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The rapid replacement of coal by cheaper and cleaner natural gas has helped drive
emissions down in the United States more than in any other country in the world in
recent years. Cheap natural gas is crushing domestic demand for coal and is the main
reason for the rapid decline in US carbon emissions. The gas revolution offers a way
for the United States and other nations to replace coal burning while accelerating the
transition to zero-carbon energy.

In the United States, coal-powered electricity went from 50 to 37 percent of the gener-
ation mix between 2007 and 2012, with the bulk of it replaced by natural gas. Energy
transitions typically take many decades to occur, and the evidence suggests that the
natural gas revolution is still in its infancy. The successful combination of new drilling,
hydraulic fracturing (“fracking”), and underground mapping technologies to cheaply
extract gas from shale and other unconventional rock formations has the potential to
be as disruptive as past energy technology revolutions — and as beneficial to humans
and our natural environment. 

This report reviews the evidence and finds that natural gas is a net environmental ben-
efit at local, regional, national, and global levels. In recent years, the rapid expansion
of natural gas production has provoked legitimate local concerns about noise, air,
water, and methane pollution that should and can be addressed. But the evidence is
strong that natural gas is a coal killer, brings improved air quality and reduced green-
house gas emissions, and can aid rather obstruct the development and deployment of
zero-carbon energies. 

The coal-to-gas switch is not inevitable. Concerns about the environmental impacts of
natural gas have kept shale fracking out of New York State and resulted in opposition
to expanded natural gas production around the country. Gas production levels flat-
tened in response to low prices; more recently, as such unsustainably low prices have
risen, coal has regained some of its lost share in the energy mix. American policy -
makers will make a series of decisions that directly affect the pace of the global and
American transition to natural gas. These decisions should be made with an eye to
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reducing the negative side effects of gas production, increasing production and
consumption  of gas, and reducing the production and consumption of coal — 
three goals that are consonant with both improved environmental quality and eco -
nomic growth. 

This report evaluates the key claims and counter-claims made about the environ -
mental impact of natural gas production, and comes to the following conclusions.

1. The climate benefits of natural gas are real and are significant. Recent lifecycle
assessments studies confirm that natural gas has just half as much global warming
potential as coal. The evidence suggests that the lower carbon intensity of natural gas
far outweighs the warming caused by today’s level of methane leakage. Methane is
about 20 times more potent as a greenhouse gas than CO2 on a 100-year basis, and
about 70 times more potent on a 20-year basis. Early estimates of methane leakage at
levels approaching 7 percent were outliers, and the best estimates of average leakage
rates range between 1 and 2 percent. Additionally, methane leakage can be managed
and will continue to decline as stricter state regulations enter into force and as the
industry moves toward better well completion practices, better compliance with other
best practices, and continued technological innovation.

It is not the case that reduced US coal consumption has been offset by increased
exports of US coal. From 2008 to 2012, annual coal consumption for US electric power
declined, on average, by 50 million tons. Over the same four years, annual exports
increased by only 14.5 million tons on average.

2. Cheap gas helps rather than undermines the development and deployment of zero-

carbon energy sources like solar and wind, and does not significantly add to the chal-

lenges facing the nuclear power industry. The deployment and overall develop ment of
many zero-carbon energy sources — including solar, wind, and nuclear — depends
primarily on public policies such as mandates and subsidies, not on the price of natu-
ral gas.
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Rather than being opposed by natural gas, intermittent renewables like solar and wind
depend on flexible generation to balance the variability that they introduce into the
grid. Natural gas–fired power plants are ideally suited to this task. At present there are
few scalable and inexpensive grid-scale storage options, which is why flexible, gas-
fired power plants are critical to integrating large volumes of variable solar and wind
farms. The corollary to this is that renewables tend not to displace nonvariable base -
load sources of energy like coal and nuclear, more often replacing natural gas. If it
weren’t for natural gas’ flexible generation, renewables would have far less value as
increasing contributors to the electricity grid.

The nuclear power industry has long faced numerous unique obstacles, including a
complex regulatory process, lengthy construction times, high capital costs, frequent
cost overruns, and public skepticism. The challenges faced by the nuclear industry,
especially the building of new plants, are made marginally more difficult by the ongo-
ing natural gas revolution. However, gas’s impacts on nuclear pale in comparison to 
its impacts on coal, and the long-term imperatives for nuclear power — technological
innovation, modularization and standardization of design, and cost reduction — are
not changed by the arrival of cheap natural gas.

With much of the world’s fossil resources expected to be extracted and burned in the
coming decades, experts agree that carbon capture technologies will prove to be an
essential component of technological portfolios to mitigate climate change. While car-
bon capture and sequestration technologies (CCS) are often considered in the context
of new and existing coal-fired power, there are reasons to expect that CCS will be
more easily developed and deployed with natural gas plants. The cleaner stream of
emissions from natural gas combustion and the lower capital costs of gas plants make
CCS retrofits and demonstrations attractive options for carbon mitigation.

The claim that new natural gas plants are a “sunk investment” and slow the transition
to zero-carbon energy sources is undermined by the low-capital costs of gas electrici-
ty. The capital costs of new coal, nuclear, and renewable (wind, solar, geothermal, and
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biomass) power plants are typically several times greater than those of gas plants.1 In
contrast to these other sources, the greatest cost of natural gas is the fuel, not the
equipment. Variable operation and fuel costs can be as much as 70 per cent of the
total levelized cost of a natural gas power plant. By comparison, variable costs for new
coal and nuclear plants are, respectively, only about 30 percent and 10 percent of the
total levelized cost.2

Finally, the low prices created by the shale gas revolution have generated more than
$100 billion in energy cost savings every year since at least 2009,3 giving strong
justifi cation to critical subsidies and R&D investments by the Department of Energy
starting in the early 1970s. The unconventional gas boom also generated $31 billion in
state and federal revenues in 2012, revenues which are expected to grow to over $55
billion by 2025.4 By 2015, the additional wealth added to the American economy by
the shale gas revolution will alone have exceeded the cost of all federal energy subsi-
dies between 1950 and 2012.5

3. Natural gas production generally and shale fracturing specifically have a far smaller

impact on mortality and disease, landscapes, waterways, air pollution, and local

communities than coal mining and coal burning. This is not to say that there are no
real hardships experienced by communities and individuals or negative environmental
impacts from the expansion of natural gas production. There are, and they should be
proactively confronted. But making a normative judgment about energy policy requires
asking whether the impacts of gas production are more or less than the impacts of the
fuel it is replacing, principally coal. 

The environmental and community impacts of shale fracking are reliably far more
modest than those created by coal mining and production. Whereas coal mining
removes entire mountains and contaminates streams with hazardous waste, natural
gas drill pads occupy only a few hundred square feet, and there are only a handful of
cases of groundwater contamination by fracking chemicals. Whereas innovation in coal
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mining resulted in greater landscape degradation, innovation in gas fracking has
resulted in less-toxic fracking chemicals, fewer drill pads, and better drilling practices. 

Accelerating the shift from coal to natural gas should be one of the highest energy
policy priorities of policymakers and the public. The revolution in shale fracturing and
mapping technologies opens up the possibility for developed and developing countries
alike to radically reduce consumption of coal in ways that accelerate rather than slow
economic growth. Natural gas that is cheaper than coal makes it easier for the
Environmental Protection Agency to impose more-stringent air pollution regulations on
coal power plants. And cheap natural gas boosts higher rates of economic growth and
national wealth to invest in developing its eventual zero-carbon replacements.

R ecommendat ions :

1. Accelerate the coal-to-gas shift in the United States. Better state regulations and
industry oversight should be encouraged to continuously improve the environmental
performance of gas drilling, and to address public concerns about pollution and noise.
Such efforts will help lay the groundwork for expanded natural gas production on
public and private lands. Policymakers should also support the export of liquefied nat-
ural gas, which will provide greater price stability, helping the industry avoid the
boom-bust cycle that stalled gas production in 2012. Policymakers should also con-
sider including natural gas in any future clean energy standards. 

2. Reduce coal consumption and coal exports. The Obama administration should pursue
stronger pollution and carbon dioxide regulations to make coal increasingly expensive
and incentivize the switch to natural gas. Policymakers should support policies that
would leave US coal in the ground, rather than mining it for export to Europe and Asia.
There will be no net environmental benefit if all of the coal that the US was going to
burn for its domestic electricity is exported abroad. US policymakers could reduce
global coal supplies and encourage gas production by restricting and eventually halt-
ing all US coal exports.
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3. Export natural gas technologies to coal-dependent countries. The US and global
development institutions should promote gas exploration in other countries in ways
that accelerate economic development and improve local environmental quality. Such
an effort would align United Nations energy access goals with US and international cli-
mate goals. It would help China, India, South Africa, and other developing nations to
reduce air pollution and meet growing energy demand. And it would help diversify the
number of energy exporters around the globe, reducing some of the geopolitical risks
associated with geographically disproportionate energy reserves.

