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Abstract

This research investigates how uncertainties related to shale gas production will influence the long-
term deployment of supply-side technologies in US electricity markets, particularly under uncertain
climate policy constraints. Using a two-stage stochastic programming approach, model results
suggest that there is considerable value to limiting fugitive methane emissions from shale gas.
This strategy would give the electric sector the flexibility of waiting to observe the resolution of
uncertainties before building new capacity. Information about the stringency of greenhouse gas
abatement is most valuable to utilities and generators when tight emissions caps are realized. The
stochastic solution is especially valuable if no pre-2030 mitigation is assumed, if the uncertainty
resolution date is delayed, or if the social cost of carbon is incorporated into the calculations.
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1 Introduction

Recent advances in technologies like horizontal drilling and hydraulic fracturing have caused rapid

increases in production from unconventional natural gas resources like shale formations. However,

the same technologies that have facilitated this growth have also raised important questions about

their environmental impacts. Natural gas is broadly considered to be a more environmentally

benign alternative to coal due to its lower CO2 emissions from combustion and its avoidance of

pollutants like sulfur, particulate matter, and mercury. These environmental benefits, combined

with abundant reserves, suggest that unconventional gas can play an important role in national

and international energy policy: bridging a transition to a lower-carbon economy, reshaping energy

security, and altering investment decisions in the electric power sector [1, 2].

Despite these attractive features, the environmental impacts of shale gas production on air

quality, water quality, geology, and greenhouse gas emissions are currently being questioned. One of

the most contentious and uncertain issues centers on the greenhouse gas impacts of unconventional

natural gas development. Research on lifecycle emissions from shale gas production has only been

undertaken in the past year. These existing studies exhibit a high degree of variation due to

divergent assumptions and considerable uncertainty in the underlying data [3, 4, 5, 6, 7, 8, 9, 10].

These problems are compounded by empirical data scarcities and the heterogeneity of sites and

drilling practices.

The objective of this research is to investigate how the uncertainties related to unconventional

natural gas will impact the deployment of supply-side technologies in US electricity markets through

2050. In particular, this paper looks at how uncertainties in future natural gas prices, upstream

methane emissions, the global-warming potential of methane, and the stringency of federal climate

policy will influence optimal abatement efforts. The model is the first to incorporate upstream

emissions from shale gas production into an energy-economic model that can examine tradeoffs be-

tween lifecycle costs and environmental impacts of different technologies, particularly in a stochastic

programming setting.
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2 Capacity Planning under Uncertainty

2.1 Overview

The problem of capacity planning in the electric power sector is well suited to the stochastic

control paradigm where strategies adjust over time as new information becomes available about

technologies, resources, and polices. Decisions about generating capacity expansion and operation

take place against long and highly uncertain planning horizons. Uncertainties about developments

in the system environment impact the cost-effectiveness of planning decisions, particularly for

utilities whose long-lived and essentially irreversible capital investments are designed to last many

decades. The long lead-times and lifetimes of capital in energy system projects mean that the

environment in which power plants come online and operate may be very different from the one

in which they are planned. Hence, suboptimal near-term decisions that fail to account for a range

of potential natural gas price scenarios and lifecycle emissions, for instance, can cost ratepayers,

investors, and taxpayers and have important long-term environmental implications.

Planning in the US electric power industry has been shrouded in substantial uncertainty in

recent decades, and the simultaneous challenges with which the sector must grapple are only ex-

pected to increase in the future. Progressively stringent environmental policies, especially related

to climate change, may require emission controls alongside early retirements and fuel switching.

Complying with federal and state regulations must happen while utilities concurrently struggle with

an aging fleet of generators and abrupt changes in the economics of fossil fuels due to the dramatic

expansion in shale gas development. These factors make it even more important for power system

planners to develop strategies that hedge against a variety of possible futures and that explicitly

consider both the expected costs and robustness of proposed plans.

2.2 Uncertainties Considered in Analysis

Focusing on the role of shale gas in a carbon-constrained world, this analysis represents five un-

certain model parameters as random variables, including the stringency of climate policy, natural
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gas price path, coal price path, global-warming potential of methane, and upstream emissions from

shale gas. Although global climate change is an urgent and significant problem, there are many

sources of uncertainty that will determine the stringency of policy measures used to curb green-

house emissions in the US [11]. Utilities and generators consider the timing, form, and stringency

of climate policies uncertain. This analysis assumes that the policy will take the form of cumulative

emissions caps on equivalent greenhouse gas emissions, since climate outcomes depend on concen-

trations of greenhouse gases in the atmosphere. The support of this random variable contains five

elements that correspond to cumulative caps with annual emissions equivalents of 3000, 2500, 2000,

1500, and 1000 million metric tons of carbon dioxide equivalent (Mt-CO2e) per year. The most

stringent case is comparable to the American Clean Energy and Security Act of 2009 (more com-

monly known as the Waxman-Markey bill). After an informal expert elicitation, the probabilities

associated with these outcomes are assumed to be 0.1, 0.2, 0.4, 0.2, and 0.1, respectively.

