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If solar radiation management (SRM) were ever implemented, feedback of the observed1

climate state might be used to adjust the radiative forcing of SRM in order to compensate for2

uncertainty in either the forcing or the climate response. Feedback might also compensate for3

unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. However,4

in addition to the intended response to greenhouse-gas induced changes, the use of feedback5

would also result in a geoengineering response to natural climate variability. We use a box-6

diffusion dynamic model of the climate system to understand how changing the properties7

of the feedback control affect the emergent dynamics of this coupled human-climate system,8

and evaluate these predictions using the HadCM3L general circulation model. In particular,9

some amplification of natural variability is unavoidable; any time delay (e.g., to average out10

natural variability, or due to decision-making) exacerbates this amplification, with oscillatory11

behavior possible if there is a desire for rapid correction (high feedback gain). This is a12

challenge for policy as a delayed response is needed for decision making. Conversely, the13

need for feedback to compensate for uncertainty, combined with a desire to avoid excessive14

amplification of natural variability, results in a limit on how rapidly SRM could respond to15

changes in the observed state of the climate system.
16
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1 Introduction17

Solar Radiation Management (SRM) has been suggested as a possible tool to offset some or18

all of the radiative forcing due to anthropogenic greenhouse gases (GHG) and thus reduce19

the risks of associated climatic changes (Keith, 2000). A negative radiative forcing could20

be introduced, for example, using stratospheric aerosols (Crutzen, 2006) or marine cloud21

brightening (Latham, 1990).
22

A common objection to geoengineering is that we do not understand the climate system23

well enough to contemplate meddling with it. For example, Prinn asks: “How can you24

engineer a system whose behaviour you don’t understand?”1 We agree that ignorance about25

the climate system is a good reason for caution about both geoengineering and continued26

emissions of carbon dioxide. It is not true, however, that we cannot control a system we27

don’t understand. Feedback enables us to control systems that we only partially understand28

and imperfectly measure. From heart pacemakers to aircraft, feedback is routinely used in29

spite of imperfect models. Control theory provides tools to guide the development of such30

control systems. Here we apply control theory to the challenge of using solar goengineering31

to limit climate change despite ignorance about the climate system.
32

If there were no uncertainty in either the radiative forcing or the climate response to this33

forcing, the desired level of solar reduction could be determined without any observations34

of the climate state. However, there will always be uncertainty in the radiative forcing due35

to GHG, the radiative forcing resulting from the application of SRM, and in the different36

(and possibly nonlinear) climate responses to each of these. As a result, predetermining37

the required amount of solar reduction based on a model will not, in general, result in38

the desired outcome. Instead, the SRM forcing could be adjusted to compensate for these39

uncertainties, e.g., in response to the difference between the observed and some target climate40

state. This introduces a new, intentional anthropogenic feedback process into the climate41

system, creating a coupled human-climate system with new dynamics (as in Jarvis et al.,42

2009). Indeed, even if this feedback wasn’t explicitly planned as part of the implementation43

strategy, a prolonged deviation from any agreed upon target climate state could lead to44

a desire to adjust the amount of solar reduction. We avoid here any discussion of what45

governance process might be required to determine a target climate state, and focus only on46

the technical question of how to maintain such a desired target in the presence of uncertainty.47

While feedback of other climate variables might also be used, we focus here on managing the48

global mean temperature. Both the approach and the issues raised are generally applicable.
49

This use of feedback for control has been proposed in Jarvis and Leedal (2012) as a50

modeling aid in geoengineering simulations; Jarvis and Leedal (2012) also introduce the51

idea that feedback would be useful in SRM implementation to manage the associated deep52

uncertainties. Here we use simulations to illustrate the role that feedback might play in SRM53

implementation, and describe the effects of feedback as a function of control parameters. We54

consider a standard “Proportional-Integral” (PI) control algorithm where the amount of55

solar reduction depends on both the difference between the actual and desired global mean56

1A quote attributed to Ron Prinn in Morton (2007)
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temperature and the integral of this error over time; the latter term ensures that the desired57

temperature is maintained in steady state despite uncertainty (shown below in Section 3).58

In addition to exploring how the dynamic behaviour depends on these proportional and59

integral control actions (determined by their respective gains), we also consider the effect of60

time delay. For example, a plausible strategy might be to average the climate observations61

over the previous N years to adjust the strength of solar geoengineering. In addition to62

filtering (smoothing) the observations, this averaging introduces time delay between the63

observation and the feedback response; any additional time required for decision making64

would result in further time delay.
65

A fundamental result from control theory involves the “waterbed effect”, where improv-66

ing the ability of the feedback-control to compensate for variation in one frequency range67

(e.g., to maintain a target temperature despite time-varying GHG forcing) will always result68

in an increased response to any disturbance or variability at other frequencies. This trade-off69

is evident here in the amplification of natural variability. In addition to the desired ability70

to maintain some target despite uncertainty in either the forcing or the response, (i) any71

intentional feedback will necessarily respond to natural climate variability in addition to the72

time-varying GHG forcing; not only will this feedback suppress natural variability at low73

frequencies, but it will amplify the variability at some higher frequencies, and (ii) any time74

delay increases this amplification for given feedback gains (and hence response time), or75

conversely limits the magnitude of the feedback gains that is allowable while still avoiding76

excessive amplification or even instability, described in Section 4 below. There is thus com-77

petition between the objective of steering the climate to the desired target state, and that78

of avoiding spurious response to natural climate variability.
79

The basic concept behind the waterbed limitations is straightforward. The feedback80

needs to “push” the system in the desired direction, but there is a time lag between applying81

a radiative forcing and the resulting climate response. As a result, there is always some82

frequency for which the feedback response to a perturbation will be out-of-phase with the83

intended response – because a time delay means a frequency-dependent phase shift. This84

results in the feedback amplifying natural variability at that frequency, with the potential85

for oscillatory behaviour. The extent of amplification depends on how strongly the feedback86

responds to any deviation between observed and desired climate states, it also depends on87

both how strongly and how quickly the climate responds to the imposed radiative forcing.288

The same limitations apply if the phase lag is due to the thermal inertia of the climate89

system itself, or whatever time delay and lags are introduced through decision-making or90

from the temporal averaging of observations.
91

A static analysis would only predict the steady-state behaviour, and would not capture92

these dynamic (time-dependent) effects. Analysis thus requires a dynamic model that de-93

scribes the transient climate response to time-varying forcing. Here we use a box-diffusion94

model (e.g. Lebedoff, 1988; Morantine and Watts, 1990) to predict the global mean tem-95

