003-2008, since the EIA did not collect NGU-level 
generation data for the years 2001-2002.
12 David et al. (1996) finds that after the Three Mile incident, the probability of reactor scrams at U.S. 
NGUs fell significantly.  
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Figure 5: Daily U.S. NGU Power Levels (1999-2008)

Source: Nuclear Regulatory Commission’s Power Reactor Status Reports [with author’s calculation].

4.A.2 Time Dependency
The data demonstrate time dependency in the ordering of days with Power Level 

less than 100.  Time dependency comes from lengthy periods of outage when refueling 

a reactor and multi-day repairs when conducting other maintenance.  Thus, the

sequencing and duration of days when NGUs operate at level less than maximum power 

become important characteristics of the data.  The 1999-2008 PRSRs report that NGUs 

had approximately 7700 blocks of consecutive days with L100=1 with an average 

outage period of 11.4 days (where an “outage period” is a number of consecutive days 

with L100=1). However, the median outage period is only 2 days.
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Figure 6a: Frequency of Consecutive Days with NGU Power Level Less Than 

100% (L100=1) for 1-20 Days Runs from 1999-2008

(Source: Nuclear Regulatory Commission’s Power Reactor Status Reports [with author’s calculation].)

Figure 6a counts the frequency of consecutive days at NGUs with Power Level 

less than 100%, with durations of 1 to 20 days.13  I find that almost 70% of the outage 

periods last 1-3 days, but these periods account for less than 10% of the total outage 

days.  The vertical scale of Figure 6a makes it difficult to gauge the frequency of 

outages periods from 5 to 20 days.  Thus, figure 4b records the frequency of outage 

periods with runs of 10 to 100 days (providing overlap for outage periods 10-20 across 

the figures).  Figure 6b shows many outage periods lasting longer than 10 days.  

Interestingly, the same number of total outage days occurs in outage periods lasting 10-

30 days as in periods lasting 1-3 days.  Not included in figures 6a or 6b, the 1999-2008 

PRSR data have 118 outage periods longer than 100 consecutive days.  To account for

this time dependency, the main estimation equation below contains a binary variable 

indicating if the previous day’s Power Level was less than 100% (using a variable 

called LagL100).

                                                
13 When calculating the consecutive days in an outage period, the outages for a portion of the days at the 
beginning and end of the period maybe truncated.
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Figure 6b: Frequency of Consecutive Days with NGU Power Level Less Than 

100% (L100=1) for 10-100 Days Runs from 1999-2008

(Source: Nuclear Regulatory Commission’s Power Reactor Status Reports [with author’s calculation].)

4.A.3 Categorizing Outages
The other fields in the final PRSRs allow the categorization of Power Levels 

below 100% into three groups: unplanned outage, fuel cycle, and planned maintenance.

Unplanned outage is the first and easiest group to determine, as 70% of all 

unplanned outages begin with a reactor scram [Rothwell (1990)].  Therefore, the 

Scrams field in the PRSRs provides a good approximation for unplanned outages at 

NGUs.  Define the variable SCRAM as a binary variable equal to 1 if L100=1 and the 

Scram field is non-zero (indicating at least one scram occurred in the past 24 hours).

The PRSRs records that from 1999-2008 U.S. NGUs averaged almost 80 scrams per 

year or nearly one scram every 5 days.  Also, reactor scrams occur during the refueling 

process as reactors comes back online, and the data show that 18.3% of scrams occur 

during refueling periods.  Figure 7 plots the number of reactor scrams by year (counting 

multiple scrams occurring with each 24 hour period).  The figure indicates a possible 

downward trend in the frequency of scrams at U.S. NGUs. The peak number of scrams 

occurred in 2001 with 102 scrams across all reactors.
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Figure 7: Number of Reactor Scrams Across All NGUs by Year (1999-2008)

(Source: Nuclear Regulatory Commission’s Power Reactor Status Reports [with author’s calculation].)

The fuel cycle is the next and most difficult group to identify.  Refueling a 

reactor is a planned event that can take weeks to complete, where the reactor needs to 

be shut down and fuel rods removed and replaced.  The basic methodology to identify a 

refueling period is to search the Comments field in the PRSRs to find words like 

“refuel” (recalling that the Comment field only contains information if the Power Level 

is less than 100%).  Next, assign all concurrently adjacent days with L100=1 to be in the 

same fuel cycle, and define the binary variable FUEL=1 if a NGU is in a fuel cycle

(where all fuel cycles below 10 days and above 50 days were hand checked for 

accuracy).  The data reveal that from 1999-2008 the 104 U.S. NGUs conducted

approximately one fuel cycle every 1.5 years, with a median outage period of 56 days 

during refueling.  The start date of refueling periods demonstrates strong seasonality.  

Figure 8 plots the frequency of start dates of refueling periods.  Observe that Figure 8 is 

the inverse image of Figure 1; that is, low-demand periods in the Fall and Spring 

coincide with refueling period start dates.14  

Figure 8: Frequency of Refueling Start-Dates at U.S. NGUs (1999-2008)

                                                
14 Some observations with 100% Power Level are classified as FUEL=1 so that NGUs have uninterrupted 
refueling cycles. An NGU may begin cooling down the reactor then go back up to 100% of capacity for a 
few days, and then restart the cooling down process again.  
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(Source: Nuclear Regulatory Commission’s Power Reactor Status Reports [with author’s calculation].)

  

The final group consists of all observations where a NGU is not at 100% Power 

Level and not classified as either SCRAM=1 or FUEL=1.  Since these outages are 

neither unplanned outages due to scrams nor refueling periods, then all remaining 

outages must be planned maintenance.15  Thus, I define the binary variable MAINT to 

take the value 1 if L100=1 and SCRAM=0 and FUEL=0.  From 1999-2008, the median 

U.S. NGU has 23 days per year classified as MAINT=1.  

