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ABSTRACT 

 

This paper provides evidence on the lead, the contemporaneous and the lagged transmission 

mechanism of extreme shocks across energy products. Our findings reveal a weak leadership of 

crude oil in guiding hedgers against risk that is specific to natural gas whose changes show a 

weak reliance on changes in crude oil. Moreover, our findings are consistent with the competitive 

use of energy products. It follows that substitutability characterizes the relationship between 

heating oil and natural gas when extreme standardized shocks are considered.   
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INTRODUCTION 
 

 large number of studies have investigated how shocks in prices of oil products impact the risk 

transformation on capital markets, the production of goods and services, and the consumption baskets 

(e.g., Ferson and Harvey, 1993; Hooker, 1999; Hamilton, 2003; Hammes and Wills, 2005; and 

Driesprong et al., 2008). Despite this larger number of studies, shocks in oil product are still puzzling and their 

impacts are not well-understood. For instance, Driesprong et al. (2008) found that stock market return underreacts to 

oil shocks. They rationalized this behaviour using the gradual information diffusion argument of Hong and Stein 

(1999). According to the underreaction hypothesis, shocks in prices of oil products may show different patterns 

associated with market perception and investors’ bias.  Surprisingly, few studies have investigated oil shocks for 

what they are. This paper takes this venue. It investigates how shocks are transmitted across a spectrum of oil 

products prices and natural gas price. Understanding how a shock from one oil product price is transmitted to 

another product price can enhance our understanding of the kind of puzzle envisioned by Driesprong et al. (2008).  

Our empirical research ascribes to a strand of studies investigating within the multivariate GARCH model the 

dynamics of volatility spillovers from one oil product to another (e.g, Lee et al., 1995; Ewing et al., 2002; Ng and 

Pirrong, 1996; Pindyck, 2004; Manera et al., 2006; and Lee and Zyren, 2007). However, we differ from these 

studies in the ways we deal with the transmission mechanism. We use a parsimonious procedure to measure the 

contribution of one energy product to another energy product conditional variance. While multivariate GARCH 

models are mostly used in measuring relationships in volatility across assets and markets, they are not always 

suitable in cases where a distinct effect must be isolated, and a broader perspective of spillovers must be 

investigated. Our purpose is better served following augmented GARCH models under which information effects 

are readily examined (e.g., Lamoureux and Lastrapes, 1990; Hwang and Satchell, 2005; Staikouros, 2006; and Han, 

2010).  

 

Our statistical significant results can be given economic contents. For instance, we find that extreme 

standardized shocks in gasoline have reversal leading effects on crude oil, while such a leadership is absent in 

shocks from crude oil to gasoline. It follows that hedgers or speculators can take the opposite position in either 

product to improve on their expected return. Additionally, we find that our results on the relationship between 

natural gas and heating oil are consistent with the competitive use of these products. The two products are linked in 

volatility regarding future, current and past volatility. Overall, our results on spillovers reveal that variation in oil 

products has a greater impact on natural gas, while variation in natural gas has no effect on crude oil and gasoline.  

 

 

A 
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The rest of the paper is organized as follows. The following section presents the econometric analyses and 

the last section gives some concluding remarks.  

 

EMPIRICAL RESULTS 

 

We present in this section the data, describe the variables, present the empirical model, and summarize the 

empirical results.  

 

Data 
 

We use daily spot price data on crude oil, heating oil, gasoline and natural gas obtained from WTRG 

Economics. The sample period is from November 1, 1993 to April 20, 2005 for a total of 2,685 observations. Crude 

oil prices are spot prices of West Texas Intermediate (WTI) in dollars per barrel, natural gas prices are the U.S. 

natural gas wellhead prices in dollars per thousand cubic feet, gasoline prices are New York harbour conventional 

gasoline prices in cents per gallon, and heating oil prices are New York harbour No 2 in cents per gallon. Let itP  be 

the price for , , ,i c g h and n , then its first logarithmic difference i  1lnit it itR P P  . Table (1) reports the 

summary statistics of crude oil price changes denoted as ctR , heating oil price changes denoted as htR , gasoline 

price changes denoted as gtR , and natural gas price changes denoted as ntR , where t  indexes days and monthly, 

respectively.  

 
Table 1: Summary statistics 

 
ctR  gtR  htR  ntR  

100  0.038 0.039 0.037 0.040 
  0.0247 0.0277 0.0274 0.0602 

 l  
-0.200 -0.165 -0.334 -1.273 

 m  
0.181 0.121 0.241 0.875 

sk  -0.388 -0.422 -0.480 -1.510 

ks  6.093 2.087 14.687 107.974 

 itQ r  
98.591* 92.272* 99.494* 476.993* 

 2

itQ r  
367.458* 269.956* 1329.074* 1280.957* 

R
ct

is the crude oil price changes,
 

R
gt  

is the gasoline price
 
changes,

 
R

ht  
is the heating oil price changes (returns), and

 
R

nt  
is the 

natural gas price changes,   is the average,   is the standard deviation, ks is the kurtosis, sk  is the skewness,  l  is the 

minimum,  m  is the maximum,  Q r
it

 is the Ljung-Box statistic at lag 75 for simple returns,
  2Q r

it  
is the Ljung-Box statistic at 

lag 75 for squared returns, and  (*) means significance at 5%. 