2The same oscillatory behavior can be observed if one impatiently adjusts the knobs in an unfamiliar
shower: if there is time delay, then a large response to water that is either too cold or too hot will result in
overcompensation before the system has responded to the current settings. In aircraft, this phenomenon is
referred to as “Pilot-induced oscillation” (PIO).
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perature behavior as a function of feedback parameters. Simulations using the HadCM3L96

fully-coupled AOGCM (Jones, 2003) are then used to evaluate whether the results derived97

using this simple model are sufficient to understand and predict the dynamic behavior result-98

ing from implementing feedback-control of the global mean temperature in a meaningfully99

complex regime. Note that an accurate model of the climate system is not required for100

feedback to be effective at regulating the desired variable.101

Our HadCM3L simulations involve a simple scenario of initiating SRM in year 2040 with102

the goal of returning the global mean temperature to 2020 levels. This is sufficient to illus-103

trate both the ability for feedback-control to achieve the desired goal under uncertainty and104

the inherent trade-off between this objective and the effects on natural variability. However,105

a more realistic implementation scenario for SRM might begin with a small amplitude test-106

ing phase (as in MacMynowski et al., 2011a) followed by a more gradual ramp-up of forcing107

that allows for the evaluation of unintended consequences. Testing might help improve the108

best guess of the required SRM radiative forcing, leading to smaller errors that would require109

feedback compensation.
110

The dynamic model used for design is discussed in Section 2. Section 3 introduces the111

necessary analysis tools to explore the effects described above as a function of feedback pa-112

rameters. The predicted behaviour using PI control is illustrated in Section 4 using the box-113

diffusion model. The predictions are evaluated in a more complex regime using HadCM3L114

simulations in Section 5, including an evaluation of regional temperature and precipitation115

changes, and a brief illustration of managing other variables.116

2 Box-Diffusion Model117

Computing the transient response of a linear system to a time-varying input requires a118

convolution integral in the time domain, but involves only multiplication in the frequency119

domain; equivalently, the Laplace transform converts a differential equation to an algebraic120

one; compare eq. (3) to eqs. (1–2) below. This property is particularly useful in understanding121

coupled (linear) systems, so the analysis of feedback here is most straightforward in the122

frequency-domain. A semi-infinite diffusion model was shown in MacMynowski et al. (2011b)123

to fit the frequency-dependent response of the global mean temperature in HadCM3L over a124

wide range of frequencies; this model also fits the transient response of most of the CMIP5125

models (Caldeira and Myhrvold, 2013).
126

Here we include a surface layer of fixed heat capacity C to better predict the response at127

short time-scales. For a radiative forcing F (t), the surface temperature T (t) and deep ocean128

temperature Td(z, t) satisfy129

C
dT

dt
= F − λT + β

∂Td

∂z

∣

∣

∣

∣

z=0

(1)130

∂Td

∂t
= κ

∂2Td

∂z2
, (2)131

132

with boundary condition Td(0, t) = T (0, t) (taking the top of the deep ocean as z = 0).133
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Here λ describes the natural climate feedback (the change in radiation due to a change in134

surface temperature), C = cρH is the surface layer heat capacity per unit area, κ the thermal135

diffusivity, and β = cρκ for density ρ and specific heat capacity c.
136

This box-diffusion model can be solved using the Laplace transform (as in Lebedoff, 1988;137

Morantine and Watts, 1990, see also Appendix A) to describe the temperature anomaly T (s)138

resulting from a radiative forcing perturbation F (s) by the relationship T (s) = G(s)F (s),139

where s = iω is the Laplace variable, with i =
√
−1, and ω the angular frequency. (We140

do not distinguish here between variables in the time-domain and in the frequency-domain141

except by the argument T (t) or T (s) if it is not otherwise clear from context.) This gives142

G(s) =
T (s)

F (s)
=

1

λ + β(s/κ)1/2 + Cs
(3)143

G(s) is the ratio of the Laplace transform of the response variable T (s) to the input F (s),144

and is referred to as the transfer function between them (e.g. Åström and Murray, 2008;145

Li and Jarvis, 2009; MacMynowski and Tziperman, 2010). Note that G(s) is simply a146

complex number for any ω, with G(0) describing the steady state temperature response to a147

step change in radiative forcing, in this case 1/λ. The magnitude |G(s)| gives the response148

magnitude at each frequency, and the phase of G(s) gives the phase shift between input149

(radiative forcing) and output (temperature). Equation (3) is compared with the calculated150

frequency response from HadCM3L in Fig. 1; the latter was computed by introducing 1%151

sinusoidal variations in solar forcing into the model (MacMynowski et al., 2011b). The152

efficacy of radiative forcing due to solar reductions is less than that due to CO2 (Hansen et al.,153

2005); in this model, the radiative forcing from 2×CO2 (3.7Wm−2; IPCC, 2007) is offset by154

a 2.3% reduction in solar constant (MacMartin et al., 2013). Using this factor to convert the155

solar reduction into radiative forcing, then the best fit to the calculated frequency response156

yields λ = 1.2 Wm−2 K−1, τ = β2/(λ2κ) = 13years, and C = 3.2 × 106 Jm−2 K−1. Note157

that the heat capacity C is only the value needed to correct the high-frequency behaviour158

of the diffusion model and is not intended to represent the heat capacity of the ocean mixed159

layer; most of the mixed layer contribution is already captured in the estimated parameters160

of the diffusion model (Watterson, 2000). As noted, the transient behaviour of most CMIP5161

models is consistent with a semi-infinite diffusion model (i.e., C = 0), indicating that the162

mixed layer in these models does not behave as a single heat capacity with a single distinct163

time constant (Caldeira and Myhrvold, 2013). There are several models that are exceptions164

to this behaviour (e.g., Held et al., 2010). Increasing the heat capacity C would increase165

the phase lag at high frequencies in Fig. 1 and would affect the choice of feedback gains in166

what follows, but not the general conclusions. While this simple model is tuned to match167

HadCM3L, we note in Sec. 4 the effect that model mismatch would have.
168

Natural climate variability d(s) in the global mean temperature can also be included,169

so that T (s) = G(s)F (s) + d(s). The power spectrum of natural climate variability is170

approximately 1/f for frequency f (Fraedrich et al., 2004). The frequency-dependent am-171

plitude spectrum of d(s) is thus similar to the frequency-dependence of eq. (3) as noted in172

MacMynowski et al. (2011b). For illustrative purposes herein, a sufficiently good model of173

the natural climate variability is thus to choose d(s) = G(s)w(s), where w(s) is an uncertain174
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Figure 1: Frequency response G(s) of global mean temperature in response to 1% pertur-
bations in solar forcing calculated for HadCM3L (from MacMynowski et al., 2011b), and
least-squares fit to a box-diffusion model. The direct calculation involved simulations with
sinusoidal variations in solar forcing, and computing the amplitude and phase of the global
mean temperature relative to the forcing at each frequency. Parameters of the best fit to
this data are given in the text.

radiative forcing that is approximately white noise on the time-scales of interest here (annual175

to multi-decadal). The power spectral density of w(s) can be chosen so that the resulting176

spectrum of d(s) approximately matches that of the natural variability (see Fig. 7). Only the177

spectrum of natural variability matters here, and not whether this is a realistic description178

of the mechanism of natural variability.179

Time-domain calculations with this model are given in Appendix A.180

3 Feedback Overview181

A block diagram illustrating the coupled human-climate feedback system is shown in Fig. 2.182