In summary, I use the PRSPs to generate four variables.  Table 2 provides a 

brief description of these binary variables as well as summary data.  The table shows 

that an NGU is refueling a narrow majority of the time when its reactor has a Power 

Level less than 100%.  However, planned maintenance is an important reason why a 

NGU may be operating at less than 100% of capacity. 

                                                
15 Here, I implicitly assume all unplanned outages are accurately measured by the SCRAM variable.  If 
this measurement error is not correlated with pricing regime, then the point estimate for the maintenance-
allocation efficiency gain is still unbiased.
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Table 2: Binary Variable Categories Generated from PRSPs (1999-2008)

Variable Name Fraction (%) Description
L100 23.5 1 if Power Level less than 100%, and 0 otherwise
SCRAM 0.2 1 if Power Level less than 100% and Scrams non-zero, and 0 

otherwise
FUEL 12.4 1 if Power Level less than 100% and Comment contains 

words like “refuel”, indicating the NGU is refueling its 
reactor, and 0 otherwise.

MAINT 11.0 1 if Power Level less than 100% and not categorized as 
SCRAM or FUEL, and 0 otherwise

# Obs. 379912
Notes: A NGU may have SCRAM=1 and FUEL=1 for the same observation date.  In some instances, 
FUEL=1 when L100=0.  Source: Nuclear Regulatory Commission’s Power Reactor Status Reports [with 
author’s calculation].

4.B Other Datasets

I combine three additional datasets with the Power Reactor Status Reports (RPSRs) to 

form the final dataset used in the econometric analysis.  

4.B.1 NRC Unit-Level Data

A series of unit-level characteristics come from the NGU roster provided by the Nuclear 

Regulatory Commission including the construction start date, commercial operation 

start date, unit capacity (MW), and reactor type (see Table A-1 in Appendix A).  Other

useful NRC data include the reactor containment type, supplier, reactor design,

architectural firm, construction firm, commercial operation license expiration date, and 

NRC regulatory region.  In addition, I derive a series of unit-level variable from the 

underlying NCR data.  These constructed variables are NGU age, a binary indicator if 

unit has the same architectural firm and construction firm, length between a units 

construction start and the earliest unit’s construction start date, length of unit’s 

construction, and a binary indicator if a NGU started commercial operation after the 

Three Mile reactor meltdown.  All of these variables help control differences across 

NGUs.  For instance, an older NGU might require more maintenance per year than a 

newer NGU.
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4.B.2 NOAA Temperature Data

This paper uses the maximum daily temperature in the Summer as a proxy for

electricity demand.16  Temperature data from the U.S. National Oceanographic and 

Atmospheric Administration (NOAA) provides daily maximum temperature at weather 

stations across the United States.  I map each NGU to the closest weather station using 

longitude and latitude coordinates.  Define the variable MAX as the maximum daily 

temperature in hundredths of degrees Fahrenheit observed at an NGU  Figure 9 plots the 

frequency of maximum daily temperatures at U.S. NGUs from 1999-2008 using the 

mapped NOAA data.  The histogram resembles a normal distribution, but with more 

mass at lower maximum temperatures due to the unequal distribution of NGUs across 

geographic locations (see Figure 3).

Figure 9: Frequency of Maximum Daily Summer (June, July, and August)

Temperatures at U.S. NGUs (1999-2008)

Source: NOAA (with author’s calculations)

Recall that equation (4) allows for a non-linear function of the maximum daily 

temperature, called f(MAX).  The main specification in this paper use a non-parametric, 

                                                
16 High Summer temperature induce high electricity demand due to air conditioning usage.
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non-linear function defined by grouping observation by ranges of temperature and 

creating a series of dummy variables indicating the group to which an observation 

belongs.  I define the groups such that approximately 10% of the observations from

each tail of the temperature distribution are assigned to the lowest and highest 

temperature groups.  Table 3 shows the chosen temperature groups and reports the 

percentage of Summer temperature observations that fall within each group.  For 

example, group 6 contains all the observations where MAX is greater than or equal to 95 

degrees F.  The data show that 10.56% of the observations are in group 6.   

Table 3: Temperature Group Definitions

Group Temperature Range (F)
Percentage of Summer Temperature 

Observation within Group

1 (·,75) 8.89

2 [75,80) 12.18

3 [80,85) 20.38

4 [85,90) 25.88

5 [90,95) 21.12

6 [95,·) 10.56

Note: Cells subject to independent rounding.

Finally, since NGUs have an unequal distribution across geographic locations, 

then NGUs are not necessarily equally represented across temperature groups.  Figure 

10 shows the distribution of NGUs within group 6 (95 degrees or above).  It plots the 

percentage of a NGU’s total observations in the Summer that fall within that group’s 

temperature range.  The figure shows that 3 units have over 90% of their Summer MAX

observations in group 6, where these three units are located at the same plant in

Arizona.  The figure also shows that 2 units have nearly 50% of their Summer MAX

observations in group 6 (at a plant in Texas).  The main estimation results include the 5 

units with high group 6 percentages, but estimates from regressions that omit these units 

find no statistical difference in outcomes.  All NGUs have some observations in 

temperature group 6; that is, no NGU has zero observations in group 6.
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Figure 10:  Distribution of the Percentage of U.S. NGUs Observations for

Maximum Summer Temperatures of 95 degrees (F) or Higher (1999-2008)

4.B.3 EIA Regulatory and Ownership Data

Finally, and most importantly, the U.S. Energy Information Agency (EIA) Form-860 

records whether a NGU is an Exempt Wholesale Generator (EWG) starting in 2001.  

