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Abstract

The environmental remediation required to permanently decommission most industrial

projects is an expensive, irreversible investment. Real options literature shows that tem-

porary closure has value under uncertainty. However, even if there is no intention to

restart operations, there is an incentive to label a closure as “temporary,” to avoid hav-

ing to remediate ongoing or future environmental externalities. I estimate a dynamic

discrete choice model of closure under price and quantity uncertainty to evaluate the

likelihood of reactivation. The model reveals that the option to temporarily close is

being widely used to avoid environmental remediation of oil and gas wells in Canada.
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1 Introduction

Once an industrial project, such as a landfill, nuclear power plant, mine, or oil field has

reached the end of its life, the costs associated with permanently decommissioning opera-

tions tend to be very high. Literature on real options has shown that inertia is optimal in

dynamic decisions involving sunk costs in uncertain environments [Dixit, 1989, 1992, Dixit

and Pindyck, 1994]. If there is a chance that a project will be restarted in the future, there

is value to temporarily closing it, and postponing the investment needed to decommission it.

However, once a project is temporarily closed it could remain in a state of hysteresis; there

is a sunk cost to reactivate so even if the forces behind the project’s closure are reversed the

project may still not be reactivated.

There are high sunk costs associated with decommissioning industrial projects because of

the requirements to remediate existing environmental damages and implement measures to

prevent ongoing or future damages. Therefore, by not decommissioning a project, a moth-

balled, or temporarily closed state carries environmental risks that might not be internalized

by the owner of the project. A difficulty, however, arises because regulators not wanting to

cut the life of a viable project short will allow projects to be temporarily closed. It therefore

could be the case that the value of the option to reactivate is zero or negative, but an owner

“temporarily” closes a project as a way to avoid paying for decommissioning. Using a tem-

porary closure in lieu of a permanent closure is facilitated by regulators not having perfect

information on the costs or expectations of the operators.

In this paper I find evidence to help disentangle whether a temporary closure is indeed

being used to avoid environmental cleanup. To the best of my knowledge, this is the first

attempt to understand the true motivations behind temporary closures. To do so, I first build

a dynamic programming model of the choice to temporarily close, decommission, or reactivate

under uncertainty in prices and quantities. I then estimate the structural parameters in the

model using data on historical operating decisions and changes in prices and productivity.

Assuming prices and productivity are believed to follow the same path as in the past, I can

use the fully specified model to predict how likely a reactivation is when presented with ideal
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operating conditions. In doing so, I demonstrate that data on closure decisions can be used

to structurally estimate a real options model, which can be used to test the likelihood that

a temporary closure is in actuality permanent.

I apply this framework to the oil and gas industry. Currently, there are hundreds of

thousands of “temporarily abandoned” oil and gas wells scattered across North America,

including over 3,700 temporarily abandoned wells in the Gulf of Mexico.1 Permanent de-

commissioning of wells is required,2 however regulators, not wanting to impede production,

make temporary closure an option, despite the potential environmental externalities of not

decommissioning.3 Postponing permanent decommissioning also increases the risk that a

firm will declare bankruptcy before undertaking the expense of the environmental cleanup.

The inventory of “orphaned wells,” or wells without a party responsible for plugging, is quite

startling: New York for example has 44,600, Pennsylvania has over 100,000, and Texas has

roughly 10,000.4 Furthermore, there is a current boom in drilling for oil shale and shale gas

making it evermore important for policymakers to understand firms’ incentives to environ-

mentally remediate wells once they are exhausted. Therefore, I use data on the decisions

made for 84,000 conventional oil and gas wells in Alberta, Canada to estimate the structural

parameters of the dynamic programming-real options model of well operating decisions. This

paper has two main contributions.