4. Pay it forward. The shale gas revolution has contributed more than $100 billion to the
economy every year since 2009 in the form of lower energy prices. Within five years
the economic benefits from shale gas alone will pay for all US energy subsidies since
1950. The critical role that US subsidies played in enabling the shale gas revolution,
and its extraordinary economic benefits, suggests that policymakers should make
long-term investments in innovation of renewables and nuclear energy. The rapid gas
revolution in the United States demonstrates the effects of sustained public-private
technology investments, providing a model of a successful energy transition for zero-
carbon options like renewables and nuclear.
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The global consumption of coal for industrial power and electricity quickened in the
first decade of the 21st century, reversing the 200-year-long process of energy decar-
bonization.6 Much of the new coal demand is coming from the developing countries 
in Asia, with China adding the equivalent of two 500-megawatt coal power plants per
week7 and India at a rate of about one every two weeks.8 But even wealthy countries
have tilted back toward coal. As it has recovered from recession, Europe has increased
its coal consumption each year since 2009.9 Fossil fuel–fired electricity in Germany
rose 9 percent in 2012, driven by an increase in coal. In 2013, Germany is expected to
bring 5.3 gigawatts of new coal-fired electric capacity online, which alone will generate
an amount of electricity roughly equivalent to the nation's total installed solar capaci-
ty.10 By 2017, coal may rival petroleum as the world’s largest primary energy source.11

The rapid growth of coal consumption has led climate scientists and environmentalists
concerned about global warming to seek its replacement. “Coal is the single greatest
threat to civilization and all life on our planet,” then–National Aeronautics and Space
Administration climate scientist James Hansen said in 2009, and referred to trains
carrying  coal as “death trains.”12 Former Vice President Al Gore called for civil dis -
obedience against coal plants in the United States.13 And New York Mayor Michael
Bloomberg contributed $50 million in 2011 to the Sierra Club’s “Beyond Coal”
campaign ,14 which aims to accelerate coal plant closings. 

Emissions from coal plants cause more than 20,000 heart attacks, nearly 10,000 hos-
pitalizations, and more than 13,000 premature deaths annually in the United States.15
In 2008 the World Health Organization estimated that coal particulates pollution caus-
es approximately one million deaths each year around the world,16 or about a third of
all premature deaths related to air pollution. Coal combustion releases toxic chemicals
including arsenic, mercury, lead, and numerous others. In addition to CO2, coal com-
bustion also emits oxides of sulfur (mainly SO2), and oxides of nitrogen (NOx), which
can cause adverse respiratory conditions. Hydrogen cyanide (HCN), sulfur nitrate
(SNO3), and other toxic substances are also produced. SO2 reacts with atmospheric
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gases to produce sulfuric acid, which returns to the earth as acid rain, harming
ecosystems and human health.

Coal mining dramatically degrades landscapes. Mountaintop removal obliterates natu-
ral landscapes, destroys wildlife habitat, and creates serious downstream impacts and
human health dangers. Underground mining results in waste materials being piled at
the surface of the mine, creating runoff that pollutes and alters the flow of regional
streams. Explosive blasting in mines causes groundwater to seep to lower-than-nor-
mal depths, contaminating aquifers. Studies have shown that rates of adult hospital-
ization for chronic pulmonary disorders, hypertension, and lung cancer, as well as
mortality rates, are elevated as a function of county-level coal production.17

Environmental experts and advocates have long viewed natural gas as a critical driver
of the shift from coal toward lower-carbon energy sources. Widely referred to as a
“bridge fuel,” natural gas proponents argue it is one of the lowest-cost and most easi-
ly substitutable alternatives to coal. Because it produces roughly half the CO2 emis-
sions of coal, natural gas has been embraced as a bridge fuel to zero-carbon energy
supplies by Al Gore,18 the Sierra Club,19 the Natural Resources Defense Council
(NRDC),20 Resources for the Future,21 former Environmental Protection Agency head
and Obama climate chief Carol Browner,22 and energy experts across the political
spectrum.23

But the expansion of natural gas production in recent years has triggered concerns
that have led policymakers, climate scientists, environmentalists, and members of the
public to question prior support for natural gas as an environmental improvement over
coal. The first concern is that fracking’s effects on landscapes, waterways, and com-
munities are as bad as coal mining. Second, the leakage of uncombusted natural gas,
or methane, a potent greenhouse gas, cancels out the carbon benefit. Third, natural
gas undermines rather than supports the transition to zero-carbon energy sources
including solar, wind, and nuclear. The fourth concern is that even if natural gas man-
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ages to displace coal, the overall CO₂ emissions reductions associated with that dis-
placement are not sufficient to stabilize atmospheric CO₂ at noncatastrophic levels. 

These concerns have led many US environmental groups and environmentally con-
cerned Americans to oppose the expansion of natural gas production and consump-
tion, even to replace coal. Rather than promoting the safe and productive natural gas
exploration, both the NRDC and the Environmental Defense Fund (EDF) appear focused
on limiting natural gas production.24, 25 EDF President Fred Krupp has publicly stated
his opposition to expanded natural gas production.26 The Sierra Club,27 350.org,
Greenpeace,28 and other organizations actively oppose natural gas production, 
and environmentally concerned celebrities including Yoko Ono, Scarlett Johansson, 
Mark Ruffulo, and Matt Damon have run advertisements and urged a halt to natural
gas production .29

This report reviews the available evidence and concludes that replacing coal with natu-
ral gas remains a net environmental positive at the local, regional, national, and global
levels. Moreover, the claim that cheap natural gas undermines the development and
deployment of zero-carbon alternatives like renewables and nuclear is not supported
by the evidence, which suggests that cheap natural gas can instead accelerate the
transition to zero-carbon energy sources. Natural gas remains a disruptive technology
and a critical bridge to a zero-carbon energy sector.

Nevertheless, the transition to natural gas, as with all energy transitions, is not guar-
anteed. Technology and policy choices by governments and civil society will prove crit-
ical in guiding the United States and the world’s transitions away from coal toward
lower-carbon energy sources. In the United States, coal-fired power has already begun
to eat back some of its recent losses as natural gas prices rise from current unsustain-
able lows.30 In this report, we recommend a set of policy actions to accelerate the shift
from coal to cleaner natural gas, to export the gas revolution to other countries, and
to pay forward the benefits of the gas revolution to sustain technological innovation in
zero-carbon energy technologies.
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A . The Trans i t ion f rom Coal  to  G as

While the world as a whole is turning to coal, the United States is moving away from it.
Coal’s share of electricity has declined by 11 percentage points in the US in the past
five years, from 48.5 percent in 2007 to 37.4 in 2012.31 The US has only been able to
reduce coal consumption because of the availability of a low-cost, technologically
ready substitute, natural gas.32 Over the past 10 years, more than 160 coal plant pro-
posals have been cancelled — 50 gigawatts of coal capacity have been retired since
January 2010 alone.33, 34 Since 2000, coal-fired generation has declined by an average
of nearly 40 terawatt-hours (TWh) each year, while gas has increased by an average of
more than 50 TWh each year.

Figure  1

Predictions of future natural gas consumption and price levels are famous for being
more often wrong than right, but it is likely that the long-term trend away from coal
to gas will continue. The Energy Information Administration (EIA) projects that between
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now and 2020 some 50 gigawatts (GW) of aging coal capacity will be retired — about a
sixth of existing coal capacity in the United States — as a result of lower natural gas
prices, higher coal prices, slower economic growth, and new EPA regulations.35 The
North American Electric Reliability Corporation (NERC) projects that more than 71 GW
of fossil fuel capacity — the majority coal — will be shuttered by 2022.36 The
International Energy Agency states that under the right policy support for shale gas
development, natural gas could comprise 25 percent of the world’s primary energy
supply by 2035 — compared to 21 percent in 2010.37

The EIA projects that by 2020 coal power generation will supply 39 percent of the
nation’s electricity — down from over 48.5 percent in 2007 — while natural gas and
renewables (including conventional hydroelectric) will supply 26 percent and 14
percent , respectively.38 Under that scenario, by 2020 the nation’s power sector will
emit 500 Mt less CO2 annually than it would if the carbon intensity had remained fixed
at 2007 levels.39 A 2011 modeling analysis from researchers at the Massachusetts
Institute of Technology projected that the nation could reduce power-sector carbon
emissions by 20 percent simply by increasing the utilization of existing natural 
gas capacity.40

While a small number of analysts41 were too early in predicting the natural gas revolu-
tion, the EIA has, in the past, mostly underestimated it. In 1998, EIA predicted gas
production  would rise from 19 trillion cubic feet (Tcf) in 1996 to 27 Tcf in 2020.42
In 2000, EIA revised those estimates upward to 29 Tcf. But production had already
reached 28.5 Tcf by 2011. This experience suggests great caution is merited in pre-
dicting natural gas production and consumption levels even one decade hence.

The past several years saw a dramatic increase in identified “proven reserves” of natu-
ral gas, those reserves where there is a high degree of certainty that gas will be com-
mercially recoverable. In 2013, proven gas reserves rose to the highest amounts ever
recorded since the EIA began publishing estimates in 1977.43 The most important fac-
tor has been the nationwide expansion of horizontal drilling and hydraulic fracturing in
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shale and other “tight” formations. The EIA’s most recent calculation of technically
recoverable shale resources is 13 percent larger than its 2012 estimate.