An EWG is a regulatory status granted by the Federal Energy Regulatory Commission 

(FERC).  FERC defines an EWG as an entity that can “generate and sell electricity at 

wholesale without being regulated as utilities under [Public Utility Regulatory Policies 

Act of 1978]”.17  Another source states that “[a]n Exempt Wholesale Generator may sell 

[energy] to publicly-owned municipal utilities, but their exemption allows them to sell -

or not sell - energy to whomever they choose at whatever rate they choose.”18  I use the 

EWG status of a NGU as the measure of whether each unit can sell its energy in a 

wholesale market (as opposed to receiving a regulated rate).  In 2001, 15 NGUs had 

EWG status in 5 states (MA, MD, NJ, NY, PA).  By 2008, 18 NGUs had EWG status

                                                
17 Link: http://www.ferc.gov/students/energyweregulate/fedacts.htm
18 Link: http://www.energyvortex.com/energydictionary/exempt_wholesale_generator_%28ewg%29.html
This source also notes that “The exemption applies federally, but is usually subject to approval by state 
and regional bodies who may override the exemption if it is felt that this is in the public interest and 
require a generator to sell within a certain price range or to a certain customer or group of customers.”
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across 4 additional states (MI, NH, VT, WI).19  See Data Appendix Table A-2 for the

complete EIA Form-860 data.  Define the binary variable EWG=1 if a NGU is an 

Exempt Wholesale Generator in a given year.

Table 4 provides 2008 summary statistics of the final dataset, separated into 

columns by NGUs’ Exempt Wholesale Generator status.  The final dataset is limited to

the years 2001-2008 by the date range of EIA Form-860. This table show that the 

EWGs are less numerous, older, and smaller (although none of these differences are 

statistically significant).  However, EWGs have a higher average Power Level (92.7%) 

and fewer days with Power Levels less than 100% (65.1). Interestingly, Table 4 shows 

that the difference in L100 days between the EWG and Non-EWG columns is driven by 

the MAINT category, where EWG have almost 20 fewer MAINT days, despite being 

older units on average.  

                                                
19 According to EIA Form-860, one NGU (Three Mile Island #2 in PA) lost its EWG status between 2001 
and 2008.
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Table 4: NGU Summary Statistics for the Year 2008 by EWG Status

Variable
Exempt Wholesale Generator 

(EWG)
Non-Exempt Wholesale 

Generator

        Panel A: Annual Data

Num. Units
18 86

Average Age (Years)
31.5
[6.0]

27.8
[6.5]

Average Size (MW)
901.6

[239.6]
983.7

[212.2]

Average Power Level (Percent)
92.7

[24.3]
89.3

[29.4]

Average L100 (Number)
65.1

[140.0]
88.3

[156.6]

Average SCRAM (Number)
0.3

[11.0]
0.6

[15.0]

Average FUEL (Number)
40.8

[115.2]
44.2

[119.3]

Average MAINT (Number)
24.7

[91.8]
44.0

[119.0]

         Panel B: Summer Only (June, July, & August)

Average Power Level (Percent)
98.2
[8.9]

97.0
[15.1]

Average L100 (Number)
17.9

[36.4]
14.3

[33.3]

Average SCRAM (Number)
0.0

[0.0]
0.2

[3.7]

Average FUEL (Number)
7.2

[24.8]
2.7

[15.5]

Average MAINT (Number)
11.1

[29.9]
11.5

[30.4]

Notes: Standard deviations in brackets. A NGU may have SCRAM=1 and FUEL=1 for the same 
observation date.  In some instances, FUEL=1 when L100=0.
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5 Results

5.A Main Estimation

The main estimation equation is given by:
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where equation (4) is similar to equation (3), and follows from the identification

strategy outlined in section 3. It is a linear probability model where the dependent 

variable (Yit) can be any of the four dependent variables found in table 2, for NGU i , 

plant j, and day t.  I focus on results when Yit=MAINT, since the goal is to identify the 

maintenance-allocation efficiency gains.  The other dependent variables act as 

falsification tests.

The main specification uses the temperature groups defined in table 3.  In 

addition, equation (3) includes the lag of L100, because the dependent variables exhibit 

time dependency (see section 4).  Finally, plant-level fixed effects account for any 

anomalies with the mapping of NOAA temperature data to the NGUs, since all NGUs at 

the same plant receive temperature (and clustering of the standard error also occurs at 

the plant-level).  As Wooldridge (2002, p.330) states, “The strict exogeneity assumption 

in the model requires that the error [ ite ] be uncorrelated with the explanatory variables 

for all units within cluster [j].  This assumption is often reasonable when a cluster effect 

[ jPlant ] is explicitly included. (In other words, we assume strict exogeneity conditional 

on [ jPlant ].)”  

Table 5 reports the baseline estimation results using equation (4), where

columns [1]-[4] contain the name of the dependent variable.  The estimated coefficient 

on SUMMER × MAX  × EWG is used to calculate the maintenance-allocation efficiency gain

when  Yit=MAINT. Table 5 reports its value for each temperature group, where group 1 

is the reference group (and thus omitted).  All of the lower-level cross-product and 

plant-level fixed-effects estimates are omitted. Also, recall that the final dataset only 
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includes years 2001-8 due to data limitation for the Exempt Wholesale Generation 

status variable, leaving 303,888 observations across the 104 NGUs.  

Table 5 column 4 reports results when the dependent variable is MAINT.  The 

estimate of -0.754 for TempGroup6 is statistically significant and means high 

temperature observations are correlated with a reduction in planned maintenance at all

NGUs (whether regulated or marginal pricing).  However, the estimate for  SUMMER × 

MAX  × EWG × TempGroup6 of -10.52 is also statistically significant and implies that 

marginal pricing does lead to even less planned outages on the very high temperature 

days – in other words, maintenance-allocation efficiency gains.  Since MAX is measured 

in hundredths of degrees, the estimate -10.52 means that a one degree increase in the 

maximum Summer daily temperature for that group (group 6) reduces the probability of 

planned maintenance at those NGUs by 0.105 percentage points, if the NGU has 

Exempt Wholesale Generator status and thus can sell electricity in a wholesale market.  