The first contribution is in testing the goodness-of-fit of a real options model to actual

firm behavior. Real options models extend the Black and Scholes [1973] and Merton [1973]

theory for financial options to that of irreversible real investments. Unlike the case of financial
1According to the Bureau of Ocean Energy Management’s Borehole Dataset

http://www.data.boem.gov/homepg/data_center/well/well.asp.
2This involves “plugging & abandonment,” where equipment is removed, groundwater formations are sealed

with cement and the surrounding land reclaimed.
3Not permanently decommissioning an oil or gas well increases the risk of contamination of the atmo-

sphere, drinking water, vegetation, and soil; lost productivity of other wells in the same pool; erosion; forest

fragmentation; and even explosions [Kubichek et al., 1997, Williams et al., 2000, Mitchell and Casman, 2011].
4According to the Interstate Oil and Gas Compact Commission’s (IOGCC) Orphaned Wells State’s

Progress http://groundwork.iogcc.org/topics-index/orphaned-wells/state-progress and [Railroad Commission

of Texas, 2006].
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derivative models, empirical investigations testing the fit of real options models to data are

rare. Gamba and Tesser [2009] note that this is due to two factors: the values of the state

variables are often not observed and there is quantity uncertainty. In this paper, I circumvent

these two issues through the use of a dataset on the reserve estimates of oil and gas pools

over time. This is the first time these data have been used in the economics literature and

they provide annual estimates for of the remaining reserves of over 42,000 oil and gas pools.

These data provide me with information not used in previous studies: an estimate of a

project’s current productivity as well as a way to estimate uncertainty in its productivity

in the future (i.e., technological advances in enhanced recovery methods that might increase

recoverable reserves). This information is key in determining the likelihood that a well will

be reactivated; without data on reserves I would not be able to distinguish whether a well is

inactive because the decommissioning costs are high or because the remaining reserves are

significant enough to warrant reactivation in the future.

Much of the literature on real options relies on examples from the natural resource indus-

try and models of many different discrete decisions in the industry have been developed.5 The

empirical work on real options has relied on having data for the cost parameters rather than

structurally estimating these parameters, thereby restricting investigations to small sample

sizes and results to a comparison of stylized facts from the predictions of real options to

the data (e.g., Moel and Tufano [2002], Paddock et al. [1988], Slade [2001], Harchaoui and

Lasserre [2001], and Hurn and Wright [1994] examine irreversible investments in natural re-

source industries and all use data on fewer than 300 projects). Exceptions are from dynamic

models of the decision to drill oil wells, Levitt [2009] focusing on the effect of learning and

Kellogg [2010] on the effect of price volatility. However, these papers also do not measure

quantity uncertainty.

The second contribution is in presenting a framework to understand the relative impor-
5Indeed, even the same three choices presented in this paper (to activate, inactivate, or decommission a

project) have been modeled by Brennan and Schwartz [1985], Castillo-Ramirez [1999], Cortazar and Casassus

[1998], Cortazar et al. [2001], Stensland and Tjostheim [1989], Dixit and Pindyck [1994], and Gamba and

Tesser [2009]. However, these authors did not apply their models to real data and treated decommissioning

costs as negligible.

4



tance of the value of investment flexibility and the perverse incentive to avoid cleanup costs.

The extent to which permanent closures are being labeled as temporary has not been raised

or investigated before. Throughout the real options literature, the permanent closure option

is often downplayed. Decommissioning costs are treated as negligible or null [Brennan and

Schwartz, 1985, Dixit and Pindyck, 1994], or the option of decommissioning is completely

left out of the choice set [Moel and Tufano, 2002, Slade, 2001, Mason, 2001, Paddock et al.,

1988]. By assuming away decommissioning costs, the previous literature has overlooked the

case of firms continuing to maintain the option to reactivate a project, even when they have

no intention, or there is no option value, to reactivate. When the costs from mothballing

a project are small relative to the decommissioning costs, this behavior would be privately

optimal, but when there are environmental externalities associated with mothballing, this

behavior would not necessarily be socially optimal. If there is no potential or intention to

reactivate a hazardous project, regulators have reason to implement policies to ensure that

environmental obligations will be met.6 The framework presented in this paper is important

because the effectiveness of any policy relies on the underlying reasons for the temporary

closures at hand.