Some analysts have expressed skepticism about the extent of recoverable shale gas
reserves in the United States, claiming that government agencies, analysts, and indus-
try groups have vastly overstated them. They have pointed to overoptimistic assump-
tions based on limited drilling and production data,44 unrealistic well production
expectations,45 deliberate industry exaggeration of estimates,46 and uncertainty in
estimates of unproven reserves.47

Skepticism has been fueled by dramatic changes in federal estimates of technically
recoverable domestic reserves. In January 2012, the EIA released an estimate that the
country had 482 Tcf of domestic technically recoverable shale gas reserves, a drastic
downward revision (by more than 40 percent) from its 2011 estimate of 827 Tcf
recoverable reserves.48 The decline largely reflects a decrease in the estimate for the
Marcellus shale region, from 410 Tcf (2011) to 141 Tcf (2012), a 66 percent drop.

Figure  2
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Figure  3

One reason for confidence in newer EIA estimates is that the the United States Geo -
logical Survey (USGS) derived them from a large body of new drilling and production
data (drilling in the Marcellus region accelerated rapidly in 2010 and 2011).49 And
EIA’s numbers are similar to those of the 2010 interdisciplinary Massachusetts
Institute of Technology Energy Initiative study, which estimated the nation’s technically
recoverable reserves at 650 Tcf.50

 B .  Car bon Emiss ions  R educ t ions  Dr iven 
by  the Coal - to - G as  Trans i t ion

Primarily as a result of the shift from coal to gas, energy-related carbon emissions
have declined more in the US than in any other country in the world in recent years,51
from 6.6 billion tons in 2007 to 5.9 billion tons in 2012. The Department of Energy
and EIA project that total 2020 energy-related CO2 emissions will be 9 percent 
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lower than 2005 emissions.52, 53 In the electric power sector, where most of the coun-
try’s coal is used, emissions declined from 2.7 billion tons in 2007 to 2.2 billion tons
in 2012. In 2012 there were 726,000 fewer train car loads of coal than there were 
in 2011.54

Figure  4

Gas deserves most of the credit for declining US emissions. Experts like the University
of California-San Diego’s David Victor and others at the National Renewable Energy
Laboratory estimate that the shale gas revolution has reduced US emissions between
300 to 500 million tons (Mt) of CO2 per year, about the same amount of total annual
CO2 emissions in Australia, Brazil, France, or Spain.55, 56 John Hanger, former Secretary
of the Pennsylvania Department of Environmental Protection, estimates that 77 percent
of the CO2 reduction between 2011 and 2012 is attributable to the switch from coal to
gas.57 Council on Foreign Relations energy analyst Michael Levi put half the decrease in
carbon dioxide emissions from January–May 2011 and January–May 2012 to the switch
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from coal to natural gas.58 The White House Council of Economic Advisors attributes
40 percent of the 2005–2012 emissions reduction to “fuel switching to natural gas and
renewables,”59 and energy analyst John Miller estimates that the coal-to-gas switch is
the largest single factor for emissions reductions over the same time period.60

We estimate that CO2 emissions reductions resulting from the coal-to-gas switch in
the past several years have been 3–10 times greater than for non-hydro renewables.
The share of natural gas in the electricity supply mix increased by 10 percentage
points between 2007 and 2012, from 20.3 percent to 30.4 percent. Over the same
period, the share of non-hydro renewable supplied to the electric power sector only
increased by 2.6 percentage points, from 0.9 percent in 2007 to 3.5 percent in 2012.61
In 2012, natural gas electricity generation increased by about 10 times more than the
increase in wind generation, relative to 2011, and about 100 times more than the
increase in solar generation. 

Figure  5
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It is unlikely that wind and solar will contribute significantly to the decarbonization of
the electricity sector in the next decade, despite the fact that they’re poised to supply
increasing amounts of power to the grid. For wind and solar to be effectively inte -
grated into the grid, they rely on additional backup and spinning reserve capacity.
Historically, intermittent renewables have supplemented, not displaced, fossil fuels,62
and wind and solar today displace marginal gas generation far more than they displace
coal.63 While we should expect non-hydro renewables’ role in reducing emissions to
increase in the short- to medium-term, this will occur in partnership with expanded
and newly utilized flexible gas capacity.64

The extent to which renewables do displace fossil fuel generation and lead to CO2
emissions reductions depends crucially on the types of electricity generation (coal, gas,
nuclear, hydro, etc.) in a given region. A recent analysis by researchers at the Colorado
School of Mines, for example, finds that in coal-dominated regions wind power may
save 0.9 tons of CO2 for each megawatt hour (MWh) of wind power generation, while
coal generation typically releases closer to 1.1 tons of CO₂ per MWh. In other regions,
where renewables replace more gas than coal, the researchers find that savings could
be as low as 0.3 tons CO2 per MWh (see Figure 6 for regional displacement factors
from wind power).65 While aggregate estimates of CO₂ displacement by renewable
power are unavailable, it is clear that their deployment will not match the emissions
reductions of coal-to-gas switching in the near- to medium-term. Even as renewables
impact on emissions increases, their ability to displace coal will likely remain limited
for the foreseeable future. 
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Figure  6

In spite of the well-established carbon emissions benefits associated with switching
from coal to gas, the long-term climate benefits of the coal-to-gas switch have been
called into question due to both concerns about fugitive methane emissions from
shale gas production and the fact that switching from coal to gas reduces CO2 emis-
sions but does not eliminate them. 

C. M ethane Leak age

Methane is about 20 times more potent as a warmer than CO2 on a 100-year basis,
and about 70 times more potent on a 20-year basis. A small fraction of the methane
contained in natural gas escapes to the atmosphere during the “drill-out” and “flow-
back” phases of a shale gas well’s production lifetime. Fugitive emissions may also
occur during the well construction, transport, and consumption of natural gas. As a
result, methane emissions over the short term have the potential to erode most or all
of the CO2 emissions benefit resulting from switching from coal to gas.

R egion Emiss ions  Displacement  f rom 
Wind Power  ( tCO 2/MWh)

BPA (Pacific Northwest) 0.08

CAISO (California) 0.29

PSCO (Colorado) 0.40

ERCOT (Texas) 0.52

MISO (Midwest) 0.92
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i .  Est imates of  methane leak age var y

There is a high degree of uncertainty regarding methane leakage rates. Estimates of
fugitive emissions vary, ranging from 1 percent to 7 percent of total production.66, 67, 68
Several early studies contained very high estimates of methane emissions from uncon-
ventional gas production. One 2011 paper finds fugitive methane emissions to be 
3.6 to 7.9 percent,69 while a 2012 study by scientists at the National Oceanic and
Atmospheric Administration reported a 9 percent leakage rate in Colorado. However
both studies appear to be outliers and have been widely faulted for selective bias and
poor measurement and statistical techniques.70, 71

Most recent publications indicate a leakage rate of 1 to 2 percent.72, 73 Using a tested
methodology, our own calculations show that the 6,646 gigagrams of methane that
were accounted for by the EPA in 2011 amount to less than 1.5 percent of total natural
gas production.74 Another study published by the Joint Institute for Strategic Energy
Analysis estimates leakage at 1.3 percent.75
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Figure  7

However, there is broad agreement that data on fugitive methane can and should be
made more robust. A number of major new studies of leakage rates will be forthcom-
ing over the next year and should provide a more accurate estimate of industry-wide
leakage rates. 

Nonetheless, it is already clear that leakage rates could, and probably will, be lowered
substantially in the future. One study found that 70 percent of total leakage was
occurring in only 10 percent of wells, suggesting that the problem is not evenly dis-
tributed and the potential for low-cost, high-impact interventions is significant.76

Public concern about leakage has already led to stronger government regulation as
well as efforts by the gas industry, in partnership with environmental groups, to
increase the use of best practices.77 Moreover, because methane has a high economic
value, there are strong financial incentives to reduce leakage.78 An MIT analysis of
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4,000 horizontal wells that were brought online in 2010 found that in most cases,
capturing methane emissions was profitable to drillers.79

A recent report from the World Resources Institute identifies several promising options
for further limiting fugitive methane emissions, including monitoring and repair sys-
tems, more-efficient pneumatic devices that capture fugitive emissions, and plunger
lift systems to remove excess fluid in wells without venting excessive amounts of
methane.80 The authors of the report expect that these opportunities will be attractive
to most drillers, and that implementation of these simple measures can keep methane
leakage to reasonable levels. Steps in the direction of more-aggressive methane cap-
ture are already being taken. According to a senior scientist from the Environmental
Defense Fund, over 90 percent of wells use “green completion” techniques to seriously
reduce fugitive emissions, where only a quarter of wells used these techniques as
recently as two to three years ago.81

i i .  Methane leak age has l i tt le  impact on long-term warming

Methane leakage rates, however, appear to have little impact on long-term warming
trends, according to climate models assuming different leak levels over the century-
scale timeframe that matters most in the context of global warming. Studies that use
high leakage rates find that a long-term, permanent shift from coal to gas would have
little impact on long-term warming,82, 83 yet studies that assume no methane leakage
arrive at similar conclusions.84

Climate modeling suggests that the implications of a long-term global shift from coal
to gas are largely determined by assumptions about the thermal efficiency of future
coal plants and whether the switch to gas is permanent or a bridge to zero-carbon
energy sources in the middle and latter portions of the 21st century.