The lower temperature groups do not exhibit evidence of the maintenance-allocation 

efficiency gain, a result consistent with a non-linear relationship between demand and 

price. The next section details, this reduction in planned outage translates to a $5.5 

million annual maintenance-allocation efficiency gain, if all NGUs were under marginal 

pricing rather than regulated pricing.

Table 5 column 2 reports results when the dependent variable is SCRAM.  The 

model finds a statistically significant increase in the probability of a reactor scram 

during high demand if a NGU is an EWG (see SUMMER × MAX  × EWG × 

TempGroup6  equal to 2.04).  This result is surprising, as scrams are usually seen as 

random events, but if a NGU defers maintenance in order to earn large short-run profits 

allowed by marginal pricing, then perhaps a reactor scram is more likely.  Table 5

columns 1 and 3 respectively report with the dependent variable is L100 and FUEL, 

respectively.  Essentially, L100 is a combination of the other three dependent variables, 

and so its coefficient estimates are close to the sum of the coefficient estimates from the 

other three models.  The coefficient on FUEL does not show any fuel cycle reductions 

during high demand periods, but that result comes from the fact that a NGU cannot just 

restart immediately during a fuel cycle, an interpretation corroborated by the size of the 

LagL100 estimate.
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Figure 11 helps visualize the results from Table 5.  The figure plots the 

SUMMER × MAX  × EWG coefficient estimate for each temperature group for the 

model with MAINT as the dependent variable.  The solid black line is the average effect, 

while the dashed lines indicate the 95% confidence interval.  As expected, Figure 11 

shows the large decrease in planned maintenance probability that occurs in temperature 

group 6. The overall interpretation of the results in Table 5 is consistent with finding 

maintenance-allocation efficiency gains at U.S. NGUs caused by marginal pricing.

5.B Interpreting Coefficients
Recall that the baseline estimate of -10.54 for  SUMMER × MAX  × EWG × 

TempGroup6  means that that a one degree increase in the maximum Summer daily 

temperature reduces the probability of planned maintenance at a NGU by 0.105 

percentage points, if the NGU has Exempt Wholesale Generator status.  However, this 

estimate is difficult to interpret.  This section aids in the interpretation of the estimated 

probability and tries to calculate a dollar value for the maintenance-allocation efficiency 

gains.  

To begin, note that the Summer months (June, July, and August) have 91 

potential days of operation.  However, NGUs already average 11.46 days per Summer 

of planned outages (from 2001-2008), and thus U.S. NGUs have approximately 81 days 

of operation where planned maintenance did not occur (since 91 × (1 – 0.1146) = 80.6).  

Next, the mean Summer temperature for temperature group 6 is 99.2 degrees F, with a 

standard deviation of 4.48 degrees (derived from the variable MAX using the 10.56 

percent of observation in the group).  Applying a 4.48 degree increase to the above 

estimate means that a one standard deviation yields a 0.47 percentage point decrease in 

planned outage probability (0.105 × 4.48 = 0.47).  A 0.47 percentage point daily 

probability of an event means that the event occurs on average once every 213 days.  

Finally, divide the 81 at-risk days for planned outages by the 213 days on average 

between each eliminated planned outage, and multiply the percentage of observations in 

temperature group 6 (10.56%) and the number of NGUs (104), to find that 4.2 planned 

outage days would be eliminated each Summer across all NGU under universal 

marginal pricing.  
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Table 6: Baseline Results (with lower-level cross-product and plant-level fixed-
effects estimates omitted)

Independent \ Dependent
L100 [1] SCRAM [2] FUEL [3] MAINT [4]

INTERCEPT 0.046***
[0.005]

0.001*
[0.001]

0.112
[0.023]

-0.060**
[0.019]

SUMMER -0.028
[0.030]

-0.006
[0.004]

-0.028
[0.074]

0.002
[0.069]

MAX 0.021**
[0.008]

0.001
[0.001]

0.053
[0.031]

-0.038
[0.023]

EWG -0.007
[0.006]

0.000
[0.001]

-0.002
[0.028]

-0.007
[0.024]

TempGroup2 -0.062
[0.083]

0.010
[0.018]

-0.111
[0.092]

0.031
[0.114]

TempGroup3 -0.075
[0.092]

0.000
[0.022]

-0.113
[0.102]

0.024
[0.089]

TempGroup4 0.117
[0.096]

-0.022
[0.022]

0.077
[0.161]

0.037
[0.175]

TempGroup5 -0.005
[0.200]

0.021
[0.025]

0.039
[0.404]

-0.037
[0.389]

TempGroup6 -0.023
[0.124]

0.006
[0.016]

0.722
[0.165]

-0.754***
[0.228]

LAGL100 0.866***
[0.007]

0.001***
[0.000]

0.561***
[0.030]

0.304***
[0.028]

SUMMER × MAX  × EWG -0.082°
[0.048]

-0.030***
[0.006]

-0.070
[0.111]

0.012
[0.103]

SUMMER × MAX  × EWG
× TempGroup2

0.100
[0.450]

0.185
[0.116]

1.108**
[0.386]

-0.980
[0.571]

SUMMER × MAX  × EWG
× TempGroup3

0.335
[0.389]

0.053
[0.106]

-0.470
[0.528]

0.795
[0.593]

SUMMER × MAX  × EWG
× TempGroup4

0.562
[0.396]

0.180
[0.156]

-0.074
[0.629]

0.529
[0.723]

SUMMER × MAX  × EWG
× TempGroup5

-0.123
[0.453]

0.034
[0.126]

0.101
[0.921]

-0.294
[0.875]