The dynamic system characterized by the transfer function G(s) describes how the global183

mean temperature (or more generally, the variable(s) being controlled) responds to imposed184

radiative forcing F , including the radiative forcing associated with anthropogenic climate185

change Fd, the intentional solar geoengineering component Fs, and the perturbations n186

responsible for natural variability. The solar geoengineering forcing might in general include187

a best estimate F̂ of the radiative forcing required to maintain T = Tref in the presence of188

Fd, as well as the component Fc that corrects for errors in this estimate based on feedback189

of the observed climate state. The dynamic system K(s) describes how the forcing Fc is190
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Figure 2: Block diagram of geoengineering feedback, assuming for simplicity that radiative
forcing from SRM (Fs) and from other sources (Fd) simply add. The radiative forcing
“noise” w can be included to simulate natural climate variability. The climate system is
represented by the transfer function G(s), generating temperature anomaly T in response
to radiative forcing. The system K(s) computes the feedback in response to the deviation
between observed and desired temperature. Also included is a “feedforward” of the best
estimate of the SRM radiative forcing F̂ required to maintain T = Tref in the presence of
the disturbance Fd.

adjusted in response to observed changes; this is the added feedback-control correction.
191

With no feedback (K(s) = 0), the temperature is obtained from the inverse Laplace192

transform of T (s) = G(s)(Fd(s) + F̂ (s) + w(s)). If the dynamics G(s) and the radiative193

forcing Fd(s) are known, then F̂ (s) can be chosen so that T only differs from Tref by natural194

variability, although implementing this would also require certainty in the efficacy of solar195

geoengineering. Given uncertainty, then using the best estimate of F̂ will yield some error196

that could be corrected with feedback; we define Fr = Fd + F̂ as the residual radiative197

forcing due to imperfect estimation of the “feedforward” term F̂ ; this is the component198

that we introduce feedback to compensate for. We focus here on the design and effects of199

the feedback and do not explicitly consider F̂ in our simulations; the simulations are thus200

representative of the feedback action required to correct Fr rather than Fd. A more accurate201

estimate F̂ would lead to smaller requirements on the feedback to correct the residual errors,202

and a correspondingly smaller change in the characteristics of natural variability.203

With feedback, the response is obtained from Fig. 2 by solving the following two equa-204

tions, which are algebraic in the frequency domain:205

T = G(s)(Fd + F̂ + Fc + w) (4)206

Fc = −K(s)(T − Tref) (5)207
208

This gives the temperature error Te relative to the desired temperature (Te = T − Tref), in209

terms of the residual radiative forcing Fr as210

Te =
G(s)

1 + G(s)K(s)
(Fr + w) = Gfb(s)(Fr + w) (6)211
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Note that this is identical to what one would derive statically (Hansen et al., 1984; Roe and212

Baker, 2007), but here G(s) and K(s) represent the dynamics, so that this can be used to213

solve for the transient as well as the steady-state behaviour. Furthermore, K(s) is chosen214

and represents a human feedback system (see below) as opposed to being a property of the215

climate system.216

Now consider the effect of feedback K(s). First, note that if the feedback is chosen217

proportional to the temperature error, Fc = kpTe or K(s) = kp, then from (3),218

Gfb(s) =
1

(λ + kp) + β(s/κ)1/2 + Cs
(7)219

Since 1/λ is the equilibrium climate response without feedback, proportional feedback can be220

understood as simply reducing the climate sensitivity, i.e., reducing the equilibrium climate221

temperature response to an increase in GHG radiative forcing Fd. However, there will222

still be some steady-state temperature error for F̂ %= Fd. One way to see this is to note223

that maintaining non-zero Fc in this case requires non-zero Te = Fc/kp, that is, with only224

proportional feedback, forcing is only applied if there is an error.
225

Next, consider also including a term proportional to the integral of the error since the226

feedback was initiated; the reason for including this will be clear shortly. This integral term227

results in a feedback response to any persistent error:228

Fc(t) = kpTe(t) + ki

∫ t

t0

Te(τ )dτ (8)229

(In our simulations, we implement this feedback with decisions at discrete time intervals,230

Fc(n) = kpTe(n) + ki

n
∑

j=0

Te(j) (9)231

with calculations given in Appendix B, but we present the analysis here in continuous-time232

for simplicity.) Taking the Laplace transform of (8) yields233

K(s) = kp + ki/s (10)234

Substitution into (6) then gives235

Gfb(s) =
s

ki + s(λ + kp + β(s/κ)1/2 + Cs)
(11)236

Recalling that Gfb(0) is the equilibrium climate response, integral feedback results in zero237

error in steady state (Gfb(0) = 0) provided that the resulting system is stable. It is still238

useful to include some amount of proportional control in addition to integral control, as239

described in the next section. In general, a proportional-integral-derivative (PID) structure240

could be useful, however the derivative term is unnecessary here as will be discussed below.241
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The ratio of the response Gfb(s) with feedback to the response Te = G(s)(Fr+w) without242

feedback is defined as the sensitivity function:243

S(s) =
Gfb(s)

G(s)
=

1

1 + G(s)K(s)
(12)244

(This terminology, from engineering, is not to be confused with the “climate sensitivity”245

used to mean the equilibrium response to 2×CO2.) If the product G(s)K(s) is small at some246

frequency, then the sensitivity function will be close to unity (feedback has no effect), while if247

|G(s)K(s)| is large, then the sensitivity will be small (feedback has a significant effect). If at248

some frequency the magnitude |S(s)| > 1, then the feedback amplifies the climate response249

that would have been present without feedback at that frequency. A key result from control250

theory (e.g., Theorem 11.1 in Åström and Murray, 2008) is that for any real system (as251

opposed to idealized cases with the ability to instantaneously respond to observed changes),252

there will always be some frequency region where |S(iω)| > 1 (amplification). Furthermore,253

it can be shown that254
∫

∞

0

log |S(iω)|dω = 0 (13)255

This describes a “waterbed effect”: attenuation in some frequency band must result in am-256

plification in some other frequency band (see Fig. 5; the area corresponding to amplification257

is at least as large as that corresponding to attenuation.)
258

Compensating for uncertainty or changes in anthropogenic climate change can be equiv-259

alently stated as attenuating the effects of radiative forcing. That is, at low frequencies,260

we need |S| < 1 to have smaller temperature error Te than there was without the use of261

feedback; see eq. (6). A more rapid response to differences between desired and actual262

temperature corresponds to a larger frequency range over which there is attenuation. How-263

ever, the feedback acts equally on both the anthropogenic radiative forcing for which it is264

intended to compensate, and on the source of natural climate variability; also in eq. (6).265

Thus equation (13) describes a fundamental trade-off between (i) how rapidly the feedback266

can react to any change in radiative forcing, the climate response to forcing, or goals (de-267

scribed by the frequency range over which there is attenuation, so log |S| < 0), and (ii) how268

much amplification there must be of natural variability in some higher-frequency range (i.e.,269

log |S| > 0). This is true for any feedback law; next, we describe this more concretely for270

proportional-integral (PI) control.
271

This constraint holds for feedback of any variable. If solar geoengineering were adjusted272

to maintain some other variable, then in general G(s) would differ, and thus the appropriate273

choice of K(s) would differ, but the trade-off would remain; see Section 5.
274
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Case ki kp