Studies that assume that future coal plants will be significantly more efficient than
present-day plants, and that the switch to gas is permanent and not a bridge, find
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little  climate benefit from the switch to gas. Studies that are more pessimistic about
the future efficiency of coal plants or that assume that gas serves as a bridge to 
zero-carbon  energy sources find that switching to gas today brings significant climate 
benefits.85, 86

For a variety of reasons, regulatory and technological efforts to reduce methane leak-
age make sense. The long-term climate benefits of the coal-to-gas switch, however,
will largely be determined by how quickly zero-carbon technologies are able to dis-
place gas. For the next several decades, natural gas offers a sizable emissions-reduc-
tion benefit over coal, while other low-carbon technologies mature. The long-term
climate benefits of the coal-to-gas switch will depend upon how rapidly those tech-
nologies mature and the degree to which the gas revolution impedes or assists that
maturation process.

D.  Natura l  G as  as  a  Br idge to  a  Zero - Car bon Future

Most scenarios that project long-term coal-to-gas switching do not model gas as 
a bridge fuel (i.e., an eventual phase-out of gas and phase-in of other zero-carbon
energy sources).87, 88, 89 These scenarios lead to low, modest, or no climate benefit
compared to a baseline, coal-dominated future.

One of the only studies that does model natural gas as a bridge fuel finds that it could
play a significant role in limiting the atmospheric CO2 concentration to 550 ppm, and
less of a role in limiting the concentration to 450 ppm.90 This finding should not be a
surprise. Limiting global temperature increase to under two degrees Celsius and global
atmospheric CO2 concentrations to below 450 parts per million would require that we
stop building new fossil fuel infrastructure in the next several years and significantly
reduce energy demand over the next few decades. Achieving these outcomes is highly
unlikely due to rapid energy demand growth in China, India, and other non-OECD
countries, and carbon emission “lock-in” from existing fossil fuel infrastructure. In its
most recent 450-ppm stabilization scenario, for instance, the International Energy
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Agency notes that four-fifths of the CO2 emissions allowable by 2035 are already
locked in by energy infrastructure, and that if significant action to reduce CO2 emis-
sions is not taken before 2017 it will be impossible to avoid 450 ppm.91

Although limiting global atmospheric CO2 concentration to 450 parts per million is
probably unachievable, our focus should remain on reducing emissions as quickly as
possible and stabilizing atmospheric CO2 concentration at as low a level as possible.
Natural gas has an important role to play in accomplishing this goal, as a bridge 
to lower-carbon technologies. Even taking fugitive methane emissions into account, 
it is clear that natural gas offers a sizable emissions reduction benefit over coal for 
the next several decades. While other low-carbon technologies mature — including
renewables , advanced nuclear, and carbon capture — natural gas provides a cheap 
and abundant source of energy that can mitigate global warming emissions and toxic
terrestrial  pollution.

In the ongoing process of energy transitions and global decarbonization, the displace-
ment of dirty coal by cleaner natural gas buys time to develop and deploy zero-carbon
technologies. As long as abundant, energy-dense fuels like coal and natural gas exist,
human societies will extract them — unless better, cheaper, cleaner alternatives arrive
to enable their regulation and replacement. Given the strong physical and moral
imper atives to provide clean, cheap, abundant energy while reducing carbon emissions
as quickly as possible, the time bought by cheap natural gas will prove valuable. 
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The US shale boom is the clearest contemporary example of the potential for clean,
cheap energy to simultaneously accelerate decarbonization, innovation, and the evolu-
tion of energy systems. As the world moves toward abundant, cheap, zero-carbon
energy, policymakers should not only look to the history of US federal investments in
shale fracking as a model for innovation, but should also note the catalytic role that
natural gas can play in the development of other clean energy technologies. 

Natural gas today is cheaper than both new renewables and new nuclear technologies,
a reality that has triggered fears among advocates of both that cheap gas could be an
impediment rather than a catalyst to the development and deployment of zero-carbon
energy. But there is strong reason to believe that the US gas revolution can strengthen,
rather than strangle, efforts to develop zero-carbon technologies like renewables,
nuclear, and carbon capture.

The evidence reviewed here confirms that fears of gas “crowding out” other low-car-
bon technologies are largely misplaced. There is no correlation between wind deploy-
ment and natural gas prices (see Figure 8). Rather than being undermined by shale
gas, intermittent renewables like solar and wind have benefited from it as an inexpen-
sive source of backup power. While low natural gas prices have added marginally to
the challenges faced by the nuclear industry, they have not significantly altered the
trajectory of nuclear power, which is faced with a number of unique historical chal-
lenges. With lower capital costs and a cleaner stream of power-plant emissions than
coal, natural gas also offers a potential development and demonstration platform for
nascent carbon-capture technologies. And cheap natural gas, which has added $100
billion annually to the US economy since 2007 in the form of lower electricity prices,
creates the national wealth required to continue investing in ever-cleaner and ever-
cheaper energy sources.

It is public policies, not fossil energy prices, that overwhelmingly determine whether
zero-carbon energy sources get deployed or not. Renewables deployment is depend-
ent on public subsidies and state utility mandates; new nuclear deployment is depend-
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ent on loan guarantees, ratepayer tariffs, and innovation funding. Recent wind deploy-
ment trends are proof of the industry’s subsidy dependence. In 2012, uncertainty over
whether Congress would renew the key wind subsidy led to a rush of wind installa-
tions, the largest in US history. It is predicted that less than half as much new wind will
be installed in 2013 as was installed in 2012. 

Figure  8

Acknowledging the obstacles to deployment and subsidy dependence of new renew-
ables and new nuclear is not an argument against those technologies. It took 35 years
of public subsidies and policy interventions for shale gas to become a market game-
changer. The shale history also shows that the goal is not permanent subsidization,
but rather innovation that results in revolutionary new technologies capable of
replacing  dirtier, more expensive incumbents. The move away from whale oil to cam-
phene and eventually to kerosene was supported by federal government subsidies.
Electrification, which came to replace kerosene, was enabled by the federal govern-
ment. In both cases, subsidies were involved until the technology was able to compete
in the marketplace. 
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We should consider the transition to gas as part of a longer-term transition to nuclear
power, renewables, carbon capture, and other low-carbon energy technologies. While
it may seem improbable that zero-carbon energy will ever be cheaper or more scalable
than natural gas, recall that only a few years ago many energy analysts considered coal
unbeatable (in cost) by clean energy. In recent years, natural gas — much cleaner than
coal — has done exactly that. How quickly energy transitions occur depends principally
on how well innovation policy is enacted.

Energy transitions are not perfectly sequential. Deployment of renewables and nuclear
power can occur alongside the transition from coal to natural gas. Indeed, cost-effec-
tively managing renewable intermittency is enabled by cheap backup gas-fired elec-
tricity. Natural gas prices have historically fluctuated, and they will continue to do so.
Nuclear and renewables provide an important hedge against volatile gas prices.92

A.  Cheap G as  Suppor ts  S cal ing Up of  R enewables

Gas-fired power provides cheap, low-carbon, and flexible backup support for inter-
mittent wind and solar. Grid operators depend on reliable power production from
power plant operators to match grid supply and demand and ensure consistent price
signals. As intermittent renewables — particularly wind — continue to occupy a greater
share of the nation’s electricity output, power system operators will need to increas-
ingly rely on capacities of backup and firming power. Natural gas–fired power plants
offer the best currently available solution. 

By contrast, the majority of coal plants in the United States were designed to provide
steady baseload power to the grid, with very little flexibility. Today’s coal plants have
low ramping rates (1.5 percent to 3 percent per minute) and become inefficient if they
are operated below maximum output, increasing marginal emissions of CO₂, NOx, and
SO₂ pollutants.93 Conventional nuclear power cannot be counted on for flexible power
in any context today, given extreme technical difficulties in cycling and ramping
nuclear generators. Although grid-scale energy storage options are expanding, the
technology is still limited in its commercial applicability. 
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Natural gas power — and particularly power from natural gas combined cycle (NGCC)
plants — provides a readily substitutable alternative to baseload and older load-fol-
lowing coal plants. 

Flexible gas plants provide support for electric power grids that are increasingly occu-
pied by intermittent wind and solar. A study from researchers at Carnegie Mellon
University suggests that for every 4 MW of wind capacity, 3 MW of NGCC capacity will
be needed to operate the grid reliably.94 The expansion of gas-fired power plants
could accelerate the integration of intermittent power into existing grid systems.95 New
natural gas plants have ramping rates of approximately 8 percent per minute and can
reduce their output to 80 percent capacity with minimal heat rate penalty. New NGCC
plants that are specifically designed to offer flexibility to a renewables-heavy grid 
system can ramp to 150 MW in 10 minutes and to full load in 30 minutes.96 General
Electric’s new fleet of gas-fired power plants is designed to optimize integration with
variable power sources and can ramp as fast as 100 MW per minute.97

Modeling efforts at the National Renewable Energy Laboratory (NREL) find that “large
quantities of variable renewable energy and flexible gas generation work synergistical-
ly to maintain system reliability requirements.” 98 As another analysis from researchers
at NREL and the Joint Institute for Strategic Energy Analysis (JISEA) found: 

Natural gas and renewable energy technologies enjoy many complementarities
spanning economic, technical, environmental, and political considerations.
These complementarities arise from their similarities — which include
improved environmental performance compared to coal and oil and their
ability  to contribute to a robust US economy — but it is from their dissimilari-
ties that the biggest opportunities for mutually beneficial collaboration can 
be found.99

Wind and solar have seen rapid growth in recent years thanks to various subsidies,
from federal tax incentives to state mandates. In many jurisdictions, renewable portfo-
lio standard (RPS) mandates require grid operators to utilize renewable generation on 
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a first-priority basis; unlike most other energy sources, wind and solar are protected
from the bidding process and are automatically dispatched. While there may be cases
where cheap natural gas has challenged the economics of renewable power, the far
bigger threat to renewables is subsidy dependence and regulatory uncertainty.100

Annual wind installations dipped in 2000, 2002, and 2004 following the expiration of
a crucial subsidy, the Production Tax Credit for wind. Yet when protected by the feder-
al tax credit and state RPS policies, wind installations remained unaffected even with
low natural gas prices (for example, in 2009) . As portrayed in Figure 8, 2012 saw new
records in low natural gas prices as well as annual wind power installation.