SUMMER × MAX  × EWG
× TempGroup6

-7.908**
[2.794]

2.04*
[0.876]

0.562
[1.167]

-10.52***
[1.695]

Adjusted R-squared
0.798 0.001 0.488 0.393

# Observations 303,888 303,888 303,888
303,888

Notes: ‘°’ indicates significant at 0.10 level; * indicates significant at 0.05 level; ** indicates significant 
at 0.01 level; *** indicates significant at 0.001 level.  Many of the cross-product and plant-level fixed 
effect estimates are omitted. The standard errors are below the parameter estimates in brackets and 
clustered at the plant-level.  Cells are subject to independent rounding.
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Figure 11: SUMMER × MAX  × EWG  for each Temperature Group with Dependent 

Variable MAINT

The next step is to convert outage days into cost.  The variable operating cost 

(excluding fuel) of U.S. NGUs is on average is 0.78 mills/kWh in 2010 dollars [U.S. 

EPA (2006)].  Meanwhile, the variable operating cost of combined turbine “peaker” 

units range from 2.75 – 10.11 mills/kWh in 2010 dollars (with a non-weighted average 

of 6.43 mills/kWh) [U.S. EPA (2006)].  Thus, the difference in variable operating cost 

between a NGU and “peaker” unit is 5.65 mills/kWh, where a “mill” is a tenth of a cent.  

Recall, an average NGU has a capacity of 970 MW, while the average gas-fired 

“peaker” unit is only 25 MW.  Thus, if an NGU does not operate on a high-demand day, 

then it take nearly 40 “peaker” units coming online to satisfy that demand.  Therefore, a 

NGU missing one hour of peak demand increases total electricity costs by nearly 

$220,000 (1 hour × 970 MW  × (1000 kWh / 1 MWh) × (40  × 5.65 mills/kWh) × (1$ / 

1000mills) = $219,220).  Assume each day with a maximum daily temperature in 

temperature group 6 has six hours per day where “peaker” units are needed to meet 
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demand.  So, multiply the number of reduced planned outage days (4.2) times the cost 

per hour to fill demand by “peakers” ($219,220) times six hours per day, to find a 

maintenance-allocation efficiency gain of $5.5 million dollars per year (if all U.S. NGU 

were in wholesale markets compared to all under regulated pricing).  In contrast, the 

total U.S. retail electricity sales in 2008 were approximately $370 billion dollars, 

although the estimate of the maintenance-allocation efficiency gains in this paper apply 

only to NGUs and cannot directly be extended to other electricity generating units.  

However, it is likely that maintenance-allocation efficiency gains do accrue at all EGUs 

that participate in wholesale markets.

5.C Robustness Checks
This section conducts a series of robustness check to determine the sensitivity of the 

basic results.

5.C.1 Removing Lag Variable
Adding the variable LagL100 creates dependence between observations and might 

result in correlated error terms that bias the estimates.  For this reason, the model is 

rerun removing the lag variable from equation (5).  Figure 12 plots the results for the 

SUMMER × MAX  × EWG estimates for the MAINT dependent variable, where the 

black line reports the baseline estimate as in figure 11, while the grey line reports the 

estimates from the model without the lag variable (and the dashed lines indicated the 

95% confidence interval).  The figure shows no statistical difference between the 

baseline model and the model without the lag variable.
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Figure 12: SUMMER × MAX  × EWG  for each Temperature Group with Dependent 

Variable MAINT without LagL100

5.C.2 Adding Unit-Level Characteristics
The baseline model already clusters at the plant level, but it is useful to check if adding 

observable unit-level characteristics significantly changes the results.20  Table 7

describes the additional control variables added to the baseline model (as originally 

detailed in section 3).  Importantly, this model adds dummy variables for NGU 

ownership, in case one company is more efficient at maintaining its NGUs than 

another.21  As shown in Figure 13, adding these unit-level controls to the baseline model 

does not significantly change results.  

                                                
20 In a study just focusing on U.S. NGUs, Rothwell (1990) decomposes capacity factors into utilization 
rates and service factors, and identifies the relationship between productivity and observed NGU 
characteristics.
21 Lester and McCabe (1993) find that learning-by-doing is an important factor in NGU performance, and 
it might be the case the knowledge about how to efficiently run an NGU is transferred to all NGU within 
a company.
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Table 7: List of Additional Unit-Level Controls

Name Description
Consecutive
L100 Days Count

The running count (e.g. 1,2,3,…), and running count squared, of the number of 
days that the variable L100 equals 1.

Age Age and age squared of each NGU as of 2008.
Capacity Capacity (MW) and capacity squared of each NGU as of 2008.
NRC Region Dummy variables controlling for the four Nuclear Regulatory Commission 

regions (see figure 3).
Reactor Type Dummy variable for reactor type.
Containment Type Dummy variables for reactor containment configuration.
Supplier Dummy variables for reactor supplier.
Reactor Design Dummy variables for reactor design.
Architect Dummy variables for NGU architect.
Constructor Dummy variables for NGU construction firm.
Same Architect & 
Constructor

Dummy equal to 1 if a NGU has the same architect and construction firm.

Construction Permit 
Date

Date of NGU construction permit.

Time from 1st

Construction Permit
Length (in years) between a NGU’s construction permit and the first U.S. NGU 
construction permit.

Construction Length Length (in years) of NGU construction measured from date of construction 
permit until beginning of commercial operation.

Start After TMI Dummy variable indicating if NGU began operation after the Three Mile Island 
reactor meltdown.

Operating License 
Expiration Date 

Date of NGU operating license expiration from NRC.

Firms Dummy variables controlling for the NGU ownership from EIA Form-923.