“High” gain 1.8 1.2
“Low” gain 0.9 0.6

Table 1: Feedback gains used in generating Figures 3–6, and in simulations with HadCM3L
in Section 5. Proportional gain kp has units (% solar)/◦C, while integral gain ki units are
(% solar)/◦C/(year)−1. Note that the word gain describes the ratio between an input and
an output. In Hansen et al. (1984) and Bode (1945), both the ‘input’ and ‘output’ variables
have the same units (e.g., ◦C/◦C in Hansen et al., or V/V for amplifier design) and thus the
gains in those contexts appear to be dimensionless; this is not true in general.
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Figure 3: Sensitivity analysis: the product G(s)K(s) is plotted in the complex plane for
representative choices of feedback gains (“high” gain case in Table 1). The shaded region
indicates sensitivity function larger than one (amplification of natural variability), while any
part of GK outside the shaded region corresponds to attenuation. Amplification increases
closer to the −1 point, which represents the stability boundary. The parametric curves GK
are plotted with zero time delay (unachievable in practice, but would allow no amplification
at any frequency), with decisions every N = 1 year based on average temperature in the
previous year, and with decisions every N = 2 years based on the average temperature
over previous two years. Frequency is not explicit in this plot; the ‘+’ marks correspond to
periods of 4, 8, and 12 years; see also Fig. 4 and 5.
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ranges (right). Panel (a) shows an idealized scenario where the feedback is turned on in
year zero to return the temperature to the target value, with F̂ = 0 for simplicity. Natural
variability is removed for clarity of illustration. Higher gain (solid lines) results in faster
response, but with the potential for overshoot, particularly for longer time delay of N = 2
(red). For N = 2, forcing is updated every two years (indicated by “!”). Panel (b) shows
the high-gain case for N = 2, now including natural variability. Background variability at a
6-7 year period is amplified. Gains are given in Table 1.
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(blue), calculated using the box-diffusion model with imposed white noise radiative forcing to
represent natural variability. The actual variability of the global mean temperature is shown
in red for comparison with the no-feedback case here, estimated from detrended annual
anomalies using NOAA NCDC data from 1880-2011. The power spectral density of the
white noise [w(s) in eq. (4)] is chosen so that the model variability reasonably approximates
the actual spectrum. Only the high-gain case with N = 1 is shown; lower gain results in
less amplification. The ratio of the spectrum with and without feedback is the sensitivity
function shown in Fig. 5.

4 Dependence on feedback parameters
275

The Proportional-Integral (PI) control law is given in eq. (8). More complicated controllers276

are possible; e.g., Jarvis and Leedal (2012) also include learning the uncertain system dy-277

namics from the observed response in order to choose a better feedforward F̂ ; this gradually278

improved estimate reduces the requirements on feedback to correct for errors. However, the279

most important effects of using feedback can be illustrated using PI control.280

In addition to considering how the dynamic behaviour (the response time and the effect281

on natural variability) depend on the feedback gains kp and ki, we also consider the effect of282

time delay. Time delay might result from the time required to reach a decision on altering283

the radiative forcing of solar geoengineering, or from averaging the climate response over284

time with the intent of minimizing the response to natural climate variability. For example,285

a decision to adjust the SRM forcing level could be made every N years, based on the average286

global mean temperature over the previous N years. This means that by the time a decision287

is made, the information used is on average N/2 years old, and on average, the last decision288

was made N/2 years ago, leading to a delay of N years. The Laplace transform of a pure289

time delay of N years is e−Ns, which has unit magnitude but introduces phase lag of ωN290

radians at angular frequency ω = 2πf . The N -year averaging does not have the same effect291

on the behaviour as a pure time delay would; the corresponding Laplace transform is given292

in Appendix B. However the effects are similar, so the phase lag of a time delay can be used293
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to understand the effect of the averaging, and also, the averaging is representative of the294

effects that would arise due to time delays from decision-making or in implementation.
295

First, note that the magnitude of the sensitivity function |S(s)| in eq. (12) is the inverse296

of the distance between the product G(s)K(s) and the point −1. The product G(s)K(s) is297

plotted in Figures 3 and 4 for the “high gain” case in Table 1. The shaded region in Fig. 3298

corresponds to |S(s)| ≥ 1, that is, to amplification of natural variability.
299

From Fig. 3, introducing time delay shifts the curves clockwise (greater phase of the300

complex number GK). For a constant choice of feedback gains, this increases the range of301

frequencies over which the feedback amplifies variability, increases the maximum amplifica-302

tion, and for a sufficiently large delay, will result in instability. This amplification is evident303

in Fig. 5, where the sensitivity function S(iω) is plotted as a function of frequency, both for304

the “high gain” cases in Fig. 3 and the “low gain” cases in Table 1. Reducing feedback gains305

reduces the peak amplification, but results in slower response time to any changes.
306

Figure 6 shows the corresponding response in the time domain. The high gain case307

with N = 2 results in substantial overshoot in response to any sudden change, followed by a308

damped oscillation. In steady-state conditions, the peak at a 6–7 year period in Fig. 5 results309

in significant amplification of natural variability, evident in Fig. 6(b). The corresponding310

power spectra of variability with and without feedback are shown in Fig. 7 from a 1000 year311

time simulation; the ratio of these indeed matches the predicted sensitivity function.
312

From Figure 6(a), higher gain results in more rapid correction of errors between the313

actual and desired climate state; this implies a faster feedback response to any changes in314

anthropogenic radiative forcing, any nonlinear change in the climate response to this forcing,315

or any change in desired target (e.g., if the current target is deemed to be insufficient for some316

reason). However, from Fig. 6(b), or Fig. 5, higher gain also results in higher amplification of317

natural variability. These trade-offs are shown as a function of integral (ki) and proportional318

(kp) gains in Fig. 8, for two different choices of averaging time N .
319

The calculations required to compute Fig. 8 are given in Appendix B. The peak am-320

plification plotted for each choice of ki and kp is the maximum over any frequency of the321

sensitivity function, as in Fig. 5. We define the response time to be the time it takes (see322

e.g. Fig. 6(a)) for the system to reach within 1/e of the target temperature. At high values323

of the integral gain, particularly for N = 2, there is substantial overshoot, and so the time324

it takes before the system stays within 1/e of the target temperature can be longer than it325

would be for smaller integral gain; this region is shaded.
326

Also note that for any given integral gain, the smallest value of the peak amplification327

occurs for some non-zero proportional gain. This can be understood from eq. (10) and Fig. 3.328

At higher frequencies, the phase of kp + ki/s is less negative than the phase of ki/s alone,329

shifting the curves in Fig. 3 away from the point −1 and the shaded region of amplification.330