The introduction of intermittent renewables complicates the traditional operation of
power systems.101 Utility-scale wind generation, a particularly volatile intermittent
power source, requires system operators to make significant adjustments to balance
generation and load by issuing instructions for generation plants to increase their
output  (ramping) or to shut down (cycling).102 This creates inefficiency in the system
because it forces traditional power plants to operate at reduced output, and can 
erode some of the systems cost savings delivered by zero-fuel-cost renewables
generation . 103

In rare and extreme cases, a rapid influx of intermittent renewable electricity to an 
ill-prepared grid system can lead to a net increase in energy consumption and CO2
emissions  caused by overwhelming inefficiencies in cycling thermal power genera-
tion.104 Solar PV is easier to manage than wind because its generation patterns are
much more predictable and tend to match the energy demand profile, peaking during
midday when energy demand is greatest. Concentrated solar power, which generates
heat that can be stored in molten salt compounds, provides even more flexibility to
grid operators  .105

The increased deployment of hybrid gas-renewables “power parks” in recent years is
testament to the two technologies’ synergies. Florida Power & Light Company, for
instance, has completed the construction of a solar thermal plant that is colocated with
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an NGCC plant.106 Baseline Wind LLC has submitted a proposal for a hybrid natural 
gas and wind power plant in Gilliam County, Oregon. In May 2011, General Electric
announced plans to build a hybrid 530-megawatt NGCC-solar-wind power station in
Turkey. Figure 9 lists some of the natural gas-renewables hybrid power plants that
have been completed or are under construction.

Figure  9

Project Plant Total Gas Renewable Location Start
Name Operator Capacity Capacity Capacity Date

(MW ) (MW ) (MW )

Martin Next Florida Power & 1175 1100 75 (CSP) Martin 2010
Generation Solar Light Company County,
Energy Center Florida

ISCCS Ain Abengoa Solar/ 470 450 20 (CSP) Ain Beni 2011
Beni Mathar Office National Mathar, 

d'Electricite Morocco

H. Wilson Sundt AREVA Solar/ 161 156 5 (CSP) Tucson, 2013
Generating Station Tucson Electric Arizona

Power

Chuck Lenzie NV Energy 1195 1100 95 (CSP) Las Vegas, 2014
Generating Station Nevada

Karaman Integrated eSolar/ 530 450 80 (wind Karaman, 2015
Renewables Combined General Electric and solar) Turkey
Cycle System

Baseline Wind Baseline Wind 700 200 500 (wind) Gilliam  Uncertain
Energy Facility LLC County, 

Oregon

Grid operators, state and federal agencies, and industry leaders should recognize the
importance of flexible natural gas power plants in adding resilience to grid systems
that are increasingly populated by intermittent renewables.107 They should do all they
can to ensure that gas and lower-carbon power sources continue to grow synergisti-
cally.108 As Deutsche Bank Climate Change Advisors wrote in a 2010 modeling project,
“by deploying ‘low risk’ fuel solutions such as gas, wind and solar in the next 20
years, the power system remains reliable and flexible keeping options open beyond
2030, by which time technology advances unknown today could still prove to be ‘game
changers.’”109 A recent Citigroup report agreed, calling the relationship between shale
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gas and renewables “symbiotic” and forecasting that gas would be “a transition to a
lower carbon world” as renewables drop in price.110

The long-term consequences of building more gas power plants and increasing the
utilization of existing gas capacity do not necessarily hinder gas’ ultimate displace-
ment by zero-carbon power. Upfront capital makes up a small portion of the levelized
cost of gas-fired power generation. Approximately one-third of the levelized cost of 
an advanced combined-cycle gas plant is in capital equipment, while two-thirds of the
total is in variable costs, including fuel. This stands in contrast to coal plants, where
sunk investments pose a much larger obstacle to capital replacement.111 Indeed, of all
the major power technologies, combustion turbine and combined cycle natural gas
have the lowest capital cost burden (see Figure 10).112

Figure  10

Power  Technology Capita l  Cost

Natural gas (CT and NGCC) $651–$1,230/kW

Onshore wind $1,980/kW

Coal $2,890/kW

Hydroelectric $3,500/kW

Biomass (standalone) $3,820/kW

Offshore wind $3,150–$4,200/kW

Solar (PV and CSP) $3,750–$6,530/kW

Tidal/wave $4,360–$6,960/kW

Geothermal $5,940–$9,900/kW

Data f rom Black  & Veatch’s  2012 power  technologies  cost  repor t  prepared for  the Nat ional
Renewable Energy Laborator y.  Figures  are  for  p lants  going into operat ion in  2020.  A l l  f igures  
use 2009 dol lars .
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 B .  Cheap Natura l  G as  D oes  Not  S igni f icant ly  Al ter  
the  Tra jec tor y  of  the  Nuclear  Power  I ndustr y

The gas boom has had a significant effect on coal-fired power, helping to bring about
an 11 percent drop in coal’s share of national electricity generation between 2007 
and 2012 (from 48.5 percent to 37.4 percent). Yet it has thus far had no such 
effect on nuclear, which steadily produced about 19 percent US electricity over the
same period.113

One reason for this difference is that existing nuclear plants generally provide cheaper
electricity than either coal or gas. In 2011 the levelized cost of operation, mainte-
nance, and fuel for nuclear plants was about 2.2 cents/kWh — compared to 3.2
cents/kWh for coal and 4.5 cents/kWh for gas.114 In the majority of cases, after plant
construction, the marginal cost of running a nuclear power station is less than that of
coal or gas. High upfront capital costs and low fuel costs, in addition to technical chal-
lenges in ramping and cycling nuclear reactors, generally make it attractive for grid
operators to keep nuclear plants running for as long as possible.

Yet the nuclear power industry is not immune to competition from cheap natural gas.
Even though nuclear plants have lower variable costs, they may have higher overall
annual costs due to significant fixed capital costs, which can make them economically
uncompetitive with gas. In recent years, natural gas has contributed to the closure of
two nuclear reactors in the United States. Both were near the end of their productive
lives and were faced with regulatory compliance costs associated with aging or outdat-
ed infrastructure. Other factors were involved; one of the plants, for example, was
scheduled to close because of a cracked containment dome.115 Lower electricity market
prices — driven largely by cheaper natural gas — made the capital investments neces-
sary to keep the plants in operation unjustifiable. 

As the nuclear power fleet continues to age, plant operators will be faced with more
decisions about whether to retire nuclear plants or to invest in capital-intensive plant
upgrades. As Figure 11 shows, the nation’s existing nuclear fleet is much younger
than the coal fleet, with a mean age of about 30 years as opposed to 40 years for coal
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plants. While a significant share of our existing coal capacity came online in the 1940s,
50s, and 60s, the bulk of nuclear power capacity wasn’t installed until the 1970s and
1980s. As the nation’s nuclear plants approach retirement age, more will need capital-
intensive upgrades to remain operational and to maintain compliance with safety regu-
lations. Much like with coal, the availability of cheap natural gas may diminish the
appeal of keeping older nuclear power plants online.

Figure  11

Nevertheless, the shale gas revolution — and cheap natural gas — will not significantly
impact the long-run trajectory of the nuclear power industry. Nuclear power faces sev-
eral unique and significant burdens that predate and overwhelm the competitive pres-
sure posed by the shale gas revolution. These include a complex regulatory process,
lengthy construction times, high capital costs, frequent cost overruns, and public skep -
ticism. Even if gas prices rise to their pre–shale boom levels, new nuclear will still be
economically uncompetitive. The EIA’s 2012 Annual Energy Outlook, for instance, esti-
mates that the cost of new advanced nuclear power in 2017 will be 11 cents per kWh,
compared to 6.3 cents per kWh for advanced combined–cycle natural gas power.116
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The levelized cost of new nuclear plants has traditionally exceeded that of coal and
gas, since well before the shale revolution. A 2003 MIT study, for instance, estimated
that the cost of new nuclear power in the United States was 6.7 cents per kWh com-
pared to between 3.8 cents per kWh and 5.6 cents per kWh for NGCC, depending on
gas prices.117 In 2009 the study was revised to reflect inflation and rising construction
costs, bringing the estimated price of nuclear generation to 8.4 cents/kWh.118 In gen-
eral, new-build nuclear power is expected to be much more costly than natural gas or
even coal (see Figure 12 below).119

The two Westinghouse AP1000 reactors currently under construction by Georgia Power
(the first two plants under construction in the United States in more than 15 years) are
expected to have total overnight capital costs in the $5,000–6,000/kW range (com-
pared to the overnight capital cost of NGCC, approximately $1,000/kW).120 As a result,
the levelized electricity costs of these units will likely exceed 10 cents/kWh.