Figure 13: SUMMER × MAX  × EWG  for each Temperature Group with Dependent 

Variable MAINT adding Unit-Level Characteristics



- 34 -

5.C.3 Time Fixed-Effects

Here, year-month fixed-effects along with day of the week fixed-effects are added to the 

baseline model.  Using finely delineated time fixed-effects is similar to estimating a 

time-trend and may even be call a “non-parametric time-trend”.  Again, as Figure 14 

shows, adding these time fixed-effects does not significantly change the model results.  

Interestingly, in level terms, planned maintenance is lower on weekend days than 

weekdays.

Figure 14: SUMMER × MAX  × EWG  for each Temperature Group with Dependent 

Variable MAINT adding Time Fixed-Effects

5.C.4 Truncated Dataset
The final robustness check removes the two plants (five units) with high temperature 

group 6 representation (see figure 10).  It is a concern that these five units with their 

large weight in group 6 are biasing the results.  After removing these units and 
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rerunning the baseline model with the truncated dataset does not change the estimate 

significantly (see figure 15).

Figure 15: SUMMER × MAX  × EWG  for each Temperature Group with Dependent 

Variable MAINT using Truncated Dataset

6 Discussion and Conclusion
This paper finds statistically significant maintenance-allocation efficiency gains.  I then 

calculate the annual dollar value of the maintenance-allocation efficiency gains to be 

$5.5 million dollars per year (if all U.S. NGU were in wholesale markets compared to 

all under regulated pricing). However, this dollar value for the total maintenance-

allocation efficiency gains may be low for at least two reasons.  First, fuel costs are not 

included in the cost calculation, and increasing fossil-fuel prices may lead to a larger 

difference in operating costs between NUGs and peaker units.  Second, environmental 

benefits are not included either, and some pollutants on high-temperature days cause 

more damages than low-temperature days.  Since peaker units are fossil-fuel fired, their 

environmental impacts might be an important real cost. 
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Finally, I acknowledge three issues that may lead to concerns about the results.  

First, the variables generated from the PRSPs may not accurately capture actual 

operations at the NGUs.  For instance, I assumed that all outages categorized as OTHER

were planned outages since they did not fall under SCRAM or FUEL categories, and

that may not be an accurate assumption.  Second, the binary treatment variable EWG

may not accurately reflect the true and complete state of electricity price deregulation at 

the wholesale level for each NGU.  Third, the result found in this paper is specific to 

NGUs and may not apply to all EGUs, as mentioned above.  It is unclear how the 

maintenance-allocation efficiency gains from marginal pricing accrue to other types of 

generating units that do not satisfy the full-dispatch assumption needed for 

identification.  However, it seemly likely that maintenance-allocation efficiency gains 

accrue at all types of electricity generating units in wholesale electricity markets.
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Appendix A: Additional Data

Table A-1: List U.S. Nuclear Generating Units in 2009

Reactor Name State Type

2009 Summer 
Capacity Net

MW

Construction 
Start

Commercial 
Operation

Arkansas Nuclear-1 AR PWR 842 10/1/1968 12/19/1974

Arkansas Nuclear-2 AR PWR 993 7/1/1971 3/26/1980

Beaver Valley-1 PA PWR 892 6/1/1970 10/1/1976

Beaver Valley-2 PA PWR 885 5/1/1974 11/17/1987

Braidwood-1 IL PWR 1,178 8/1/1975 7/29/1988

Braidwood-2 IL PWR 1,152 8/1/1975 10/17/1988

Browns Ferry-1 AL BWR 1,066 5/1/1967 8/1/1974

Browns Ferry-2 AL BWR 1,104 5/1/1967 3/1/1975

Browns Ferry-3 AL BWR 1,105 7/1/1968 3/1/1977

Brunswick-1 NC BWR 938 9/1/1969 3/18/1977

Brunswick-2 NC BWR 920 9/1/1969 11/3/1975

Byron-1 IL PWR 1,164 4/1/1975 9/16/1985

Byron-2 IL PWR 1,136 4/1/1975 8/2/1987

Callaway-1 MO PWR 1,190 9/1/1975 12/19/1984

Calvert Cliffs-1 MD PWR 855 6/1/1968 5/8/1975

Calvert Cliffs-2 MD PWR 850 6/1/1968 4/1/1977

Catawba-1 SC PWR 1,129 5/1/1974 6/29/1985

Catawba-2 SC PWR 1,129 5/1/1974 8/19/1986

Clinton-1 IL BWR 1,065 10/1/1975 11/24/1987

Columbia-2* WA BWR 1,131 8/1/1972 12/13/1984

Comanche Peak-1 TX PWR 1,209 10/1/1974 8/13/1990

Comanche Peak-2 TX PWR 1,158 10/1/1974 8/3/1993

Cooper NE BWR 774 6/1/1968 7/1/1974

Crystal River-3 FL PWR 860 6/1/1967 3/13/1977

Davis Besse-1 OH PWR 894 9/1/1970 7/31/1978

Diablo Canyon-1 CA PWR 1,122 8/1/1968 5/7/1985

Diablo Canyon-2 CA PWR 1,118 12/1/1970 3/13/1986

Donald Cook-1 MI PWR 1,009 3/1/1969 8/28/1975

Donald Cook-2 MI PWR 1,060 3/1/1969 7/1/1978

Dresden-2 IL BWR 867 1/1/1966 6/9/1970

Dresden-3 IL BWR 867 10/1/1966 11/16/1971

Duane Arnold-1 IA BWR 601 6/1/1970 2/1/1975

Enrico Fermi-2 MI BWR 1,106 5/1/1969 1/23/1988

Farley-1 AL PWR 851 10/1/1970 12/1/1977

Farley-2 AL PWR 860 10/1/1970 7/30/1981

Fitzpatrick NY BWR 855 9/1/1968 7/28/1975

Fort Calhoun-1 NE PWR 478 6/1/1968 9/26/1973

Grand Gulf-1 MS BWR 1,251 5/1/1974 7/1/1985

H.B. Robinson-2 SC PWR 724 4/1/1967 3/7/1971
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Hatch-1 GA BWR 876 9/1/1968 12/31/1975