The estimated model suggests that only with a drastic, arguably implausible, increase

in prices and recovery rates will there be a significant increase in the number of reactivated

oil and gas wells, implying that wells are typically left inactive not because of the option to

reactivate, but rather to avoid costly environmental obligations. This is a function of the

expected value of a reactivated well being less than the expected value of an inactive well,

even when an operator is in an ideal state of nature. Considering that energy independence

is frequently sought by policymakers, it is also important to consider the quantity of oil or

gas that the reactivated wells might contribute to the energy supply. Under high oil and

gas prices, the recoverable reserves increase (more so for gas than oil), but nonetheless, the
6One of the main reasons for a policy to induce prompt environmental cleanup is the risk that the firm

will declare bankruptcy. The concern that oil and gas companies may walk away from their environmental

obligations has been brought up by Boyd [2001], Parente et al. [2006], and Ferreira et al. [2003]. While

these authors discuss bonding mechanisms, the model here can be used to quantify the effect of a bond on

production as well as the choice to undertake cleanup.
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number of reactivated wells remains minimal. Furthermore, the model predicts that the

contribution to the oil and gas supply from these reactivated wells is only marginal. These

findings have far reaching implications for the oil and gas industry. If decommissioning costs

are not being internalized, the development of oil and gas reserves would be at a rate above

what is socially optimal. The policy implication would be to create stronger mechanisms

to internalize the costs of decommissioning. One such mechanism is to increase bonding

requirements, which are arguably too low at present.7 This paper demonstrates that in

designing policies to decommission oil and gas wells unnecessary weight has been placed on

not jeopardizing production.

2 Oil and Gas Well Background

This paper focuses on Alberta, the main oil and gas producing province of Canada.

Extensive record keeping in Alberta has resulted in comprehensive data on the industry.

Also, there is no limit to the length of time that a well can be left inactive in Alberta.8 In

the U.S., even when there is a time limit, permission for extended “temporary abandonment”

is easily granted and the fine for leaving a well inactive without permission is usually small;

for example, in Kansas the fine is only $100 [State Corporation Commission of Kansas, 2010].

Because of the externalities associated with not decommissioning a well, it is required that

wells be decommissioned, but it is up to the producer to decide the time frame. The economic

lifespan of a well is uncertain and by allowing temporary closure, the option to reactivate

remains should prices or technology improve. Some wells have not produced any oil or

gas in the last 60 years; nevertheless, this closure is still classified as temporary because

the wells have not been permanently decommissioned. The cleanup costs associated with
7For example, a blanket bond of $150,000 will cover all wells drilled on federal land in the U.S. This bond

amount was set in 1951 and does not reflect actual reclamation costs: between 1988 to 2009, BLM spent

around $3.8 million to reclaim 295 orphaned wells [United States Government Accountability Office, 2010].

And in the case of Alberta, there are no bonding requirements.
8The regulator does have the authority to order that a wellsite be decommissioned; however, this is not a

common occurrence and the order is often rescinded or amended. For example, in 2007 there were only 6 well

abandonment orders and in 2006 there were 19 well abandonment orders, but as of June 2009 only 2 of these

wells had been abandoned [Alberta Energy Regulator, 2013a].
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decommissioning in Alberta range from $20,000 to several million dollars per well [Orphan

Well Association, 2008], whereas the cost that a producer must pay to keep a well inactive

is usually only the payment to the owner of the surface rights.9 The sheer volume of wells

that have been drilled (over 2.5 million in the United States10 and in Alberta over 225,000

that will eventually need to be decommissioned) make examining the factors influencing the

decision to environmentally remediate a worthwhile endeavor.

An operator might incur losses to maintain an inactive well when it is not currently

profitable to produce oil or gas in the hopes that prices or technology improve. According

to the data on reserves used in this paper, the percent of hydrocarbon in place that is

recoverable (i.e., the recovery rate) ranges from .01% to 90% for oil and from 15% to 95% for

gas. However, once a well is inactive, because of the sunk cost to reactivate or decommission,

even if recovery rates improve or diminish, the well may remain inactive. This hysteresis is

directly modeled in this paper, but there are other reasons for inactivity that are not explicitly

modeled, but enter via an error term that compensates for unobservable states: (1) technical

difficulties (for example, blockage in the wellbore, a leak caused by corrosion or erosion, an

external fire, or a temperature change causing mechanical failure), (2) pipeline failure or

pipeline capacity reached, (3) gas plant capacity reached, or (4) a mandated suspension for

exceeding the maximum rate limit assigned to the well by the regulator.11

The development of enhanced recovery methods, including hydraulic fracturing and hor-

izontal drilling, has brought wells back into production after many years of inactivity and
9 The annual payment for a wellsite is based on “loss of use” and “adverse effects” only (not land value

or entry fee which is paid one time in the first year). Compensation must be paid until the mineral rights

owner has received a reclamation certificate. The annual payments range between $167 and $600 per acre for

loss of land use and between $117 to $2,500 per acre for general disturbance [Alberta Agricultural and Rural