The added phase is shown more clearly in Fig. 4. This effect is countered by the increased331

magnitude of kp+ki/s relative to ki/s alone; trading off these two effects leads to an optimum332

value of kp for any choice of ki which minimizes peak amplification. Figure 4 can be used333

to design reasonable values of the proportional and integral feedback control gains (see e.g.334

Åström and Murray, 2008). Note that our choices of proportional gain in Table 1 are roughly335
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those that give the minimum peak amplification for a given response time. Finally, note from336

Fig. 4 that it is not necessary here to include the derivative term of a PID control structure.337

Near the frequency where the magnitude |G(s)K(s)| = 1, then G(s) is proportional to s−1/2
338

and with only PI gains, the “slope” of K(s) will be between s−1 and s0. A large derivative339

gain would give a slope of s+1, and the product GK would then be increasing with frequency340

rather than decreasing. A small derivative gain could be useful to compensate for the more341

negative slope of G(s) at high frequencies (and corresponding more negative phase) if the342

surface layer heat capacity C were large.
343

Figure 8 illustrates the trade-offs between response time and peak amplfication. For344

example, to keep peak amplification less than 20%, the minimum possible response time for345

any choice of gains is 3.4 years with N = 1, increasing to 6.3 years with N = 2; for 10%346

amplification, the fastest response time increases to 6.7 or 11 years for N = 1 or N = 2.
347

Finally, one further essential aspect to feedback can also be seen from Fig. 8: an indication348

of how accurately the climate dynamics must be known in order for feedback to be effective.349

Without feedback, if the climate response to either GHG or solar forcing was uncertain by a350

factor of two, then applying the best estimate of the required radiative forcing would result in351

either half or double the desired response. (If both the response to GHG and SRM radiative352

forcing were uncertain by the same amount, the desired result would still be obtained as long353

as the radiative forcings were known.) With feedback, an uncertainty in the effectiveness354

of SRM is equivalent to an uncertainty in the feedback gains, that is, whether G(s) differs355

by a factor of two or K(s) differs by a factor of two, the product GK will still differ by356

the same factor of two, leading to the same change in sensitivity, same change in peak357

amplification, and same change in time constant. For example, a factor of two uncertainty358

in SRM effectiveness might correspond to having intended to use the “low” feedback gains359

in Fig. 8, but the behaviour instead being that of the “high” feedback gains. This leads360

to an uncertainty in the response time, but no change in the steady-state response. This361

robustness to model uncertainty is an important purpose of using feedback. Note that for a362

sufficiently large feedback gain, a further increase might lead to instability. However, there363

is no need to choose gains this large, especially as the peak amplification is quite substantial364

at much lower gain than that which would lead to instability.
365

Summarizing the effects of feedback control choices:366

• Proportional feedback is equivalent to reducing the climate sensitivity; there will still367

be steady-state error in response to uncertain radiative forcing even with feedback.
368

• Including an integral term in the feedback means that, at least in steady-state, the369

error will be zero (as long as the system remains stable).
370

• In addition to the desired effect, feedback will respond to natural climate variability,371

attenuating low frequency variability, but also amplifying variability in some frequency372

ranges.
373

• Any time delay exacerbates the amplification of climate variability, as evidenced from374

Fig. 5.
375
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Figure 8: Contours indicate the dependence of response time (top row, years) and peak
amplification (bottom row) as a function of proportional (kp) and integral (ki) gains, with
units as in Table 1. The left pair of panels correspond to making decisions every N = 1 years
based on the average temperature over the previous year, the right pair correspond to N = 2.
The red (N = 2) and blue (N = 1) squares (“high”) and circles (“low”) correspond to the
gains in Table 1, used in Fig. 3–6, and in HadCM3L simulations. The peak amplification is
the maximum value of the sensitivity function (see e.g. Fig. 5). Response time is defined as
the number of years required to reach within 1/e of a target temperature (see e.g. Fig. 6(a)),
giving an indication of how rapidly the feedback can compensate for errors or changes in
either the forcing, the climate system, or the goal. The response characteristics are not
a simple exponential function of time: for high integral gain, the response oscillates before
converging, particularly for N = 2. The shaded region indicates where this overshoot exceeds
1/e, so the time before the system stays within 1/e of the final value exceeds the response
time given by the contours.
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• Higher integral gain results in both a more rapid response to changes, but also a higher376

amplification of natural variability.
377

• For any given integral gain, there is an optimal choice of proportional gain that mini-378

mizes this amplification.
379

• Uncertainty in the climate response is equivalent, in terms of behaviour, to uncertainty380

in the feedback gains. With appropriately chosen gains, the behaviour with feedback is381

reasonably robust to uncertainty in the magnitude of the climate response to forcing.
382

5 HadCM3L Simulations383

In order to verify that the predictions made above using a simple box-diffusion model of384

the climate are indeed reflective of what might occur in a more complex climate system, we385

simulate the effect of the gain choices in Table 1, with a delay of N = 1 and N = 2 years, in386

the HadCM3L fully coupled atmosphere-ocean general circulation model.
387

This model has resolution of 3.75◦ in longitude by 2.5◦ in latitude in both the atmosphere388

and ocean, with 19 vertical levels in the atmosphere and 20 in the ocean (Jones, 2003). This389

model has been used for simulating SRM (Lunt et al., 2008), for exploring regional effects390

of SRM (Ricke et al., 2010), and for optimizing the spatial/temporal distribution of solar391

reduction in SRM (MacMartin et al., 2013). HadCM3 is a participant in the Geoengineer-392

ing Model Intercomparison Project (GeoMIP; Kravitz et al., 2011); intercomparisons show393

HadCM3 achieves similar results to other AOGCMs in simulating geoengineering by reducing394

the solar constant (Kravitz et al., 2013). Feedback is implemented by (i) simulating one year395

of climate response, (ii) computing the corresponding feedback response to this ‘observed’396

climate state, externally to the GCM, (iii) updating the solar constant, and (iv) restarting397

the GCM simulation for the next year. The actual time it would take for the solar forcing to398

be changed is not considered here; if geoengineering were implemented using stratospheric399

aerosols, for example, this might take several months at least, while changes to marine cloud400

brightening could likely be made much more rapidly.401

The model is forced with RCP4.5 concentrations (Meinshausen et al., 2011). Feedback402

is initiated in year 2040, with the goal of returning the global mean temperature to the403

same value as in 2020; this introduces an initial step in the desired climate state. We are404

not arguing for this particular implementation scenario, but simply using this scenario to405

describe how feedback might be used and what its effects could be.406

The global mean temperature response with feedback is shown in Fig. 9, using the same407

gains chosen for the box-diffusion model (Table 1), and F̂ = 0 for simplicity. In all four408

cases, the feedback indeed results in convergence of the global mean temperature to the409

desired value, with the higher gains leading to more rapid convergence. However, as expected410

from Fig. 6(b), with N = 2 and higher gains, this coupled human-climate system oscillates411

about the desired reference temperature, with colder periods resulting in a desire for less412

solar reduction, but by the time that reduction is in effect, the temperature is too warm,413

resulting in a desire for more solar reduction, and so forth. The temperature response to414
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this variation is larger over land than over oceans as shown in Fig. 10 (see also Sutton et al.,415