Hatch-2 GA BWR 883 2/1/1972 9/5/1979

Hope Creek-1 NJ BWR 1,161 3/1/1976 12/20/1986

Indian Point-2 NY PWR 1,022 10/1/1966 8/1/1974

Indian Point-3 NY PWR 1,040 11/1/1968 8/30/1976

Kewaunee WI PWR 556 8/1/1968 6/16/1974

LaSalle-1 IL BWR 1,118 9/1/1973 1/1/1984

LaSalle-2 IL BWR 1,120 10/1/1973 10/19/1984

Limerick-1 PA BWR 1,130 4/1/1970 2/1/1986

Limerick-2 PA BWR 1,134 4/1/1970 1/8/1990

McGuire-1 NC PWR 1,100 4/1/1971 12/1/1981

McGuire-2 NC PWR 1,100 4/1/1971 3/1/1984

Millstone-2 CT PWR 869 11/1/1969 12/26/1975

Millstone-3 CT PWR 1,233 5/1/1974 4/23/1986

Monticello MN BWR 572 6/1/1967 6/30/1971

Nine Mile Point-1 NY BWR 621 4/1/1965 12/1/1969

Nine Mile Point-2 NY BWR 1,143 8/1/1975 3/11/1988

North Anna-1 VA PWR 903 2/1/1971 6/6/1978

North Anna-2 VA PWR 903 11/1/1970 12/14/1980

Oconee-1 SC PWR 846 11/1/1967 7/15/1973

Oconee-2 SC PWR 846 11/1/1967 9/9/1974

Oconee-3 SC PWR 846 11/1/1967 12/16/1974

Oyster Creek NJ BWR 615 1/1/1964 12/1/1969

Palisades MI PWR 778 2/1/1967 12/31/1971

Palo Verde-1 AZ PWR 1,311 5/1/1976 1/28/1986

Palo Verde-2 AZ PWR 1,314 6/1/1976 9/19/1986

Palo Verde-3 AZ PWR 1,317 6/1/1976 1/8/1988

Peach Bottom-2 PA BWR 1,122 1/1/1968 7/5/1974

Peach Bottom-3 PA BWR 1,112 1/1/1968 12/23/1974

Perry-1 OH BWR 1,240 10/1/1974 11/18/1987

Pilgrim-1 MA BWR 685 8/1/1968 12/1/1972

Point Beach-1 WI PWR 512 7/1/1967 12/21/1970

Point Beach-2 WI PWR 515 7/1/1968 10/1/1972

Prairie Island-1 MN PWR 551 5/1/1968 12/16/1973

Prairie Island-2 MN PWR 545 5/1/1969 12/21/1974

Quad Cities-1 IL BWR 882 2/1/1967 2/18/1973

Quad Cities-2 IL BWR 892 2/1/1967 3/10/1973

R.E. Ginna NY PWR 581 4/1/1966 7/1/1970

River Bend-1 LA BWR 974 3/1/1977 6/16/1986

Salem-1 NJ PWR 1,174 1/1/1968 6/30/1977

Salem-2 NJ PWR 1,158 1/1/1968 10/13/1981

San Onofre-2 CA PWR 1,070 3/1/1974 8/8/1983

San Onofre-3 CA PWR 1,080 3/1/1974 4/1/1984

Seabrook-1 NH PWR 1,247 7/1/1976 8/19/1990

Sequoyah-1 TN PWR 1,152 5/1/1970 7/1/1981
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Sequoyah-2 TN PWR 1,126 5/1/1970 6/1/1982

Shearon Harris-1 NC PWR 900 1/1/1974 5/2/1987

South Texas-1 TX PWR 1,280 9/1/1975 8/25/1988

South Texas-2 TX PWR 1,280 9/1/1975 6/19/1989

St. Lucie-1 FL PWR 839 7/1/1970 12/21/1976

St. Lucie-2 FL PWR 839 6/1/1976 8/8/1983

Surry-1 VA PWR 799 6/1/1968 12/22/1972

Surry-2 VA PWR 799 6/1/1968 5/1/1973

Susquehanna-1 PA BWR 1,185 11/1/1973 6/8/1983

Susquehanna-2 PA BWR 1,190 11/1/1973 2/12/1985

Three Mile Island-1 PA PWR 805 5/1/1968 9/2/1974

Turkey Point-3 FL PWR 693 4/1/1967 12/14/1972

Turkey Point-4 FL PWR 693 4/1/1967 9/7/1973

Vermont Yankee VT BWR 620 12/1/1967 11/30/1972

Virgil C. Summer- 1 SC PWR 966 3/1/1973 1/1/1984

Vogtle-1 GA PWR 1,150 8/1/1976 6/1/1987

Vogtle-2 GA PWR 1,152 8/1/1976 5/20/1989

Waterford-3 LA PWR 1,168 11/1/1974 9/24/1985

Watts Bar-1 TN PWR 1,123 12/1/1972 5/27/1996

Wolf Creek KS PWR 1,160 1/1/1977 9/3/1985
Total 101,004
Summer Capacity (Net): The maximum output (excluding electricity used for station's internal operations, 
expressed in Megawatts (electricity). Note that nuclear power can also be expressed in Megawatts 
(thermal).