Development, 2010].
10U.S. Energy Information Administration’s U.S. Crude Oil, Natural Gas, and Dry Exploratory and Devel-

opmental Wells Drilled:

http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=E_ERTW0_XWC0_NUS_C&f=A
11Various wells must conform to maximum rate limitations set by the industry regulator. These limits are

to ensure that the cumulative amount of oil or gas extracted is maximized. In this model I do not truncate

by the maximum rate limit because only about 10% of the wells have limits placed on them, and for only a

portion of those wells is the rate limit binding.
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recoverable reserves have been seen to increase rather than decrease with time. Reserve

growth was first examined by Arrington [1960] using his own company’s reservoir data. And

since then reserve growth has been studied using state or state subdivision estimates of ini-

tial established reserves from the American Petroleum Institute [Morehouse, 1997] or a small

number of pools [Verma and Henry, 2004]. This is the first time that such a large dataset on

reserves has been used to study reserve growth.

2.1 Environmental Impacts

The fact that technological advances can increase recoverable reserves over time increases

the value of waiting to decommission a well. However, without proper decommissioning

(and in some cases, even after proper decommissioning) a well poses a risk to vegetation,

soil, surface water, and underground aquifers. Many wellbores extend thousands of meters

underground, and it is often only a steel casing or cement that isolates the different forma-

tions. The casing might rust out or crack (especially when sand or salt water is lifted along

with the hydrocarbons), and contaminants such as uranium, lead, salt, iron, selenium, sul-

fates, and radon [Kubichek et al., 1997] may enter into formations that contain fresh water.

The likelihood of this occurring increases when injection from disposal or enhanced recovery

builds pressure [Canter et al., 1987]. The most prevalent contaminant, methane, poses the

risk of explosion if migration accumulates in adjacent buildings (for a list of explosions in

Pennsylvania, some leading to fatalities, attributable to fugitive methane see Pennsylvania

Department of Environmental Protection [2009]). Decommissioning a well does not guaran-

tee that there will not be any leaks, but the risk is much reduced as compared to active or

inactive wells. Unplugged wellbores would also prevent the future use of a reservoir for car-

bon capture and storage [Watson and Bachu, 2009]. Furthermore, by not reclaiming the land

there is not only the opportunity cost of an alternative land use, but unreclaimed well pads

and related infrastructure can contribute to habitat fragmentation [Schneider et al., 2010].

And finally, revegetating may also reduce any increased turbidity in downstream rivers and

streams caused by wellsites [Olmstead et al., 2013].

In Alberta, it is required that all wells eventually be decommissioned; however, it is,

in effect, left up to the firm to decide when to decommission. Decommissioning a well
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entails plugging and abandoning and reclamation. Plugging and abandoning refers to leaving

the wellbore in a permanently safe and stable condition so that it can be left indefinitely

without damaging the environment. It is required that all non-saline water formations are

shutoff with cement [Alberta Energy Regulator, 2010b]. Reclamation includes removal of

any structures, decontamination of land or water, and reconstruction of the land [Alberta

Environment, 2000]. Because the risk of environmental contamination is lower after plugging

and abandoning, a company’s liability is lower, however it is not completely eliminated.

Companies retain ongoing responsibility for wellbore integrity after plugging and abandoning

a well [Province of Alberta, 2000].