2007; MacMynowski et al., 2011b); other climate variables also respond to this time-varying416

solar reduction.417

The HadCM3L simulations were continued until 2500 to provide a longer time-record418

for assessing the change in climate variability. The sensitivity function (ratio of amplitude419

spectrum with feedback to that without) corresponding to the same four cases are shown420

in Fig. 11, along with the predictions made using the box-diffusion model in Fig. 5. In all421

cases, despite the added complexity, the dynamic behaviour of the coupled human-climate422

feedback system in HadCM3L is well captured by the predictions made using the simple423

box-diffusion model. The feedback-control allows the target global mean temperature to be424

reached without requiring any knowledge of the GHG radiative forcing, the relative efficacy425

of solar reductions, nor details of the climate model beyond the box-diffusion model that426

was used to choose reasonable values for the feedback gains.
427

Figure 12 illustrates that using solar reductions to maintain the global mean temperature428

in the presence of greenhouse gas forcing also reduces regional temperature anomalies, as429

expected from previous studies (e.g., Govindasamy and Caldeira, 2000; Moreno-Cruz et al.,430

2011). The root-mean-square (rms) difference between the 2080–2100 average temperature431

and the 2020 target value (averaging years 2010–2030) is 0.4◦C with the solar reduction,432

compared to 1.6◦C without. The rms difference in precipitation over land relative to the433

2020 target also decreases when the solar reduction is adjusted to maintain global mean434

temperature, although the reductions are more modest (from 0.14m/yr to 0.08m/yr; a 40%435

decrease). These temperature and precipitation residuals are not associated with the use of436

feedback, but result from the fact that spatially-uniform solar reductions do not yield the437

same pattern of climate change as greenhouse-gases. A non-uniform solar reduction could438

reduce these residuals (MacMartin et al., 2013).
439

Feedback could also be used to manage variables other than the global mean temperature.440

Figure 13 shows an example using feedback of land-averaged precipitation. This is not441

intended to be a realistic target, but it illustrates that higher variability does not limit the442

use of feedback. Both the spectrum of natural variability and the transfer function G(s) have443

only a weak dependence on frequency for this variable (MacMynowski et al., 2011a,b). The444

phase lag from G(s) is thus small, and choosing only integral control ensures that the total445

phase of the product GK remains near −90◦, and the curve GK remains far from the point446

−1 (see Fig. 3). The remaining analysis is similar to feedback-control of temperature: the447

sensitivity function can be estimated, and has characteristics similar to Fig. 5, including the448

amplification of natural variability in some frequency range, and the “waterbed” effect where449

increasing the rejection in some part of the frequency band results in increased amplification450

at some other frequencies. The solar reduction computed by the feedback algorithm depends451

on both Fr (the “signal”) and w (the “noise”). Because the signal-to-noise ratio is lower452

for this variable than for temperature, either there will be larger variability in the desired453

solar reduction, or lower gains will be required, resulting in slower compensation of changes.454

As Fig. 13 shows, it is possible to maintain the average value of a “noisy” variable like455

precipitation without introducing comparable variations in the desired solar reduction. The456
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Figure 9: Simulation results from HadCM3L for two different choices of feedback gains
(higher gain for upper plots, lower gain for lower plots), and for N = 1 (left) and N = 2 .

high inter-annual variability evident in the top panel of Fig. 13 is averaged by the integral457

action of the feedback-controller.458

6 Conclusions459

Some form of solar geoengineering may eventually be considered as a possible element of460

a strategy to minimize climate change risks. The amount of solar reduction in any solar461

geoengineering scheme would need to be adjusted in response to the observed climate in order462

to meet any specific objective. Even if feedback was not explicitly planned as part of the463

implementation strategy, some feedback would be almost inevitable as the implementation464

of SRM is inherently sequential – there is an implicit repeated decision to be made about the465

level of replenishment of the SRM forcing, and this decision will unavoidably be influenced466

by the climate response.467

This feedback would compensate for inevitable uncertainty in the climate system dynam-468

ics including equilibrium climate sensitivity, the radiative forcing due to greenhouse gases,469

and the radiative forcing due to the application of SRM. However, in addition to this de-470
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Figure 10: Temperature pattern associated with the near-oscillatory variability in Fig. 9b
and 11b. A composite map is created by averaging the temperature distribution during
years where the oscillation reaches its maximum temperatures, and a similar composite map
created for years of minimum temperature; the difference between these is plotted. The
dominant temperature response to this frequency of solar forcing is over land.

sired effect, this feedback would also react to natural climate variability, attenuating it at471

low frequencies, but amplifying it at higher frequencies. This attenuation/amplification is472

unavoidable, with the peak amplification depending on the choice of gains, and exacerbated473

by any time delay introduced into the feedback implementation. The frequency of peak am-474

plification depends on the dynamics of the climate response, the time delay, and the choices475

of feedback gains (e.g., the peak is at a 5–10 year period for the models and range of pa-476

rameter choices simulated here). The effect that these changes in natural variability might477

have on humans or ecosystems is unknown, but policy regimes would want to minimize such478

effects, at the very least to avoid introducing unnecessary solar reductions.
479

The amplification of natural variability can be minimized by first choosing the best guess480

for the level of solar reduction required to achieve the desired climate response (thus mini-481

mizing the compensation required by feedback), and second, by minimizing any time delay482

between changes in the climate and the corresponding feedback response. While possibly483

counter-intuitive, the amplification of natural variability is minimized not by averaging over484

longer time periods before making a decision, but by adjusting the solar reduction more485

often: the desired averaging is already incorporated within the integral control of the feed-486

back algorithm, and additional averaging only increases the delay between observing and487

responding to climate changes. This result highlights the policy challenges of SRM as the488

narrow technical requirements for effective feedback control may be incompatible with po-489

litical requirements for a stable decision-making process that is able to gain legitimacy, as490

such a process may require substantial time delay.491

The effect of changing the feedback-control gains by a factor of two is to change both492

the rate of convergence and the degree of amplification of natural variability. However,493

for appropriately chosen gains, the system will still converge to the desired target state. A494
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Figure 11: Sensitivity function computed from HadCM3L simulation results and compared
with predictions (red) for the same gain cases as in Fig. 9. The power spectrum of global
mean temperature is computed both without SRM and with feedback regulation of SRM;
the sensitivity is the ratio of the amplitude spectra.
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Figure 12: Regional temperature (left, ◦C) and precipitation (right, m/yr) averaged over
years 2080–2100 relative to the average over 2010–2030, without solar geoengineering (top
row) and with geoengineering that uses feedback to maintain the global mean temperature at
2020 levels (bottom row). The temperature change is non-zero everywhere despite the global
mean change being small (0.06◦C), however the temperature changes are significantly smaller
compared to those without geoengineering. Solar reductions are less effective at compen-
sating the precipitation changes that result from increased greenhouse gas concentrations.
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Figure 13: Using feedback starting in 2040 to return land-average precipitation to its 2020
value in HadCM3L. The upper plot shows the precipitation with and without solar reduction,
the lower plot shows the corresponding solar reduction determined by the feedback algorithm.