Prices for energy resources are uncertain and fluctuate based on many complex factors. Uncer-

tainty about the future of natural gas is also driven by recent discoveries and increased domestic

production of shale gas [12]. Although abundant gas resources suggest expanded use in the elec-

tricity sector, uncertainty about the environmental impacts of production and long-run production

costs make the extent of this growth unclear [2, 13]. Additionally, natural gas price uncertainty

will be influenced by the unknown policy environment, public acceptance of hydraulic fracturing

[14], and uncertainty surrounding life-cycle emissions for shale gas [7, 9]. The stochastic parameter

in the model representing this uncertainty is the natural gas price annual growth rate. Based on

the EIA’s estimates of this value under baseline, low shale estimate ultimate recovery, and high

ultimate recovery cases [2], this analysis uses growth rates of 0, 0.7, 1.4, 2.1, and 2.8 percent with

probabilities of 0.1, 0.2, 0.4, 0.2, and 0.1, respectively.

Coal prices, though less uncertain than natural gas, are important to treat as random parame-

ters, since even comparatively minor increases can change the economics of building and operating

coal-fired power plants with and without carbon capture. Using EIA estimates [2], this uncertainty

is incorporated as the annual growth rate for coal prices. The three possible realizations of the

random parameter are 0, 0.5, and 1.0 percent and have corresponding probabilities of 0.25, 0.5,
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and 0.25, respectively.

Although methane leaks represent only a few percent of the lifetime production of a well,

methane is the dominant portion of natural gas and a potent greenhouse gas, which means that

even small leaks of this short-lived climate forcer are significant. Recent modeling efforts [15] have

suggested that methane may have an even larger GWP than previous estimates suggested [11],

particularly when indirect effects on atmospheric aerosols are taken into account. This analysis

uses estimates of the GWP for methane from [15] and uses a 100-year timescale to analyze the

impact of methane. This random variable has outcomes of 25, 33, and 42 with probabilities of 0.25,

0.5, and 0.25, respectively.

As described in Section 1, the upstream methane emissions associated with shale gas production

are uncertain. Fig. 1 illustrates the disagreement and uncertainty in this value across existing

studies. This work uses these values in a distribution with outcomes of 0.11, 0.6, and 1.18 grams

of carbon per megajoule of fuel with probabilities of 0.25, 0.5, and 0.25, respectively.1
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Figure 1: Estimates of fugitive methane emissions from shale gas production from existing literature.

1This distribution may err on the conservative side of leakage estimates. A recent study by Petron, et al.
[16] is one of the first to use actual air samples to characterize emissions of methane. Using daily samples
from the NOAA Boulder Atmospheric Observatory in Colorado, the multi-species analysis estimates that
natural gas production in the Denver-Julesburg Basin leaks methane at a rate that is twice as high as the
Howarth, et al. estimates for wellhead completion and production. The analysis does not quantify methane
emissions from other stages of the natural gas lifecycle like leaks during distribution.
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3 Modeling Approach

3.1 Deterministic Electricity Capacity Expansion Model

To answer these research questions, the author developed a capacity planning model of the US

electric power sector. This GAMS model determines optimal capacity investment and production

decisions for the US electric sector between 2007 and 2050 in ten-year increments with three load

segments per year.2 The model uses a partial equilibrium framework with exogenous fuel prices.

Data for the model come from a variety of public sources, as shown in Table 1.

Table 1: Data sources for model inputs

Data Source

Capital and O&M costs EIA [17]
Existing capacity Form EIA-860 [18]
Availability and capacity factors EPA National MARKAL Database 2010
Fuel prices EIA Annual Energy Outlook [2]
Load Based on Form EIA-860 [18]

The model assumes that capacity installation and electricity production decisions are centrally

coordinated among all utilities and generators. In the core deterministic model, utilities minimize

the sum of discounted energy system costs for all capacity blocks during all periods. The decision

variables and parameters in the objective function are:

Decision Variables

xti new capacity investment of generation technology i decided at time period t (GW)

wti installed capacity of type i available at time t (GW)

ytij generation of type i during load segment j at time t (GWh)

uts reduced demand from step s in the demand curve at time t (GW)

vt emissions offset purchases at time t (Mt-CO2e)