The Alberta Energy Regulator estimates abandonment costs range from $9,067 to $84,659

and land reclamation costs from $13,200 to $33,700 [Alberta Energy Regulator, 2013b] how-

ever abandonment and reclamation costs can dramatically surpass these figures. For example,

the Orphan Well Association spent over $2 million to re-enter and repair one orphan well

[Orphan Well Association, 2008] and has spent on average $23,000 per site in reclamation

costs [Orphan Well Association, 2013]. While plugging and abandoning a well might pre-

vent litigation or remediation costs associated with fluid or gas leakage [National Petroleum

Council, 2011], it is difficult to quantify the cost of the ongoing environmental damages from

unplugged, unreclaimed wells. The externalities associated with these wells depends on the

well location (for example, if the well intersects the range of the woodland caribou [Schnei-

der et al., 2010] or is near any houses12), whether there is any groundwater contamination,

or fugitive emissions of methane (a potent greenhouse gas) to the atmosphere. However,

methane leakage is poorly quantified [Alvarez et al., 2012] as are the existence values of

threatened species. Litigation for groundwater contamination13 provide insights into the

cost of groundwater contamination in the worst cases, however, it is difficult to value the

externalities from a given inactive well. Therefore this paper proceeds under the assumption

that the regulation requiring decommissioning is in place because the averted environmental

impacts outweigh the costs of decommissioning.
12“Leaky Calmar well forces demolition of homes,” CBC News, December 6, 2010.
13“Calgary judge hears $33M lawsuit over natural gas drilling,” CBC News, January 18, 2013.
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3 Data

The data collected on the oil and gas industry in Alberta are unrivaled in their compre-

hensiveness and accessibility. Here, five datasets of the Albertan oil and gas industry are

used. The first dataset is a panel of production from the universe of oil and gas wells in

Alberta. Obtained through IHS Incorporated, which distributes the records collected by the

Alberta Energy Regulator14 this dataset contains monthly oil and gas production informa-

tion dating back to 1924, with complete records starting after 1961. There is information on

a well’s location (latitude and longitude as well as the name of the field and pool it is on15),

depth, license date, spud date (the day the drill hit the ground), and on-production date,

plus the names of the current and original operators (unfortunately there is no information

on whether a well switched hands between these operators).

The second dataset is a panel of official reserve estimates of all nonconfidential pools in

Alberta from both the Alberta Energy Regulator and the National Energy Board of Canada.16

The dataset spans 2000 to 2007 and contains 67,142 oil and gas pools, although not observed

in every year. The year that the estimate was last reviewed is listed, and therefore the data

are extended to years prior to 2000 if the last review date of the pool was before 2000. This

dataset contains (1) initial oil or gas in place; (2) recovery factor, which is the fraction of

the oil or gas in place that can be extracted “under current technology and present and

anticipated economic conditions” [Alberta Energy Regulator, 2008]; (3) initial established

reserves, which is equal to the initial oil or gas in place multiplied by the recovery factor;

and (4) remaining established reserves, which is the initial established reserves minus the

cumulative production and surface loss. Each pool contains information on characteristics of

the pools and hydrocarbons in those pools, such as porosity, initial pressure, area, density,

temperature, and water saturation among others.

The third dataset is a list of all wells that were permanently decommissioned (plugged
14Formerly called the Energy Resources Conservation Board (ERCB).
15An oil field is the geographical area that a well is drilled. A field can have multiple pools, but each pool

is a distinct reservoir that is confined within impermeable rock or water.
16All pools eventually lose their confidential status (usually after one year), and so this dataset contains

nearly all pools in Alberta.
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and abandoned and reclaimed). To decommission a well entails that the well has met aban-

donment standards set by the Alberta Energy Regulator [Alberta Energy Regulator, 2010b]

and reclamation standards set by Alberta Environment [Alberta Environment, 1995], and re-

ceived a reclamation certificate from Alberta Environment or Alberta Sustainable Resource

Development or was exempted from certification. The dataset contains both wells that were

abandoned, along with the date of abandonment, and the wells that received a reclamation

certificate or were reclamation exempt.

The fourth dataset consists of GIS shape files that designate areas that, according to

the Petroleum Services Association of Canada (PSAC), have similar costs in production and

drilling (the areas are further described in the Appendix Figure 3 and Table 6). The PSAC

boundaries and well locations were entered into ArcView GIS to assign a PSAC area to each

well.

The final dataset is the average wellhead price of crude oil and natural gas in Alberta, ob-

tained from the Canadian Association of Petroleum Producers’ Statistical Handbook [CAPP].

The wellhead price is inflated to 2007 dollars using Statistics Canada’s quarterly machinery

and equipment price index for mining, quarries, and oil wells.