consequence of this is that one could be significantly wrong about the dynamics of the system495

and still achieve the desired result; that is, the use of SRM need not require a good model496

of the climate if feedback is used to manage the amount of solar reduction.497

We have used feedback of the global mean temperature to illustrate the dynamic effects498

introduced by using feedback. All of these conclusions would apply regardless of what vari-499

able was being controlled, although there may be smaller signal to noise ratio and larger500

model uncertainty associated with some variables such as precipitation. Controlling the501

global mean temperature also does not give a spatially-uniform temperature response. Mul-502

tiple objectives, including regional goals, might be simultaneously maintained by adjusting503

the spatial and/or temporal distribution of solar reduction as in MacMartin et al. (2013);504

this would lead to a multivariable control structure.505

More complex feedback algorithms may be appropriate. An adaptive algorithm as in506

Jarvis and Leedal (2012) could better estimate model parameters to adjust F̂ and minimize507

the need for feedback (i.e., by reducing the uncertainty). Model predictive (or receding-508

horizon) control could adjust forcing levels using a more complicated model including any509

known nonlinear effects as well as the linear dynamics considered here, including predictions510

of future emissions, and including constraints on solar reduction or its rate of change. While511

these algorithms might improve the compensation of anthropogenic climate change, the512

fundamental constraints described here will still hold. Acting on the observed state with513

any form of control enables one to partially overcome the effects of uncertainty, but at the514

cost of amplifying variability.
515
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K. J. Åström and R. M. Murray. Analysis and Design of Feedback Systems. Princeton, 2008.
522

H. W. Bode. Network analysis and feedback amplifier design. Van Nostrand, New York,523

1945.524

K. Caldeira and N. Myhrvold. Time scale of thermal response of an abrupt change in525

atmospheric CO2 content in CMIP5 simulations. submitted, 2013.
526

P. J. Crutzen. Albedo enhancement by stratospheric sulfur injections: A contribution to527

resolve a policy dilemma? Climatic Change, 77:211–219, 2006.
528

K. Fraedrich, U. Luksch, and R. Blender. 1/f model for long-time memory of the ocean529

surface temperature. Phys. Rev. E, 70(037301), 2004.
530

G. F. Franklin, J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems.531

Addison-Wesley, 1997.532

B. Govindasamy and K. Caldeira. Geoengineering Earth’s radiation balance to mitigate533

CO2-induced climate change. Geophys. Res. Lett., 27:2141–2144, 2000.534

J. Hansen, A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner.535

Climate sensitivity: Analysis of feedback mechanisms. In Climate Processes and Climate536

Sensitivity, volume 29 of Geophysical Monograph, pages 130–163. Am. Geophys. Union,537

1984.538

J. Hansen et al. Efficacy of climate forcings. J. Geophys. Res., 110(D18104), 2005.
539

I. M. Held, M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. VK. Vallis. Probing540

the fast and slow components of global warming by returning abruptly to preindustrial541

forcing. J. Climate, 23:2418–2427, 2010.542

IPCC. Climate change 2007: The physical science basis. Contribution of Working Group543

I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,544

2007.545

A. Jarvis and D. Leedal. The Geoengineering Model Intercomparison Project (GeoMIP): A546

control perspective. Atm. Sci. Lett., 13:157–163, 2012.547

24



A. Jarvis, D. Leedal, C. J. Taylor, and P. Young. Stabilizing global mean surface temperature:548

A feedback control perspective. Env. Mod. & Software, 24:665–674, 2009.
549

C. Jones. A fast ocean GCM without flux adjustments. J. Atm. Oceanic Tech., 20:1857–1868,550

2003.551

D. Keith. Geoengineering the climate: History and prospect. Annual Rev. Energy Environ.,552

25:245–284, 2000.553

B. Kravitz, A. Robock, O. Boucher, H. Schmidt, K. E. Taylor, G. Stenchikov, and M. Schulz.554

The Geoengineering Model Intercomparison Project (GeoMIP). Atm. Sci. Lett., 12:162–555

167, 2011.
556

B. Kravitz, Ken Caldeira, Olivier Boucher, Alan Robock, Philip J. Rasch, , Kari Alterskjær,557

Diana Bou Karam, Jason N. S. Cole, Charles L. Curry, James M. Haywood, Peter J.558

Irvine, Duoying Ji, Andy Jones, Daniel J. Lunt, J. Egill Kristjánsson, John Moore, Ul-559

rike Niemeier, Hauke Schmidt, Michael Schulz, Balwinder Singh, Simone Tilmes, Shingo560

Watanabe, Shuting Yang, and Jin-Ho Yoon. Climate model response from the Geoengi-561

neering Model Intercomparison Project (GeoMIP). submitted, J. Geophys. Res., 2013.
562

J. Latham. Control of global warming? Nature, 347:339–340, 1990.
563

S. A. Lebedoff. Analytic solution of the box diffusion model for a global ocean. J. Geophys.564

Res., 93(D11), 1988.
565

S. Li and A. Jarvis. Long run surface temperature dynamics of an A-OGCM: the HadCM3566

4×CO2 forcing experiment revisited. Climate Dynamics, 33:817–825, 2009.
567

D. J. Lunt, A. Ridgwell, P. J. Valdes, and A. Seale. “Sunshade World”: A fully coupled568

GCM evaluation of the climatic impacts of geoengineering. Geophys. Res. Lett, 35, 2008.569

L12710.570

D. G. MacMartin, D. W. Keith, B. Kravitz, and K. Caldeira. Management of trade-offs in571

geoengineering through optimal choice of non-uniform radiative forcing. Nature Climate572

Change, 2013.
573

D. G. MacMynowski and E. Tziperman. Testing and improving ENSO models by process574

rather than by output, using transfer functions. Geophy. Res. Letters, 37(L19701), 2010.
575

D. G. MacMynowski, D. W. Keith, K. Caldeira, and H.-J. Shin. Can we test geoengineering?576

Energy Environ. Sci., 2011a.
577

D. G. MacMynowski, H.-J. Shin, and K. Caldeira. The frequency response of temperature578

and precipitation in a climate model. Geophys. Res. Lett., 38, 2011b. L16711.
579

25



M. Meinshausen, S. J. Smith, K. V. Calvin, J. S. Daniel, M. L. T. Kainuma, J.-F. Lamarque,580

K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. M. Thomson, G. J. M. Velders,581

and D. van Vuuren. The RCP greenhouse gas concentrations and their extension from582

1765 to 2300. Climatic Change, 2011.
583

M. Morantine and R. G. Watts. Upwelling diffusion climate models: Analytical solutions for584

radiative and upwelling forcing. J. Geophys. Res., 95(D6):7563–7571, 1990.
585

J. Moreno-Cruz, K. Ricke, and D. W. Keith. A simple model to account for regional in-586

equalities in the effectiveness of solar radiation management. Climatic Change, 110(3-4):587