2The segments create a piecewise approximation of the load duration curve and preserve total annual
generation and peak load characteristics.
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Parameters

δt discount factor at time t

∆i construction delay of type i (years)

cti capital cost for type i at time t ($/kW)

f ti total dispatch costs for type i at time t ($/GWh)

τ tj duration of segment j at time t (hours)

gti maintenance costs for type i at time t ($/kW), including grid integration costs

pts economic cost of reduced demand from step s at time t

Given these variables and parameters, the linear cost-minimizing objective function (expressed

in million $) for the deterministic capacity planning problem can be defined as:

∑
t

δt

∑
i

ctix
t−∆i
i +

∑
i

∑
j

f ti τ
t
jy
t
ij +

∑
i

gtiw
t
i +
∑
s

ptsu
t
s

 (1)

Thus, the four primary constituents of total costs are capital costs, dispatch costs,3 maintenance

costs, and costs associated with reduced demand.

All model variants include the following constraints:

• Load balance (market-clearing condition)

∑
i

ytij − ζt = τ tj

(
dtj −

∑
s

uts

)
(1 + αt) ∀j ∈ J, ∀t ∈ T (2)

where ζt is net international exports at time t, and αt is a factor that represents a combination

of transmission losses and a reserve buffer at time t.

• Capital additions, turnover, and retirement

wti = wt−1
i + xt−∆i

i − xt−Li
i ∀i ∈ I, ∀t ∈ T (3)

where Li is the lifetime of type i.

3Dispatch costs for generators are the sum of the variable operation and maintenance costs, fuel costs,
and pollutant taxes.
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• Unit dispatch cannot exceed capital stock

ytij ≤ atijwti ∀i ∈ I, ∀j ∈ J, ∀t ∈ T (4)

• Cost associated with demand reduction

pts = pt0(dtj)
− 1

ε (dtj −
1

n
rmaxd

t
js)

1
ε ∀s ∈ S, ∀t ∈ T (5)

where rmax is the maximum demand reduction (as a percentage of the reference value), n

is the total number of steps in the stepwise linear representation of the aggregate demand

curve, and ε is the own-price elasticity of demand at the end-use level.4

• Investment constraints based on current pipeline or other technological constraints (e.g., no

CCS before 2020)

xti ≤ xti,max ∀i ∈ I, ∀t ∈ T (6)

• Non-Negativity

xti, w
t
i , y

t
ij , u

t
s ≥ 0 ∀i ∈ I,∀j ∈ J,∀t ∈ T,∀s ∈ S (7)

Since the electric power sector is entrenched in long-lived and expensive investments, many

technical and economic factors can contribute to the retirement of costly generating assets. Retire-

ments occur in the model through three mechanisms. First, retirements can occur endogenously

through economic drivers when maintenance costs for units exceed the anticipated economic ben-

efits that such assets bring to the energy system. Second, units that are online at the beginning

of the time horizon are likely to be fully depreciated before the end. Such exogenous lifetime con-

straints for residual capacity are incorporated through a constraint on the percentage of units of a

particular type that are online in a given period. Finally, the third mechanism for retirements is

when new capacity reaches its operating lifetime during the time horizon of the model run, which

also represents an exogenous constraint based on unit lifetimes.

Optional constraints for model runs include climate policy constraints (cap and trade, carbon

4This representation is based on Kanudia and Shukla’s linear formulation of price-sensitive demand. For
a more thorough explanation of this approach, please refer to [19].
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tax, or cumulative emissions cap), federal renewable portfolio standards, target wind penetration,

constraints on investments for limited technology portfolio runs, and constraints to fix decision

variables based on a reference run. The cumulative constraint on greenhouse gas emissions is

formulated as: ∑
t

∑
p

γp

∑
i

∑
j

etipτ
t
jy
t
ij

−∑
t

vt ≤ φ (8)

where p is the index for the greenhouse gas (in this case, CO2 and CH4), γp is the global-warming

potential of p, etip is the emissions factor of technology i for pollutant p at time t (in million

metric tons per GWh), and φ is the cumulative emission cap (Mt-CO2e). Emissions offsets can be

purchased in lieu of making investments in abatement technologies if cumulative abatement targets

cannot be met by reducing emissions (e.g., if the policy target is revealed to be more stringent than

initially expected).