Figure  12

Figure  12 . The graph above shows est imated average level ized costs  for  new nuclear,  coal ,
and gas  power  p lants ,  with cost  ranges marked for  those studies  that  inc luded them.  
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Although cheap natural gas will impact the existing fleet to some degree, its impact on
nuclear power will be minor when compared to its impact on coal. There may even be
room for nuclear-gas synergy, such as matching flexible gas capacities with new base-
load Gen IV+ reactors. 

Given the high capital costs and complex regulatory environment associated with
nuclear power, the revitalization of the industry will require a robust innovation policy
support system. Such innovation will require moving beyond 20th century light-water
designs toward nuclear power reactors that are increasingly cheap, modular, fuel effi-
cient, and safe.121

 C .  Tak ing Advantage of  the  G as  R evolut ion to  Accelerate
Car bon Capture  I nnovat ion

Scalable carbon capture technologies will prove essential in efforts to effectively miti-
gate global carbon emissions. Massive amounts of fossil energy reserves around the
world will be exploited to meet global energy needs, even with accelerating deploy-
ment of zero-carbon options like renewables and nuclear. While carbon capture and
sequestration (CCS) is often considered a prophylactic technology for coal-fired power
plants, there are reasons to believe that immature CCS technologies can be more easily
demonstrated and scaled on natural gas–fired power. 

The separation and potential capture of carbon dioxide is an established practice in
the natural gas industry. Drillers often must separate natural associated concentrations
of CO₂ from natural gas resources, after which the CO₂ is typically vented into the
atmosphere. But several industrial-scale CCS operations do exist, often for the pur-
poses of using captured CO₂ for enhanced oil recovery.122 Other such use practices
may be exploited to increase demand for carbon capture technologies, including the
application of CO₂ in petrochemical manufacturing, food and beverage industries, and
the synthesis of artificial materials.123

Coal  K i l ler :  How Natura l  G as  Fuels  the  Clean Energy R evolut ion36

Breakthrough I nst i tute  | June 2013



Because the emissions stream of natural gas–fired power plants is much cleaner than
that of coal-fired power, gas has considerable technical and cost advantages when it
comes to capturing CO₂.124 Recognizing this innovation opportunity, the Clean Air Task
Force has recommended a series of “Pioneer Phase” demonstration investments to
scale and reduce the costs of carbon-capture technologies.125

It is true that without a market value on carbon emissions, the widespread deployment
of CCS technologies faces significant obstacles. But as with other technology-forcing
policies — including sulfur-dioxide pricing in the 1990s that drove adoption of
smokestack scrubbers126 and the impending regulations on CO₂ from power plants in
the United States — any regulation that requires CCS will very likely follow, not drive,
the maturation of the mitigating technology itself. 
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Figure  13
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A.  Human I mpac ts

Coal is roughly eight times more lethal than natural gas. A comprehensive review of
the public health effects of energy fuel cycles in Europe finds that coal causes 6 to 
98 deaths per TWh (average 25 deaths per TWh), compared to natural gas’s 1 to 11
deaths per TWh (average 3 deaths per TWh). These numbers include both accidental
deaths and pollution-related deaths.127 Coal mining is one of the most dangerous 
professions in the United States, resulting in 20 to 40 deaths annually, compared to 
10 to 20 for oil and gas extraction.128 Worker accident risk is also far higher with coal
than with gas. In the United States, the oil and gas extraction industry is associated
with one to two injuries per 100 workers each year.129 Coal mining, on the other hand,
contributes to four injuries per 100 workers each year.130 Coal mines collapse, and can
take down roads, water and gas lines, buildings, and many lives with them.131

Average damages from coal pollutants are two orders of magnitude larger than
damages  from natural gas. SO2, NOx, and particulate matter from coal plants create
annual  damages of $156 million per plant, compared to $1.5 million per gas plant.132
Coal-fired power plants in the United States emit 17–40 times more SOx emissions 
per MWh than natural gas, and 1–17 times as much NOx per MWh.133 Lifecycle 
CO2 emissions  from coal plants are 1.8–2.3 times greater (per KWh) than natural 
gas emissions .134

The air quality advantages of natural gas over coal have been borne out in
Pennsylvania, according to studies by the RAND Corporation and the Pennsylvania
Department of Environmental Protection. There, the shale boom has led to dramatically
lower emissions of sulfur dioxide, fine particulates, and volatile organic compounds
(VOCs).135

The most significant environmental impact of fracking shale for gas is the above-
ground impact on communities. There are few instances of groundwater contamination
as a result of fracking, and the causes of contamination — namely poor well comple-

IV.  Envi ronment ,  Health ,  and Safet y 39

Breakthrough I nst i tute  | June 2013



tion practices — are known, fixable, and likely to be addressed over time as the gas
industry and regulators improve compliance with best practices and as the industry
and government agencies seek incremental improvements of drilling practices. 

Local efforts to maintain a high quality of life for residents near gas operations should
be encouraged, with a sense of pluralism and concern for conflicting interests and
needs. A primary source of complaint from communities near fracking sites is the
increase in heavy and loud trucks, traffic congestion, loud gas compressors on neigh-
boring lands, local price inflation in response to the influx of new activity, and local air
pollution. Much of the opposition to natural gas drilling is similar in character to the
opposition to wind turbines and large solar farms, which also encroach on local land-
scapes and invite unwelcome construction.

State regulators must be responsive to community needs as well as environmental
concerns . And policymakers nationally must seek to balance warranted local concerns
about new development with the local, national, and global environmental benefits of
moving from coal to gas.

B.  Landscape I mpac ts

Coal mining radically alters whole mountain and forest landscapes. Beyond the coal
removed from the earth, large areas of forest are turned inside out and blackened 
with toxic and radioactive chemicals. There have been reclamation successes, but 
hundreds of thousands of acres of abandoned surface mines in the United States have 
not been reclaimed, and reclamation of certain terrain (including steep terrain) is 
nearly impossible .136

Where coal exploration requires altering landscapes far beyond the area where the coal
is, aboveground natural gas equipment takes up just 1 percent of the total surface
land area from where the gas will be extracted.137 The environmental impact of gas
drilling has changed radically in recent years. Vertical wells into conventional forma-
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tions used to take up one-fifth of the surface area above the resource, a twentyfold
higher impact than current horizontal drilling requires. A six-acre horizontal drill pad
can thus extract gas from an underground area of 1,000 acres.138

The impact of natural gas on landscapes is even less, and shorter in duration, than the
impact of wind turbines. The footprint of a shale gas derrick (3–5 acres) is only a little
larger than the land area necessary for a single wind turbine.139 But it requires less
concrete, stands one-third as tall, and is present for just 30 days instead of 20–30
years. Between 7 and 15 weeks are spent setting up the drill pad and completing the
actual hydraulic fracture. At that point, the drill pad is removed, leaving behind a sin-
gle garage-sized wellhead that remains for the lifetime of the well.

C.  Water

Frack fluids and wastewater likely result in the most significant environmental damage
associated with fracking, and should be the first element of unconventional gas pro-
duction addressed by regulators. The challenges of groundwater contamination,
wastewater treatment, and frack fluid reinjection are serious, and there are certainly
cases of industrial misconduct and environmental abuse. However, these challenges
can be mitigated by more-effective regulation, and new research suggests that
hydraulic fracturing for shale gas is less water-intensive than both coal140 and conven-
tional gas production141 on a per-unit energy basis.

With coal mining, waste materials are piled at the surface of the mine, creating above-
ground runoff that pollutes and alters the flow of regional streams. As rain percolates
through waste piles, soluble components are dissolved in the runoff and cause elevat-
ed total dissolved solids (TDS) levels in local water bodies.142 Sulfates, calcium, car-
bonates, and bicarbonates — the typical runoff products of coal-mine waste materials
— make water unusable for industry or agriculture and undrinkable for humans.143
Acid mine wastewater can drain into groundwater, causing significant contamina-
tion.144 Explosive blasting in a mine can cause groundwater to seep to lower-than-
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normal depths or connect two aquifers that were previously distinct, exposing both to
contamination by mercury, lead, and other toxic heavy metals. 