 

The daily price change average is about .04% for the four prices but this average is indistinguishable from 

zero, which is not a surprise. Daily price changes are not Gaussian, as the skewness and kurtosis statistics show. 

With a standard deviation of 6.02%, the natural gas price volatility is about two times higher than the price volatility 

of the oil products. Using 252 trading days, the annualized volatility is 39.27%, 43.89%, 43.50%, and 95.50%% for 

crude oil, gasoline, heating oil and natural gas, respectively. Table 1 also shows that linear and squared returns are 

jointly auto-correlated at lag 72. Thus, our empirical models will be guided by these regularities.  
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The empirical model 
 

We assume a Granger-bivariate economic space. We also assume that the covariance between product i  

and j  equals zero. This assumption is consistent with a bivariate GARCH model whose matrix is diagonal. Let itr  

be given by 
1 2

t it itz h  , where 0 1 1 2 1 1 2it i i it i it t i ita a r a e b f b J       , 
1 2

it it itz e h  with 0itEz   and 

2 1itEz  , 1tJ   whenever 
1 2

12t te h   and 0  otherwise, 
tf  is a systematic factor that is crude oil return for the 

refined oil products,   2

1 2 1 1 1it i i i it it i ith d e h         , and 1itd   whenever 0te   and 0 otherwise. 

Thus, under the assumption that the conditional variance includes all information relevant to the price considered, 

the following factor captures excessive shocks in price i  that can spill over to product j ,   

 

1 2

, 1 2

jt jt

ji t jt

it it

e h
J

e h
  . (1) 

 

This factor is simple and intuitive. This simplicity is obtained under the assumption that prices i  and j  are 

perfectly correlated. This is defendable as prices of oil products are shown to be integrated (e.g., Asche et al., 2003). 

Since ,ji t  is a relative measure of information idiosyncrasy, ,ji t could be an indicator of information 

transmission between product i  and j .  From this perspective, ,ji t  plays the role of an information variable as in 

Lamoureux and Lastrapes (1990). By inserting it into a TGARCH(1,1), it captures the transmission of shocks from 

one product to another.   
 

  2

1 2 1 1 1 , 1 , 1 ,0 , , 1 , 1it i i i it it i it ji ji t ji ji t ji ji th d e h                      , (2) 

 

where 0i  , 1 0i  , 2 0i   under asymmetry and 2 0i   under leverage, 3 0i  , 0i  , , 1 0ji    as 

associated with surprises in the leadership, ,0 0ji   as associated with the semi-strong form of information 

efficiency, and , 1 0ji    as associated with the under-reaction hypothesis. Equation (2) could be extended with 

more leads and lags, and additional innovation effects from other oil products.   
 

Equation (2) maximizes all the bivariate possibilities, which are difficult to measure under a bivariate 

GARCH model. For instance, (2) has a lead, a contemporaneous and a lag subset of the information set. A bivariate 

GARCH model is often presented in terms of the weak-form of information efficiency. Nevertheless, we don’t make 

the claim that splitting the information set in this way would guarantee a complete representation of all the elements 

of information set pertaining to the mapping of oil risk. 
 

Findings 
 

We estimate equation (2) assuming that the error term is t-distributed following Wilhelmsson (2006) who 

finds that the t-distribution shows better performance in forecasting. For our case, the t-distribution is justified as 

Table 1 showed that returns are leptokurtic. Table 2 reports the estimates of equation (2) and the mean equation.    
 

We start by giving some statistics on diagnostic tests. We use the distribution and the independence of the 

linear standardized residuals to check on the fitness of our mean equation, which is given in terms of the first order 

autoregressive (AR) term, the first-order moving average (MA) term, a measure for a deterministic jump and a 

measure for pricing effects for refined oil products and natural gas. The Ljung-Box statistic shows that the linear 

standardized residuals are jointly orthogonal at lag 75. However, the standardized residuals are not Gaussian, which 

call for a more sophisticated model. For this paper, we mitigate the leptokurtic effects by estimating the mean and 

the variance equation under the assumption that the error term follows a t-distribution with unknown parameter v. 

Table 2 shows that the shape parameter is quite large, which is an indication of how strong is the deviation of the 
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residuals from Gaussianity. Moreover, we check that the GARCH model fits well the squared innovations. The 

Ljung-Box statistic shows again that the squared standardized residual are orthogonal at lag 75. Thus, our estimates 

are robust to autocorrelation and heteroskedasticity.  