649–668, 2011. doi: DOI 10.1007/s10584-011-0103-z.
588

O. Morton. Climate change: Is this what it takes to save the world? Nature, 447:132–136,589

2007.590

K. L. Ricke, M. Granger Morgan, and M. R. Allen. Regional climate response to solar-591

radiation management. Nature Geoscience, 3:537–541, 2010.
592

G. H. Roe and M. B. Baker. Why is climate sensitivity so unpredictable? Science, 318:593

629–632, 2007.
594

R. T. Sutton, B. Dong, and J. M. Gregory. Land/sea warming ratio in response to climate595

change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett.,596

34(L02701), 2007.
597

I. G. Watterson. Interpretation of simulated global warming using a simple model. J.598

Climate, 13:202–215, 2000.599

A Time-domain calculations with box-diffusion model600

Equations (1–2) can be solved using the Laplace transform. From (2), the temperature in601

the deep ocean satisfies602

Td(s, z) = M(s)e−
√

s/κz (A-1)603

for some function M(s), where s is the Laplace variable. Subtituting this into the Laplace604

transform of (1) and solving for M yields (3).
605

From Laplace transform tables, the response of a semi-infinite diffusion model (eq. (3)606

with C = 0) to a unit step change in radiative forcing at t = 0 is607

gsd(t) =
1

λ

(

1 − et/τ erfc(
√

t/τ )
)

(A-2)608

where erfc denotes the complementary error function. With the surface layer, included, the609

step response can be obtained by first factoring G(s) in eq. (3) as610

G(s) =
1/ξ√
s + b

−
1/ξ√
s + a

(A-3)611
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similar to the derivation in Lebedoff (1988) or Morantine and Watts (1990), where we intro-612

duce613

ξ =
√

β2/κ − 4Cλ = λ
√

τ − 4C/λ (A-4)614

and a, b = (β/
√

κ± ξ)/(2C) satisfying (aξ)−1 − (bξ)−1 = λ−1. As in (A-2), the step response615

is then616

gbd(t) = 1/λ − 1/(bξ)eb2t erfc(b
√

t) + 1/(aξ)ea2t erfc(a
√

t) (A-5)617

For 4C ) λτ as here, then a2 ' λ2τ/C2 and b2 ' 1/τ , and the first two terms in eq. (A-618

5) are approximately the same as the step response of the semi-infinite diffusion model in619

eq. (A-2), while the final term provides a correction for small t/τ . In calculating this final620

term, note that for a
√

t & 1 then621

ea2t erfc(a
√

t) '
(2/

√
π)

(a
√

t +
√

a2t + 2)
(A-6)622

The simulations here consider only the average temperature over each year. For semi-623

infinite diffusion, the average temperature in the nth year after a step change in radiative624

forcing is625

∫ t=n

t=n−1

gsd(t)dt =
1

λ
− 1

λ

(

2
√

τ t/π + τet/τ erfc(
√

t/τ )
)n

n−1
(A-7)626

=
1

λ
[1 − q(τ 2; n)] (A-8)627

628

where this defines the function q(a; n). Then for the box-diffusion model,629

h(n) =

∫ t=n

t=n−1

gbd(t)dt =
1

λ
+

1

ξ

[

q(a; n)

a
− q(b; n)

b

]

(A-9)630

Simulations here also assume that the radiative forcing is held constant over each year. Given631

a sequence of forcings f(k) applied during year k, then since the sequence h(n) gives the632

annual-average temperatures due to a unit step forcing starting at k = 0, the temperature633

response to the sequence f(k) can be expressed as634

T (n) =
n

∑

k=1

h(k)f(n − k) =
n−1
∑

k=0

h(n − k)f(k) (A-10)635

B Frequency-domain calculations
636

The dynamic response of the climate system with feedback, shown in Figs. 5–8, can be637

understood and an approximate prediction made using G(s) in eq. (3), K(s) in eq. (10), and638

approximating the effects of the N -year averaging with the Laplace transform of a pure time639

delay, e−Ns (obtained from the Laplace transform of ỹ(t) = y(t −N)).
640
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However, more accurate calculations of the frequency response requires taking into ac-641

count that updates of solar forcing are only made at discrete time-intervals, not as a con-642

tinuous function of time. The feedback system including this detail is shown in Fig. 14,643

where the block G(s) describes the continuous-time evolution of the climate response to644

forcing as before, A(s) represents the averaging of the output over the past N years, which is645

then sampled every N years, and Z(s) is a “zero-order hold” that describes the assumption646

that the solar reduction computed at every N -year decision point is held constant over the647

subsequent N years. The discrete-time PI control law648

u(k) = kpy(k) + ki

n=k
∑

n=0

y(n) (B-1)649

is represented by its z-transform, K(z). Analysis details can be found in any discrete-time650

controls textbook (e.g. Franklin et al., 1997); here we simply provide the required formulae651

used in computing the results herein.
652

For frequencies less than the Nyquist frequency (half the sampling rate), then the Laplace653

transform of the discrete-time control law K(z) can be obtained by setting z = eNs, yielding654

K(s) = kp + ki
N

1 − e−Ns
(B-2)655

The Laplace transform of the N -year averaging process is656

A(s) =
1 − e−Ns

Ns
(B-3)657

which is used in all calculations here, and at frequencies small compared to 1/N , behaves658

similarly to a pure time delay of N/2 years. Maintaining a constant value of the applied659

radiative forcing for N years (a zero-order-hold) yields Z(s) = A(s), so that A(s)Z(s) has660

an effect similar to that of an N -year time delay.661

Finally, note that sampling the continuous-time system Gaz(s) = Z(s)G(s)A(s) at N -year662

intervals results in aliasing. That is, temperature variations with frequency f and variations663

at frequency 1/N − f are indistinguishable in the sampled signal. (There are an infinite664

sequence of indistinguishable frequencies, but only the first is significant in predicting the665

response.) Thus at frequencies below the Nyquist frequency, the system Gs(s) within the666

dashed lines of Fig. 14 is approximately667

Gs(iω) = Gaz(iω) + Gaz(2π/N − iω) (B-4)668

= Gaz(iω) + G∗

az(iω − 2π/N) (B-5)669
670

with (·)∗ denoting complex-conjugate. The loop transfer function in Figs. 3 and 4 and the671

subsequent calculations of the sensitivity function are obtained using K(s) in (B-2) and672

Gs(s) in (B-5), where the latter depends not only on G(s) in (3) but also on A(s) and Z(s)673

in (B-3).
674
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Figure 14: Block diagram of geoengineering feedback, as in Figure 2, but with additional
detail required for accurately predicting dynamics. The response of the climate system
G(s) is averaged over the previous N years [A(s)], sampled, and the actual feedback law
implemented in discrete-time [K(z)] rather than continuous-time. The desired SRM forcing
at each discrete decision point in time is assumed to be held constant for the next N years,
until the next sample is made. The system within the dashed box is sampled, resulting in
aliasing.
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