3.2 Two-Stage Stochastic Recourse Model

The linear programming model discussed above computes the optimal investment and operation

strategies for the deterministic capacity expansion problem. Under perfect information, this so-

lution provides a lower bound on discounted costs given a particular scenario. However, due to

the difficulties associated with predicting the outcomes discussed in Section 2 with any degree of

certainty, it is unrealistic to assume that a strategy that is optimized for a given scenario will be op-

timal under a range of realized states of the world. Desregarding inherently random characteristics

may limit the usefulness of solutions designed using deterministic approaches.

Stochastic programming techniques can be used to compute optimal hedging strategies in prob-

lems with uncertain data and to provide contingency plans that adapt to realizations of random

variables. These solutions perform reasonably well under a variety of plausible scenarios. The basic
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two-stage stochastic program with recourse can be formulated as [20, 21]:

min z = cTx+Eξfωyω

s.t. Ax = b

−Bωx+ Dωyω = dω

x, yω ≥ 0, ω ∈ Ω

ω ∈ Ω state of the world

ξ random vector, ξ(ω)T = (f(ω)T , d(ω)T , B1·(ω), . . . , Bn·(ω), D1·(ω), . . . , Dn·(ω))

Ξ ⊂ Rn support of ξ

x vector of first-stage decisions

y vector of second-stage (recourse) decisions

Here, all values corresponding to objective function coefficients (i.e., the c vector) and first-

stage5 constraints (i.e., the A matrix and b vector) are known with certainty. The second-stage

objective coefficients (i.e., the fω vector) and parameters in the constraints (i.e., the Bω and Dω

matrices and dω vector) are unknown when utilities make first-stage decisions and are characterized

only by discrete probability distributions over potential outcomes. The second-stage parameters

are treated as random variables with outcomes denoted by ω with an associated probability p(ω).

Every random element depends jointly on these scenarios or states of the world.

The wait-and-see approach waits until uncertainties are resolved at the end of the planing

horizon (and the outcome ω ∈ Ω can be observed) before selecting the optimal decision vector x.

This solution corresponds to a scenario analysis problem (i.e., where uncertainty has been removed

and the decision maker solves for different values of ω) and suggests perfect information. The

5Stages are distinct from periods in stochastic programming terminology. Periods are intervals in the
time horizon. Stages are sets of consecutive periods that divide the time horizon based on realizations of
uncertainties and information sets of decision makers.
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problem can be formulated as:

zω = min f(x, ω)

s.t. x ∈ Cω ⊆ Rn

with the here-and-now solution expressed as xω ∈ argmin {f(x, ω) | x ∈ Cω}. The expected cost

with perfect information can be found by taking the expected value over all possible scenarios:

zws = E zω =
∑

ω∈Ω z
ωp(ω).

The here-and-now approach finds a solution x∗ that hedges against all possible contingencies

ω ∈ Ω that may occur in the future. This decision is made before observing the outcome from Ω

and solves the problem:

z∗ = min Eξf(x, ω)

s.t. x ∈ Cω = ∩ω∈ΩC
ω

where the here-and-now solution is expressed as x∗ ∈ argmin {Eξf(x, ω) | x ∈ ∩Cω}. The solution

x must be feasible for all scenarios ω ∈ Ω. The expected cost of the stochastic solution is z∗ =

min
x

Eξf(x, ω).

The expected value approach replaces the stochastic parameters by their expected values and

solves the problem:

ẑd = min f(x, ω̄)

s.t. x ∈ Cω̄

where ω̄ = Eω =
∑

ω∈Ω ωp(ω), and the expected value solution is xd ∈ argmin {f(x, ω̄) | x ∈ Cω̄}.

The expected cost of the expected value solution is zd = Eξf(xd, ω).

The importance of uncertainties is typically assessed through two metrics: the expected value of

perfect information (EVPI) and the value of the stochastic solution (VSS). The EVPI compares the
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expected costs of the stochastic and wait-and-see solutions and represents the expected change in the

objective function value if perfectly accurate forecasts are available prior to first-stage decisions.

The EVPI has important implications for decision makers in that it places an upper bound on

willingness to pay for information gathering. The EVPI is mathematically defined as:

EVPI ≡ z∗ − zws

= min
x

Eξf(x, ω)− Eξ
[
min
x

f(x, ω)
]

The VSS6 compares the expected costs of the expected value and stochastic solutions. It quan-

tifies the expected difference in cost for a decision based on stochastic analysis and one that ignores

uncertainty. The VSS can guide analysts in the process of model construction by highlighting which

uncertainties are most important for inclusion and for more detailed probability elicitations. The

VSS can be viewed as the additional expected cost of pretending that uncertainty does not exist,

whereas the EVPI is the expected cost of being uncertain. The VSS is defined by the equation:

VSS ≡ zd − z∗

= Eξf(xd, ω)−min
x

Eξf(x, ω)

Each of these random parameters is assumed to be independent,7 which means that there are

a total of 675 universe scenarios. The model uses a two-stage stochastic programming approach in

the GAMS environment using the DECIS system [23] with the CPLEX solver. All uncertainties

are assumed to resolve in 2030. From this model period forward, second-stage decisions can be

made with complete and perfect knowledge of all future parameters.