Contamination of surface waterways and groundwater with fracking fluids is rare. And
since shale gas deposits are generally several thousand feet beneath groundwater con-
centrations and aquifers, groundwater contamination is also uncommon. Nevertheless,
there have been instances of methane and frack-fluid migration, improper treatment
of recovered wastewater, and pollution via reinjection wells. 

i .  Frack-f luid and methane contamination of  groundwater

There are relatively few verified cases of groundwater contamination linked directly to
hydraulic fracturing. Those that have been recorded occurred near wells with inade-
quate cement casing or in regions where the fracking site and groundwater supplies
are in abnormally close proximity.145

The reason for so little contamination is due to the fact that most shale plays reach
depths of thousands of feet below the surface. In most cases groundwater aquifers are
separated from the fracking site by hundreds or thousands of feet of rock. Geologists
say it is nearly impossible for thickened fracking fluid to migrate thousands of feet
upward through cracks in rock formations.146 Nonetheless, poor well casings or
improper disposal of wastewater have resulted in freshwater contamination and must
be addressed by environmental regulators. Reinjection wells in Colorado, for instance,
have been shown to pollute deep drinking water aquifers. This practice, implicitly
sanctioned by an EPA exemption for fracking under the federal Safe Drinking Water
Act, should be minimized as much as possible. While applications for exemption
require proof that contaminated water is out of reach for human consumption, experts
have questioned the reliability of the approval process.147

Methane that leaks into water supplies is not toxic, but it can be a hazard, whether it
is caused by natural forces or by gas drilling. In a small number of cases, fracking has
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led to increased concentrations of methane in groundwater supplies, including in 2010
in Dimock Township, Pennsylvania,148 and near Pavillion, Wyoming.149 There is empir -
ical evidence for fracking-related methane groundwater contamination in Pennsylvania
and upstate New York,150 but these types of incidences pose little threat to public
health and do not appear to be widespread.151 Because groundwater and aquifer
methane contamination occur overwhelmingly along the vertical wellbore, there is little
increased risk from horizontal shale drilling in deep shale deposits. 

i i .  Sur face wastewater  contamination

There have been reports of higher-than-normal fracking-related chemicals in bodies
of water where flowback fluid has been discharged, and aboveground fracking fluid
spills that have contaminated groundwater. In some cases, flowback water is treated 
at municipal wastewater treatment plants, and then discharged into regional water
bodies.152 In 2008 and 2009, for instance, TDS levels exceeded drinking water stan-
dards along Pennsylvania’s Monongahela River, a major source of drinking water that
was receiving discharges from flowback water treatment facilities.153 Increased TDS
levels in rivers and waterways can make those ecosystems inhospitable for aquatic life
and unusable for human use.

While there have been accidents, fracking wastewater is not difficult to contain and
dispose of. Wastewater from fracking is either treated before entering water bodies or
pumped underground and away from aboveground water sources.154 Wastewater from
hydraulic fracturing can be reinjected one and a half miles below the surface in the
Barnett shale in Texas but not in the Marcellus shale in Pennsylvania, where the rocks
are not as porous. Where it cannot be reinjected, flowback water is temporarily stored
in pits, embankments, or tanks at the well site after the frack job, and then transport-
ed (usually via pipeline or truck) to a treatment or disposal site. Storage in pits can
lead to groundwater contamination, particularly if the pits are unlined or if the integri-
ty of the lining is compromised. After pit storage, flowback water is typically trans-
ported via pipeline or truck for disposal or, in some cases, treatment. In the majority
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of disposal cases, flowback water is injected into deep porous rock formations, such
as sandstone or limestone, or into or below the shallow soil layer,155 posing a risk for
groundwater contamination.

But surface water contamination is generally associated with water resources down-
stream of treatment facilities, not shale wells. Research by experts at Resources for 
the Future found little trace of contamination downstream from drilling sites, and 
con tamination downstream from wastewater treatment facilities was more significant 
but considered  manageable.156 As the shale gas extraction industry and regulatory
environment  mature, the nation should expect and insist on improved practices with
respect to water use and wastewater treatment.

i i i .  Water  intensity of  energy production

In most cases, both life-cycle water intensity and pollution associated with coal pro-
duction and combustion far outweigh those related to shale gas production. 

Coal resource production requires at least twice as much water per million British
thermal  units (mmBTU) as does shale gas production.157 And while regions like
Pennsylvania have experienced an absolute increase in water demand for energy
production  thanks to the shale boom, shale wells actually produce less than half the
wastewater per unit of energy compared to conventional natural gas.158

Coal-fired power plants consume two to five times as much water as natural gas
plants. Where 520–1040 gallons of water are required per MWh of coal, gas-fired
combined cycle power requires 130–500 gallons per MWh.159 The environmental
impact of water consumption at the point of power generation depends on the type 
of power plant: plants either use evaporative cooling towers to release excess heat, 
or they discharge water to nearby rivers.160 Plants using natural gas combined-cycle
power (NGCC), which captures the exhaust heat generated by combusting natural gas
to power a steam generator, are considered the most efficient large-scale thermal
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power plants. One study found that the life-cycle demand for water from coal power in
Texas could be more than halved by switching the fleet to NGCC.161

All told, shale gas development in the United States represents less than half a percent
of total domestic freshwater consumption, although this portion can reach as high as
25 percent in particularly arid regions.162 All energy development impacts will have
varying effects on different local communities, and these should be considered when
crafting regulations and industrial best practices. Yet the clear and substantial public
health and environmental advantages that shale gas has over coal provide sufficient
justification to support the continued development and improvement of unconvention-
al gas drilling. 
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A.  Accelerate  the  coal - to - gas  shi f t  in  the  United States.  

In light of the clear climate, environmental, and energy-systems benefits of the on -
going shale gas revolution in the United States, governments at the state and federal
level should pursue policies that accelerate the shift from coal to natural gas.

The two maps in Figure 21 show the percentages of natural gas and coal-fired electric
power supplied by each state. In regions where coal supplies much higher portions of
electricity than gas, such as in the Midwest and Great Plains states, coal power plants
should be taken offline as wind grows. Baseload, load-following, and peaking natural
gas power plants should be simultaneously utilized and expanded to add resiliency
and spinning reserve capacity to the grid.163

Figure  21

The le f t  map shows state - level  intens i ty  of  gas  as  percentage of  tota l  e lectr ic  power  genera-
t ion (darker  b lue represents  more gas) ;  the r ight  map shows state - level  intens i ty  of  coal  as
percentage of  tota l  e lectr ic  power  generat ion (darker  brown represents  more coal ) .  Data  f rom
the US Energy I nformat ion Administ rat ion .  Source :  US Energy I nformat ion Administ rat ion and
the Nuclear  Energy I nst i tute.

Where gas and coal compete more directly, such as in Texas and Virginia, policies
should reinforce the switch from coal to gas — allowing gas and next-generation
nuclear to displace coal as the provider of baseload power, and bolstering gas’s role in
providing load-following and peaking power to the grid. Nevada, for instance, recently
initiated regulatory reforms to fully phase out coal generation in the state.164 This
approach creates the opportunity for intermittent renewables to increase their share 
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in the electricity mix without overwhelming the grid, and also accelerates the decar-
bonization of the electricity sector. 

Figure  22

Historically-low prices have made natural gas more attractive than coal. Figure 22
shows that as the price of gas has declined the gas fleet’s nationwide average capacity
factor (the ratio of actual output to potential output) has increased, with the opposite
trend occurring for coal. Between 2003 and 2011 the nationwide average capacity fac-
tor of natural gas combined cycle plants jumped from 34 percent to 46 percent. Over
the same period, the nationwide coal capacity factor has dropped from 72 percent to
just over 60 percent. 

Federal and state governments should ensure that as the price of natural gas rises

from its current unsustainable low, economic and regulatory incentives remain to

sustain the displacement of coal by cleaner and cheaper natural gas. States should
pursue deals with electric utilities requiring them to incorporate natural gas into the
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mix (as Colorado has done with its largest electric utility, Xcel Energy) or embed gas
capacity as firming power into state Renewable Portfolio Standards to maintain system
reliability. At the federal level, the creation of a Clean Energy Standard that includes
both natural  gas and nuclear, or the implementation of a modest tax on power-sector
carbon  emissions, would accelerate the transition. The federal government should also
strengthen EPA regulations through the Clean Air Act, requiring new power plants to
meet stringent CO2 emission standards, and should follow through on its mandate to
extend these standards to existing plants.165

Policy actions that ensure robust, long-term markets for domestic gas resources
should be explored. One option to stabilize long-term prices at sustainable levels
would be for the federal government to approve a limited and strategic volume of

natural  gas for export.

Experts expect that approval of a limited amount of liquefied natural gas (LNG) for
export will have a minor effect on prices and domestic consumption while providing
other long-term customers to gas producers. The Department of Energy and the
Federal Energy Regulatory Committee, which oversee application and approval of natu-
ral gas exports, should consider the impact that strategic volumes of export can have
on the domestic coal-to-gas shift in the United States. 

As recent modeling commissioned by the US Energy Information Administration shows,
natural gas exports would increase economic growth and net domestic gas production,
because the majority of exported gas is expected to come from increased produc-
tion.166 The EIA also concludes that exports would raise natural gas prices from their
current low levels, stabilizing them within the $4–6 per million British Thermal 
Units (mmBTU) price band that many producers say is necessary to cover marginal
production costs.167 Analysts agree that while exports would impose some upward
pressure on domestic gas prices, the magnitude of price increase resulting from 6–10
billion cubic feet (bcf) of exports will happen regardless, as US gas markets reach
equilibrium.168, 169, 170, 171
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Figure  23

Figure  24
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Although the approval of LNG exports will have a limited economic impact, it is an
important policy for the sustained growth of natural gas production in the United
States. Exports are not expected to significantly increase prices, but will help to pro-
vide enough of a price increase to allow gas developers to operate profitably.172

 B .  Ensure  a  steady gas  supply  by  establ ishing c lear,
ef fec t ive   regulat ions  for  safe  and produc t ive  explorat ion.