PWR = Pressurized light Water Reactor

BWR = Boiling Water Reactor

(Source: Nuclear Regulatory Commission via U.S. Energy Information Agency)
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Figure A-1: Random Sample of Raw NRC Power Reactor Status Reports from

November 1, 2008

(Source: Nuclear Regulatory Commission; Downloaded Download December 2010)
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Table A-2: Exempt Wholesale Generator (EWG) Status for U.S. Nuclear 

Generating Units 2001-2008

Plant Unit State 2001 2002 2003 2004 2005 2006 2007 2008
Browns Ferry 1 AL N N N N N N N N
Browns Ferry 2 AL N N N N N N N N
Browns Ferry 3 AL N N N N N N N N
Clinton 1 IL N N N N N N N N
Wolf Creek 1 KS N N N N N N N N
San Onofre 2 CA N N N N N N N N
San Onofre 3 CA N N N N N N N N
Columbia 2 WA N N N N N N N N
Millstone 2 CT N N N N N N N N
Millstone 3 CT N N N N N N N N
Turkey Point 3 FL N N N N N N N N
Turkey Point 4 FL N N N N N N N N
Crystal River 3 FL N N N N N N N N
Vogtle 1 GA N N N N N N N N
Vogtle 2 GA N N N N N N N N
Dresden 2 IL N N N N N N N N
Dresden 3 IL N N N N N N N N
Quad Cities 1 IL N N N N N N N N
Quad Cities 2 IL N N N N N N N N
Duane Arnold 1 IA N N N N N N N N
Pilgrim 1 MA Y Y Y Y Y Y Y Y
Palisades 1 MI N N N N N N Y Y
Fermi 2 MI N N N N N N N N
Monticello 1 MN N N N N N N N N
Prairie Island 1 MN N N N N N N N N
Prairie Island 2 MN N N N N N N N N
Fort Calhoun 1 NE N N N N N N N N
Oyster Creek 1 NJ Y N N N N N N N
Salem 1 NJ Y Y Y Y Y Y Y Y
Salem 2 NJ Y Y Y Y Y Y Y Y
Indian Point 2 2 NY Y Y Y Y Y Y Y Y
Nine Mile Point 1 NY Y Y Y Y Y Y Y Y
Nine Mile Point 2 NY Y Y Y Y Y Y Y Y
Peach Bottom 2 PA N N N N N N N N
Peach Bottom 3 PA N N N N N N N N
H B Robinson 2 SC N N N N N N N N
Oconee 1 SC N N N N N N N N
Oconee 2 SC N N N N N N N N
Oconee 3 SC N N N N N N N N
Vermont Yankee 1 VT N N Y Y Y Y Y Y
Surry 1 VA N N N N N N N N
Surry 2 VA N N N N N N N N
Point Beach 1 WI N N N N N N N N
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Point Beach 2 WI N N N N N N N N
Waterford 3 3 LA N N N N N N N N
Donald C Cook 1 MI N N N N N N N N
Donald C Cook 2 MI N N N N N N N N
Joseph M Farley 1 AL N N N N N N N N
Joseph M Farley 2 AL N N N N N N N N
Palo Verde 1 AZ N N N N N N N N
Palo Verde 2 AZ N N N N N N N N
Palo Verde 3 AZ N N N N N N N N
Calvert Cliffs 1 MD Y Y Y Y Y Y Y Y
Calvert Cliffs 2 MD Y Y Y Y Y Y Y Y
Brunswick 1 NC N N N N N N N N
Brunswick 2 NC N N N N N N N N
Harris 1 NC N N N N N N N N
Perry 1 OH N N N N N N N N
Braidwood 1 IL N N N N N N N N
Braidwood 2 IL N N N N N N N N
Byron 1 IL N N N N N N N N
Byron 2 IL N N N N N N N N
LaSalle 1 IL N N N N N N N N
LaSalle 2 IL N N N N N N N N
Catawba 1 SC N N N N N N N N
Catawba 2 SC N N N N N N N N
McGuire 1 NC N N N N N N N N
McGuire 2 NC N N N N N N N N
Beaver Valley 1 PA N N N N N N N N
Beaver Valley 2 PA N N N N N N N N
St Lucie 1 FL N N N N N N N N
St Lucie 2 FL N N N N N N N N
Edwin I Hatch 1 GA N N N N N N N N
Edwin I Hatch 2 GA N N N N N N N N
Grand Gulf 1 MS N N N N N N N N
Diablo Canyon 1 CA N N N N N N N N
Diablo Canyon 2 CA N N N N N N N N
Susquehanna 1 PA Y N Y Y Y Y Y Y
Susquehanna 2 PA Y Y Y Y Y Y Y Y
Limerick 1 PA N N N N N N N N
Limerick 2 PA N N N N N N N N
James A Fitzpatrick 1 NY Y Y Y Y Y Y Y Y
Seabrook 1 NH N N Y Y Y Y Y Y
Hope Creek 1 NJ Y Y Y Y Y Y Y Y
R. E. Ginna 1 NY N N N Y Y Y Y Y
V C Summer 1 SC N N N N N N N N
Comanche Peak 1 TX N N N N N N N N
Comanche Peak 2 TX N N N N N N N N
Davis Besse 1 OH N N N N N N N N
Sequoyah 1 TN N N N N N N N N



- 44 -

Sequoyah 2 TN N N N N N N N N
Callaway 1 MO N N N N N N N N
North Anna 1 VA N N N N N N N N
North Anna 2 VA N N N N N N N N
South Texas Project 1 TX N N N N N N N N
South Texas Project 2 TX N N N N N N N N
River Bend 1 LA N N N N N N N N
Watts Bar 1 TN N N N N N N N N
Three Mile Island 1 PA Y Y Y Y Y Y N N
Kewaunee 1 WI N N N N Y Y Y Y
Cooper 1 NE N N N N N N N N
Arkansas Nuclear One 1 AR N N N N N N N N
Arkansas Nuclear One 2 AR N N N N N N N N
Indian Point 3 3 NY Y Y Y Y Y Y Y Y

[Note: Grey colored cells indicate missing data filled-in by author.]
(Source: U.S. Energy Information Agency Form-860)