A panel is created where each well is classified as active, inactive, or decommissioned for

each year from when it was drilled until 2007. A well is classified as active if it produced

any volume of oil or gas within that year; classified as inactive if it did not produce oil or

gas in 12 months or more; and classified as decommissioned if it appeared in the dataset of

decommissioned wells.

The full dataset of the universe of wells in Alberta is pared down to a subsample that

is used for the estimation. Excluding coalbed methane, heavy oil, injection, and water

wells, there are 350,457 wells in the production dataset. The decision to decommission,

stop production, or reactivate a well depends on the remaining oil and gas reserves, and

so the full sample is restricted to only those wells that have a reserve estimate. Of the

350,457 wells, 105,207 are in a pool that is listed in the reserves dataset. The result of

this restriction is that the analysis corresponds to wells that are, or once were, deemed

producible, i.e. not “dry holes.” Wells that are drilled but do not tap into an oil or gas pool
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are more likely to be decommissioned without being completed, and they will also not show

up in the subsample. More than 45% of the wells that are decommissioned in Alberta are

decommissioned immediately after being drilled. The results from an estimation using the

subsample, cannot be generalized to all wells in the full sample, but could be generalized

to wells in the full sample that at one time produced.17 Whether to complete a well for

production is a separate decision from whether to produce from an already completed well.

And indeed, it is more challenging to determine the future of wells that have, or once had, a

potential for production as opposed to those that definitely cannot produce.

The subsample is further reduced by deleting wells that traverse both oil and gas pools.

Doing so does not significantly reduce the size of the subsample (from 105,207 to 94,009);

however, it does significantly reduce the computational complexity because modeling the

choice to produce oil or gas is avoided without losing much insight into the choice of operating

state.

The majority of the wells have small reserves and only a few have large reserves, some

being extremely large–for example, the largest gas reserve is 1,500 times larger than the mean

gas reserve (Table 1). The pools with large reserves have more than one well–as many as

4,151 wells in a gas pool and 711 in an oil pool.

17The similarity between age at decommissioning for wells in full sample that produced and all wells in the

subsample are shown in Appendix Figure 7.
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Table 1: Summary Statistics
Variable No. of Obs. Mean Std. Dev. Min Max Unit
Qgas 118187 15.23 62.95 0 8800 E6m3

Qoil 54523 27.09 237.07 0 43871 E3Barrels
Wellhead Pricegas 37 111.90 64.76 25.89 293.91 2007C$ /E3m3

Wellhead Priceoil 37 30.16 12.12 12.88 64.45 2007C$ /Barrel
Agegas 61876 19.86 15.76 1 104 Years
Ageoil 31430 16.58 12.15 1 94 Years
Qgas 118187 32.97 297.79 0 51271 E6m3

Qoil 54523 135.64 1026.83 0 104866 E3Barrels
No. of Wells in Poolgas 118187 3.59 47.02 1 4117 Wells
No. of Wells in Pooloil 54523 4.44 17.91 1 699 Wells
qgas 322907 1.68 8.27 0.0001 568.39 E6m3

qoil 155773 7.27 14.51 .001 822.95 E3Barrels
Depth 93239 1197.53 690.36 90.9 6552 m
Porositygas 22452 .20 .08 0.01 0.4 Fraction
Porosityoil 25894 .16 .07 0.01 0.36 Fraction
Densitygas 22452 .64 .08 0.54 2.03 kg/m3

Densityoil 25894 868.64 48.01 708 999 kg/m3

Initial Pressuregas 22452 9038.08 7564.57 130 99625 kPa
Initial Pressureoil 25894 12568.80 5688.37 1442 61097 kPa
Temperatureoil 25894 50.14 20.34 9 350 C ◦

Water Saturationoil 25894 .31 .12 0.06 0.82 Fraction
Wells per Firm 1196 281.93 2015.26 1 44095 Wells
Pool Discovery Yeargas 22452 1989.67 13.90 1904 2007 Year
Pool Discovery Yearoil 25894 1988.31 12.40 1910 2006 Year
Area of Poolgas 22452 854.43 9908.34 1 598512 Acres
Area of Pooloil 25894 183.94 554.36 1 17890 Acres
Duration Inactiveoil 9556 8.39 8.33 0 73 Years
Duration Inactivegas 12298 9.58 10.23 0 78 Years
Duration Activeoil 14472 10.11 9.11 0 46 Years
Duration Activegas 34047 11.35 11.85 0 46 Years