Addressing the environmental challenges associated with hydraulic fracturing — avoid-
ing groundwater contamination, ensuring safe wastewater disposal, minimizing land-
scape and ecosystem damage, limiting fugitive methane emissions, and others —
should be a chief priority of regulators. Smarter, stringent regulation would ensure
that local industrial activities are safe and provide reassurance to communities.173

Gas development majors and large independent gas producers also favor effective reg-
ulation. While potentially raising operations and compliance costs, regulation ensures
that drilling operations are safe and sustainable. Regulation also prevents smaller
wildcatter developers from skirting compliance measures.174

Regulators should look to best practices in states with experience overseeing oil and
gas industries, including Texas, Pennsylvania, Virginia, and North Dakota. Some states
where shale gas production occurs have regulations pertaining to the type of cement
that must be used and the minimum distance that cement must be applied to the well
casing.175 In Pennsylvania, for instance, casing must be cemented with an ASTM
International–approved cement to a minimum of 50 feet deeper than the deepest fresh
groundwater.176 All shale-producing states should consider similar regulations.

Regulators should enforce rules requiring shale developers to seal wells properly to
prevent groundwater contamination. Heavy fines for methane migration due to poor
cement jobs should be enforced. Moreover, regulators should strictly enforce rules
requiring wells to be sited at a safe distance away from residential and municipal
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wells, freshwater springs, streams, and wetlands. Most states, including Pennsylvania,
New York, Texas, Oklahoma, Ohio, Michigan, and Arkansas are already in the practice
of enforcing safe well-completion and distancing practices.177

With the practice of shale fracturing spread across so many states with different regu-
latory regimes, a role for federal regulation will prove essential. The EPA should coor-
dinate state regulation and work to transfer technical and experiential knowledge from
states with extensive institutional knowledge about drilling (such as Texas) to states
with less experience in fuel production, such as New York and Ohio.

A consortium of energy companies and environmental advocacy organizations has
established a model for state and federal regulations over shale gas. The Center for
Sustainable Shale Development — with partners including the Clean Air Task Force, the
Environmental Defense Fund, Shell, and Chevron — has outlined a series of best prac-
tices to ensure that the industry meets social and environmental standards. These
include a 90 percent water-recycling requirement, tight well casing standards, and
hard limits on discharge of gas into the air at the point of extraction.178

 C .  Expor t  hydraul ic  f rac tur ing technical  exper t ise  
to  nat ions  and regions  where  k nowledge and exper t ise  
i s  l imited.

Despite a decline in domestic coal consumption as the result of the shale gas revolu-
tion, coal is the world’s fastest growing fuel source, led by huge increases in demand
in Chinese and Indian electric power markets. Under business-as-usual projections,
coal is expected to overtake oil as the world’s most consumed energy source within
five years.179 The global availability of shale gas offers tremendous promise to offset 
a portion of the greenhouse gas emissions that will be associated with the global
expansion of fossil-fueled power. The EIA estimates that China, for instance, is sitting
on 1,275 trillion cubic feet of shale gas, compared to an estimated 543 trillion cubic
feet in the United States.180
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However, most countries lack the technological, institutional, and regulatory experi-
ence that has made the shale gas revolution possible in the United States. American
and international development institutions should work toward the development
of shale gas industries in other nations.

The World Bank, the US Export-Import Bank, and the Overseas Private Investment
Corporation (OPIC) should favor shale and other natural gas resources over coal proj-
ects. Cabinet-level tech transfer offices should facilitate the export of safe fracking
technologies and techniques. Development agencies should actively promote emerging
gas resources in energy-scarce regions as a means to boost local energy supply, dis-
place current or future coal production, and provide a platform for electricity growth
and innovation that includes renewables and other low-carbon technologies. 

In 2010 the US State Department launched the Unconventional Gas Technical
Engagement Program (UGTEP) to help countries seeking to develop their shale gas
resources.181 UGTEP works with host governments, and its activities are tailored 
to each country’s specific needs and availability of funding. In the past, UGTEP has
conducted shale gas resource assessments; technical guidance to evaluate production
capability; and workshops and seminars on the technical, environmental, business, 
and regulatory challenges that are associated with shale gas development. Initiatives
such as these should be maintained and strengthened. 

D.  L imit  expor ts  of  domest ic  coal  resources.

As US international development agencies work to expand energy access and initiate
domestic gas exports, the federal government should also limit the export of coal to
international markets. A portion of the emissions progress made by the switch from
coal to gas in the United States is eroded by carbon leakage, as coal volumes not
burned in America are shipped abroad. In 2003, the US exported some 43 billion tons
of coal to countries around the world. In 2008, by which point cheap gas had begun to
drive coal out of the market, the country exported 82 billion tons of coal. And in 2011,
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the US exported an estimated 107 billion tons.182 However, increased exports have
nowhere near offset the decline in domestic coal consumption. For example, as Figure
25 shows, exports in 2012 were 25 million tons higher than in 2011. Domestic con-
sumption, meanwhile, decreased by 140 million tons in 2012. 

Nonetheless, the United States should take all possible steps to limit export of domes-
tic coal resources. One option would be to place a license requirement for exports of
raw coal commodities from the United States, similar to the Department of Commerce
requirement for crude oil exports.183 The construction and operation of coal export
facilities are also excellent targets for climate and environmental activism. 

Figure  25
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E.  Pay  i t  for ward.

Each year since at least 2009, lower natural gas prices due to the shale gas revolution
have resulted in more than $100 billion of additional economic surplus.184 A study by
the economic research firm IHS found that unconventional oil and gas activity generat-
ed $61 billion in federal and state revenues in 2012, and estimates that this figure will
increase to $91 billion in 2015 and $111 billion in 2020.185

The expansion of natural gas must be accompanied by the development and deploy-
ment of other renewable energy technologies — wind, solar, biomass, advanced biofu-
els, advanced batteries and other storage technologies — as well as advanced nuclear
and carbon capture and sequestration technologies. The Obama administration and
members of Congress have already recognized the necessity of paying it forward,
advancing policies that would allocate portions of unconventional oil and gas drilling
revenues for clean energy technologies.186 Proposals such as these should be encour-
aged and advanced vigorously at both federal and state levels.

The implications of paying it forward are enormous. The shale gas revolution is the
result of decades of targeted public and private expenditure on advanced energy tech-
nologies and techniques. Within the next few years the shale gas revolution will have
contributed more to the US economy than all federal expenditures on all energy indus-
tries since 1950.187 We should not underestimate the future benefits of investment in
advanced energy technologies today.
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The transition from coal to natural gas is not unique. The replacement of dirtier, more
expensive, and otherwise inferior energy technologies by newer, better, cleaner, and
cheaper ones is characteristic of all significant energy transitions to date. Wood was
central to human development, as humankind’s primary energy source for at least two
millennia. Fire increased the physical security of human communities, allowed us to
cook hunted animals, increased the amount of protein that we could absorb, and
helped us develop smaller intestinal tracts and larger brains.188 But increasingly–large
human populations using wood for fuel resulted in widespread deforestation, including
the denudation of Europe by the 18th century. Indeed, new research finds that 75 per-
cent of all human-caused deforestation occurred before the 19th century.189

Figure  26

Even so, what led to the replacement of wood energy was not the exhaustion of forests
but rather the emergence of a cheaper and better alternative — coal, the consumption
of which increased tenfold in the last 50 years of the 19th century. One of the oft-
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expressed fears of critics of natural gas production is that natural gas consumption
will simply expand on, rather than reduce, coal use. But if the transition from wood to
coal is any guide, older fuels will be replaced more quickly than they are
supplemented . 

While today we tend to focus on coal’s environmental harms, it is worth recalling that
it replaced hazardous wood–cooking smoke with electricity, contributing as well to
reforestation. Because of the expanded use of coal and other fossil fuels, total avail-
able global energy increased 25 times between 1900 and 2000,190 boosting global liv-
ing standards and life expectancy. Coal was such a popular alternative to wood in the
late 19th century that state governments promoted coal production, just as the federal
government promoted fossil fuel alternatives to whale oil during the same period, and
for similar reasons.

Coal’s longstanding advantages remain: its abundance, its low costs, its reliability as a
source of baseload power, and the low levels of technical expertise required to convert
it to energy. Ensuring affordable energy access remains one of the highest priorities of
policymakers in developing and developed countries alike, and as long as coal is the
cheapest source of baseload power it will remain king. 

While some historians and analysts have treated the shale gas revolution as emerging
deus ex machina from the free market, it was in truth greatly aided by federal subsi-
dies for development, demonstration, and deployment — just as the coal and kerosene
revolutions were subsidized 100 years earlier. This is not to suggest that public
subsidies  were the determining factor — the energy density and relative cleanliness 
of the newer alternative were also key factors. But public policy and subsidies in 
all these cases accelerated the pace at which superior technologies were developed
and deployed.

This history has important implications. If energy transitions are not automatic — 
if they are instead created and aided by public investments and institutions — then
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policymakers should keep one eye on replacing coal with gas and the other on sup-
porting the development of technologies to succeed gas. To a large extent, this has
long been what the United States has done, by supporting the development of natural
gas, nuclear, and renewables even while coal use expanded during the 20th century.
Viewed from the perspectives of history and technology, the natural gas revolution is
best understood as a moment in the process of energy modernization and innovation,
not its end point. 
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