6The value of the stochastic solution is also called the expected value of including uncertainty [22].
7Future research efforts should attempt to more rigorously quantify potential impacts of correlations

between random variables. For example, natural gas prices and methane leakage rates may be negatively
correlated if low prices provide strong incentives to reduce costs by eliminating control technologies and
other practices that could have reduced emissions during well production and completion.
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4 Results

4.1 Reference Results

Table 2 lists objective function values8 for the wait-and-see (zws), stochastic (z∗), and expected

value (zd) solutions. The top rows list values when the uncertainties are considered one-at-a-time,

and the bottom row shows results for all five uncertainties considered jointly.

Table 2: Discounted system costs (billion $)

Uncertainty zws z∗ zd EVPI VSS

Stringency of abatement policy 3,378 3,486 3,497 108 11
Natural gas prices 3,283 3,286 3,286 3 0
Coal prices 3,304 3,304 3,304 0 0
GWP of methane 3,303 3,303 3,303 0 0
Upstream methane emissions 3,303 3,303 3,303 0 0

Joint 3,358 3,466 3,479 108 12

The expected value of perfect information (EVPI), which presents the difference in expected

cost between the stochastic and wait-and-see solutions, is $108 billion.9 Abatement stringency

and natural gas prices account for almost this entire value, and information is most valuable when

tight caps are realized. Table 3 demonstrates how, under tight emissions caps, the wait-and-see

solution retries considerably more coal and natural gas plants (particularly combined cycle units)

early. The 754 GW of total retirements is a large percentage of the US’s current installed capacity,

which is approximately 1,000 GW. This result demonstrates how very stringent abatement targets

require decarbonization of electricity generators almost immediately. Otherwise, it is more costly

to implement these reductions down the line, which is why having information about the stringency

of abatement is so valuable.

8The numerical results in this section should be interpreted within the context of the accompanying model as-
sumptions. Greater emphasis should be placed on the insights gleaned from this framework rather than the exact
magnitudes of the model outputs.

9All values are expressed in US 2010 dollars with a discount rate of five percent unless otherwise noted.
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Table 3: Cumulative retirements by 2030 (GW)

Wait-and-See1 Stochastic Expected Value

Coal 311 82 7
Natural gas (combined cycle) 188 111 129
Natural gas (gas turbine) 118 118 118
Natural gas (steam turbine) 75 75 75
Nuclear 5 5 5
Petroleum 57 57 57

Total 754 448 392
1 Wait-and-see solution for 1,000 Mt-CO2e per year cap scenario where all other random

parameters assume their mean values.

In terms of capacity investments before 2030, the wait-and-see solution under tight caps builds

517 GW of new capacity by 2030 compared to 177 GW under the stochastic solution. The wait-

and-see solution constructs more wind (66 GW), more coal with carbon capture (49 GW), and

nearly four times as much new nuclear capacity (217 GW) as the stochastic solution.

The value of the stochastic solution (VSS), which quantifies the expected cost difference between

the stochastic and expected value solutions, is $12.3 billion, as shown in Table 2. The VSS of zero

for the GWP and upstream emissions uncertainties are caused by the fact that there are no first-

stage additions of natural gas capacity before 2030 under either of these strategies. There are a

number of reasons why the magnitude of the VSS is so small relative to the EVPI. First, utilities

and generators do not account for social costs associated with greenhouse gas emissions, which

means that the market externality of damages is not included.10 Second, many of the probability

distributions are symmetric, which means that there are both upside and downside risks when

adopting the stochastic strategy for most random parameters (e.g., gas prices). Third, most new

capacity is not needed until after 2030 to keep up with growing demand. Finally, when uncertainty

is ignored in the first stage, it is assumed that utilities will follow the expected value solution.

10This assumption and its implications are discussed in Section 4.5.
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4.2 Results without First-Stage Mitigation

If the VSS is computed assuming that decision makers do not account for the distribution in climate

policy and assume a no policy baseline, the VSS increases to $181 billion, which is much higher

than the $12.3 billion value using the expected value solution. This value can be interpreted as the

expected cost of inaction. There are two primary reasons for this higher value when no pre-2030

mitigation is assumed. First, the new solution does not make precautionary investments in nuclear

or coal with CCS and makes less than optimal installations of wind and biomass. Second, to keep

up with growing demand, the no policy strategy builds 106 GW of new supercritical pulverized coal

capacity. These would represent large financial losses to utilities if emissions restrictions are later

put in place, which would cause these units to be mothballed almost immediately. The magnitude

of this no policy VSS value is highly sensitive to the assumed offset price, since first-stage emissions

would exceed the cumulative cap.