 
Table 2: Bivariate estimates into  a univariate TGARCH model 

 
ctR  gtR  

htR  
ntR  

3

0 10a   
-0.085 0.202 0.341 0.530 

1b   0.786* 0.789* 0.074* 

2b  0.057* -0.007* -0.001 0.001 

1a  0.019 0.972* 0.006 -0.397* 

2a  0.022 -0.997* -0.006 0.457* 

ic   0.020 0.016 0.078 

ig  
0.022  0.018 0.035 

ih  
0.031 0.020  0.039 

in  
0.022 0.020 0.016  

5

, 1 10ic    
 0.005 0.007* -0.130 

5

,0 10ic   
 -0.007 0.026* -0.102* 

5

, 1 10ic    
 0.012 -0.010 -0.088* 

5

, 1 10ig    
-0.033*  0.001 -0.032 

5

,0 10ig   
-0.024  0.005* -0.052 

5

, 1 10ig    
0.045  -0.002 0.081* 

5

, 1 10ih    
-0.035 0.010  -0.068* 

5

,0 10ih   
-0.023 -0.018  0.141* 

5

, 1 10ih    
-0.018 0.007  -0.079* 

5

, 1 10in    
0.005 -0.022 -0.024*  

5

,0 10in   
0.002 -0.014 0.041  

5

, 1 10in    
-0.001 -0.003 -0.027  

v  19.999 9.967 19.999 19.702 

 75 itQ z  
98.478 90.176 72.299 78.512 

 2

75 itQ z  
62.396 88.211 32.968 6.133 

sk  -0.783 0.138 0.872 1.827 

ks  6.541 6.643 9.325 38.142 

0 1 1 2 1 1 2r a a r a e b f b J eit it it it t it       , ~it ve t , 1 2
z e h
it it it
 ,  J z z

it it jt it
  , 1 2

1 2J e h
it it it
  or 1 2

0 2it itJ e hit   ,

   2
1 2 1 1 1 , 1 , 1 ,0 , , 1 , 1

h d e h
it i i i it it i it ji ji t ji ji t ji ji t

               
      

,

 

 1 0.5
1 2ij

         , sk  is the skewness on z
it

, ks  is the 

kurtosis on z
it

, and  75
Q z

it
 and  2

75
Q z

it
 are the Ljung-Box statistics at lag 75, respectively. (*) means significance at 5%. 
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The estimates of Table 2 show that crude oil return enters the pricing equation of refined products 

smoothly. However, crude oil is a weak factor for natural gas. Deterministic jump effects tend to increase the crude 

oil drift, while they tend to decrease the gasoline drift. The GARCH parameters are summarized in terms of the 

unconditional volatility, which is obtained as the square root of  1 21 0.5ij         .   

 

The unconditional volatility shows the contribution of the price product j to that of product i . Four 

worthwhile results are obtained. First standardized extreme shocks in heating oil have the greatest impact on crude 

oil volatility. Second, standardized extreme shocks in crude oil, heating oil and natural gas have neutral effects on 

gasoline volatility. Third, standardized extreme shocks in gasoline have the greatest impact on heating oil volatility. 

Fourth, standardized extreme shocks in crude oil have the greatest impact on natural gas volatility. 

 

The bivariate relationships are given in terms of leadership, contemporaneity and procrastination in , 1ji t , 

,ji t  and , 1ji t , respectively. Table 2 uncovers unidirectional leadership of gasoline inducing reversal change in 

crude oil, which in its turn induces a positive leadership in heating oil. In contrast, there is a bidirectional leadership 

in heating oil and natural gas. In addition to leadership relationships, Table 2 shows that extreme standardized 

shocks in gasoline spill positively over to crude oil variance, those in crude oil spill negatively over to natural gas, 

and those in heating oil spill positively over to natural gas. Furthermore, natural gas reacts with lags to extreme 

standardized shocks in crude oil and gasoline. Finally, it stems from volatility relationships in Table 2 that heating 

oil and natural gas are strongly related in volatility, gasoline and crude oil are weakly related and shocks in crude oil 

do spill over to natural gas.  

 

CONCLUSION 

 

Shocks in prices of oil products and natural gas have shown to impact the stability of most economies. Such 

shocks do also impact the formation and the transformation of risk on capital markets. However, these shocks are 

puzzling in the ways they affect the production tools and the consumption baskets across cities and countries. The 

gradual under-reaction hypothesis is one of the hypotheses explaining why innovations in prices of petroleum 

products may affect stock market with lags. We examine in this paper the mechanisms of shock transmission across 

a spectrum of prices of energy products. We argue that understanding the nature of shock spillovers between such 

prices may reveal the strongest link among these products. Such a link may be a channel by which oil risk is 

transferred to rest of the economy. Our findings support the under-reaction hypothesis looking at the relationship 

between prices of oil products and natural gas.  

 

Our results have two important practical applications. First, the leadership of the price of one product with 

respect to the price of another product may help hedgers in developing the appropriate timing for the termination of 

a future contract. Second, hedgers who are exposed to risk associated with prices of oil products may find it 

beneficial to alter their strategy given the volatility spillovers results which show the nature of such risk as it is 

formed and transformed across products and markets.     
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