4.3 2040 Resolution Date

If the uncertainties do not resolve until 2040 (instead of 2030), the VSS increases to $114 billion.

This large value results from 30 GW of new nuclear installations by the stochastic strategy in early

periods. During this same time, the expected value solution relies on increased generation from

coal-fired power plants, as shown in Fig. 2. The EVPI for the postponed resolution date increases

from $108 billion to $238 billion. The wait-and-see solution (for tight caps and mean values for

other random parameters) builds 386 GW more capacity than the stochastic solution before 2040.

In particular, it builds significantly more coal with CCS, nuclear, and wind capacity. The wait-and-

see solution simultaneously retires more capacity, including the entire coal fleet and more natural

gas combined cycle plants compared with the stochastic solution. Again, these results are sensitive

to the offset price, since waiting until 2040 to implement a cumulative abatement policy will involve

overshooting the mitigation target.
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Figure 2: Electricity generation (billion kWh) by technology type in 2030 for wait-and-see (WS),
stochastic (Stoc), and expected value (EV) solutions.

4.4 Shale Gas Results

These model runs contain a number of important insights about the potential role of shale gas in

the United States. Fig. 3 suggests that shale gas resources are used for electricity generation largely

when natural gas prices are low (with abatement targets being a secondary driver). Shale gas and

natural gas in general are less important for ambitious climate targets no matter what price is

assumed and regardless of upstream emissions. The dark green area in Fig. 3 illustrates that only

small amounts of shale gas are used when the natural gas price growth rate is at its mean value or

higher. Thus, even though natural gas emits 40 percent less CO2 per unit mass than coal, these

emissions are still too high to merit the use of natural gas to comply with very stringent abatement

targets, particularly when wind, nuclear, solar, and other substitutes emit no CO2.
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Figure 3: Percentage of total generation after 2010 from shale gas.

A related issue is how shale gas availability will influence investments in renewable technologies.

There has been extensive discussion and speculation about the degree to which a low-cost shale

boom will curtail the deployment of low-carbon substitutes like wind and solar. The ternary plot11

in Fig. 4 illustrates that many more considerations than simply the natural gas price will influence

how natural gas could displace investments in other technologies.

11Ternary plots use barycentric coordinate systems to depict proportions of three variables as locations on
an equilateral triangle. The proportions of these three components sum to a constant value (typically 100
percent, as in Fig. 4).
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Figure 4: Ternary plot of generation share (%) by technology under various natural gas price and
abatement stringency scenarios using the here-and-now (stochastic) approach, 2010–2050. The
gridlines indicate the fraction of total electricity generation in a given year from renewables and
nuclear (horizontal gridlines), natural gas (diagonal gridlines from the lower left to upper right), and
coal (diagonal gridlines from the upper left to lower right). High gas price scenarios are depicted
in black and low price scenarios in green with 2010–2020 values shown in red. Note that, since
the stochastic hedging approach is used, the strategies are the same for all scenarios before the
uncertainty resolution date of 2030. The lines for the high and low gas price cases overlap exactly
for the stringent caps scenario.

The expansion of generation from natural-gas-fired units is largest under scenarios where the

natural gas price is low and the stringency of climate policy is low to moderate. Under a scenario

where no climate policy is enacted by 2030, generation comes primarily from fossil-based units,

with natural gas comprising nearly 70 percent of generation by 2050 when gas prices are low. The

availability of low-cost shale gas lowers greenhouse gas emissions by replacing production from coal

even though no climate policy is in place under this state of the world. When a moderate policy is
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enacted and abundant shale reserves lower gas prices, coal is eliminated from the generation mix

by 2050, and 80 percent of electricity comes from natural gas.12 For this specific case, the existence

of low-cost shale gas means that gas units replace what would have otherwise been predominately

coal with CCS (which would generate 26 percent of electricity by 2050), nuclear, and wind. Under a

stringent climate policy scenario, however, the presence of shale gas in the resource supply curve for

natural gas has almost no influence on the deployment of technologies. The model generates nearly

all electricity from non-emitting resources like renewables and nuclear by 2030 regardless of the

natural gas price, as shown in the overlapping lines for the stringent cap cases after the uncertainty

resolution period. Thus, the influence of shale gas on electric sector investments depends strongly

on the stringency of the federal climate policy in addition to natural gas prices.

Another research question with pertinent policy implications concerns how much utilities and

generators would be willing to pay for research, development, and deployment of control technologies

to limit fugitive methane emissions from shale gas. This value of control places an upper bound

on the deployment of control technologies and can be calculated by taking the difference between

the expected cost of the stochastic strategy (with all 675 scenarios) and the expected cost of the

problem where methane leakage is certain to be zero.

The value of control is $36.3 billion, which indicates that there is considerable benefit to limiting

upstream emissions. The reason that control is so valuable is that, for tight abatement scenarios,

this strategy allows existing natural gas plants to generate more during the first stage. It relies

on extra capacity from less frequently used units (that currently have low capacity factors and are

used primarily as peaking plants) instead of building new ones to keep pace with growing demand.

The capacity factors in Fig. 5 suggest that utilization of natural gas units in 2020 and 2030 can

nearly double if upstream methane emissions are eliminated from shale production, which would

allow natural gas units to operate closer to their design capacity.

12Since natural gas is still a hydrocarbon, approximately a third of the natural gas generation comes from
CCS-equipped units in order to comply with the moderate abatement targets.
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Figure 5: Average annual capacity factor for all natural gas units when the upstream methane
emissions from shale production is uncertain versus the control scenario when the leakage rate is
zero, 2010–2030.

This control scenario has the flexibility of waiting to observe the resolution of uncertainties

in 2030 before building new capacity. It would turn the overbuilding of natural gas combined

cycle units from the mid-1990s onward from a liability into a significant asset for reducing system

operating costs, CO2 emissions (until a more certain policy framework is in place), and conventional

air pollutants. This strategy would simultaneously maintain grid reliability without additional

capital investments. Therefore, limiting methane emissions from shale gas production represents a

large value-added proposition for utilities and shale gas developers, since it can allow natural gas

to be a holdover technology in a transition to a low-carbon economy.

4.5 Social Cost of Carbon

The results thus far have examined EVPI and VSS values that do not account for damages from

greenhouse gas emissions. As mentioned in Section 3, the decision makers in this problem are utili-

ties and generators. Their optimization problem minimizes private system costs without accounting

for public social costs. They only consider climate policy targets to be uncertain, even though such

policies may not fully internalize the externalities associated with greenhouse gas emissions.
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This section explores how these results would change if the so-called social cost of carbon were

included in the analysis as an additional cost after model runs. Values for the social cost of carbon

over time are uncertain and subject to many assumptions about amplifying feedbacks (e.g., thawing

of vast deposits of frozen methane), catastrophic impacts (e.g., slowdown or shutdown of Atlantic

Meridional Overturning Circulation), and economic parameters (e.g., social rate of time preference).

Therefore, the VSS values are calculated for a range of values and compared to estimates from the

literature [24, 25, 26].
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Figure 6: Value of the stochastic solution (billion $) for various social costs of carbon in 2010 and
annual growth rates (points on contours show values from the literature with different assumptions
about damage functions and discount rates).

Fig. 6 show contours for the VSS at various assumed values for the social cost of carbon in 2010

and annual growth rates over time. The VSS value from Section 4.1 of $12.3 billion (where the

social costs of carbon are excluded) is shown at the origin. Including climate damages makes the

stochastic solution more valuable, since its precautionary investments in low-carbon technologies

and early retirement of carbon-intensive generating capacity mean that it typically has lower first-
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stage emissions than the expected value solution.

To give a sense of where different analyses fall on the above space, the Obama administration

recently announced that benefit-cost analysis of proposed regulations can now include an estimate

of damages from greenhouse gas emissions [25]. The value proposed by the US Interagency Working

Group is $14/t-CO2e, which airs on the conservative side of the literature [24]. One of the largest

uncertainties in climate change economics is how economic damages change as global mean surface

temperatures increase. Most analyses examine market-based damages at a 2.5 degree Celsius

increase over pre-industrial levels and then extrapolate damages at higher temperatures. The

linear damage function point on the figure represents a value from Ackerman and Stanton’s [24]

work, which uses a damage function similar to Nordhaus’ in the famous DICE model. However,

some economists and physical scientists think positive feedbacks will lead to quadratic damages in

temperature. Although the extent of damages is dependent on the exact parameterization of the

function, the value from Ackerman and Stanton [24] implies a VSS of over $100 billion.

Another point of contention is the chosen discount rate for analysis. When dealing with prob-

lems of long timescales like climate change, where damages are highly uncertain and may not

substantially accrue for many generations, the choice of discount rate in a model becomes as much

an ethical, political, and philosophical issue as it is an economic one [27]. Advocates of the descrip-

tive approach to selecting a discount rate contend that an appropriate market interest rate should

be chosen (typically 3 percent). However, the prescriptive approach advocates for a lower discount

rate of about 1.5 percent.13 Incorporating the 1.5 percent discount rate increases the social cost of

carbon, and in the case of the quadratic damage function, the lower discount rate implies a VSS

value of nearly $600 billion.14 The VSS value would be even higher if the later resolution date or

no pre-2030 policy cases are considered.

13If mitigation, like insurance, is most valuable in circumstances that reduce incomes, then the discount
rate should be lower than the risk-free rate of return.

14There is also uncertainty about the climate sensitivity parameter, which measures how much global
temperatures would increase for a doubling in atmospheric CO2 concentration. The social cost of carbon
values when using higher estimates for this parameter are too large to fit onto the chart.

22



5 Conclusions and Future Work

This research examined how uncertainties associated with shale gas will influence deployment of

supply-side technologies in US electricity markets through 2050, particularly in a carbon-constrained

world. Although values for metrics like the VSS and EVPI are small for shale gas development

relative to the abatement stringency uncertainty, there is considerable value to limiting fugitive

methane emissions from shale gas development, which would give the electric sector the flexibility

of waiting to observe the resolution of uncertainties before building new capacity. This analysis

suggests that utilities and shale gas developers would be willing to pay up to $36.3 billion for the

development and deployment of such control technologies.

This result underscores the importance of policies that limit emissions at gas wells. Although

there is uncertainty and heterogeneity surrounding the magnitude of methane leaks, this study

implies that precautionary investments in control technologies and practices that limit emissions

may yield significant economic and environmental benefits. In April 2012, the US Environmental

Protection Agency finalized the first set of federal standards for natural gas wells. These rules, which

establish National Emission Standards for pollutants like methane and New Source Performance

Standards for volatile organic compounds, are a great place to start but a poor place to finish. First,

although the EPA rules would make important strides toward reducing the greenhouse gas footprint

of shale gas, the standards would not eliminate methane emissions from shale production even if

rigorously enforced and may only decrease emissions by one third [28]. Second, the standards do not

call for wells to reach full attainment until 2015, requiring producers that postpone implementation

to flare emissions until the new equipment is installed. Finally, the rules would not require gas

developers to measure or disclose methane emissions data from drilling sites.

The EVPI of $108 billion suggests that information about the stringency of abatement would be

particularly valuable when tight caps are realized. This information would allow utilities to retire

coal and natural gas units early and begin building more new low-carbon generators like nuclear,

wind, and coal with carbon capture. The stochastic solution is especially valuable if no pre-2030

mitigation is assumed, if the uncertainty resolution date is delayed until 2040, or if the social cost
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of carbon is incorporated into the calculations.

Additionally, model results suggest that the influence of shale gas on electric sector investments

depends strongly on the stringency of the federal climate policy as well as on natural gas prices.

The shale gas boom will not impede long-term investments in low-carbon technologies like wind if

a sufficiently stringent climate policy is enacted in the coming decades. However, if policy makers

fail to provide suitable incentives15 for firms to internalize climate-related externalities, utilities

may overinvest in gas-related infrastructure and underinvest in low-carbon technologies relative to

their socially optimal levels.

Future research efforts should calculate how the optimal solution changes if the optimization

problem were reformulated to make social welfare the objective function (instead of system costs)

and if the social cost of carbon were treated as an uncertain parameter (instead of the stringency

of climate policy). Comparing the solution of the social planner’s problem with the stochastic and

expected value solutions for utilities and generators could give important insights regarding the

societal and private costs of suboptimal policies, delayed action, and imperfect policy implementa-

tion. Given the importance of the abatement policy uncertainty, future work should incorporate a

more detailed distribution over abatement stringency to avoid such strong dependence on the offset

price. It should also extend the model to include relevant technological uncertainties and conduct

more expert elicitations for distributions.

15In addition to adopting a climate policy with appropriate levels of timing, stringency, and credibility,
establishing proper incentives requires that non-CO2 gases be included and also that the global-warming
potentials for these gases accurately reflect the latest peer-reviewed research. The 2009 Waxman-Markey
bill [29] uses a GWP of 25 for methane, which reflects the 100-year timescale value used in the IPCC’s Fourth
Assessment Report from 2007. Section 2.2 discusses how this value is smaller than the mean value of 33
from Shindell, et al. (2009).
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