Notes: Statistics for wells in the subsample. Data on remaining reserves (Q) are listed for pools, 1993 - 2007.
Extraction (q) is listed for wells, 1993 - 2007. The pool-specific variables– depth, porosity, density, initial
pressure, temperature, water saturation, and discovery year are time invariant in the data. Data on the age
of the wells, and duration active and inactive are a snapshot of 2007. Price data are the wellhead price from
1971 to 2007. E3 = 1000.

The production dataset contains firm-reported volumes to which the accuracy is difficult

to attest. The Alberta Energy Regulator identifies cases when there is any difference in the

reported production of oil from a production company and a pipeline company. When the

difference is 5% to 20% of reported gas volumes, the penalty is only a warning message.

Further misreporting results in a fee of $100 if a well does not report in a given month, and

upon persistent noncompliance the firm might be subject to increased audits or inspections,

or partial or full suspension [Alberta Energy Regulator, 2010a]. Nonetheless, to the best of my

knowledge there is no other dataset of this size or comprehensiveness of any natural resource

industry. And with these data the composition of active, inactive, and decommissioned wells

can be replicated to match reality closely.
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Table 2: Distribution of operating choice for inactive wells by age
Number of Proportion Proportion Proportion

Age (in years) Observations Reactivated Stay Inactive Decommissioned
(Oil) (Gas) (Oil) (Gas) (Oil) (Gas) (Oil) (Gas)

1 ≤ age < 10 18963 21091 0.110 0.194 0.874 0.790 0.016 0.015
10 ≤ age < 20 19892 14965 0.056 0.066 0.922 0.915 0.022 0.019
20 ≤ age < 30 7997 11234 0.057 0.075 0.914 0.897 0.029 0.028
30 ≤ age < 40 2340 4791 0.046 0.054 0.928 0.913 0.026 0.033
40 ≤ age < 50 2176 3135 0.030 0.042 0.945 0.929 0.025 0.030
50 ≤ age < 60 704 1461 0.024 0.027 0.953 0.955 0.023 0.018
60 ≤ age < 70 131 503 0 0.010 1 0.990 0 0
age ≥ 70 50 157 0 0 1 0.987 0 0.013

Notes: Data from 2000-2007 subsample.

Table 2 shows the proportion of inactive oil and gas wells that have been reactivated,

left inactive, or decommissioned by different age intervals. The table illustrates that the

hysteresis of inactivity increases as wells age. The proportion of inactive wells that are

reactivated decreases with the age of the well and the proportion of inactive wells that are

decommissioned increases then decreases with age.

4 Model

In order to capture the value of leaving a well inactive, I construct a real options model

that includes the following features: the operating state is dynamic and can be changed now,

or at some later date; there are unrecoverable sunk costs to changing operating states; and

future prices and recovery are uncertain. The producer’s decision to extract, 1; temporarily

stop extraction, 2; or permanently decommission and remediate environmental damages, 3,

is modeled as an infinite time Markov Decision Process [Rust, 1994]. It is assumed that the

producer is rational and follows a decision rule, dt = δt(st, εt)∞t=0, that maximizes the expected

discounted sum of profits, V (s, ε) = maxδ Eδ
[∑∞

t=0 β
tπ(st, dt, εt|s0 = s, ε0 = ε)

]
, where V is

the value function for the well when choosing the optimal choice, δ, and depends on observed

state variables s, and an unobserved random “payoff shock,” ε, different for each choice. The

instantaneous profit, π(·), is discounted by discount factor β, 0 ≤ β ≤ 1. The observed state

variables, s, include the age of the well, A, the wellhead price of the hydrocarbon, P , the

per-well remaining reserves, Q, and the current operating state, o. The current operating

state (o = active, 1; inactive, 2; or decommissioned, 3) is endogenous to the decision, and
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the remaining reserves per well are endogenous (when the operator extracts oil or gas) and

exogenous (upon technology change or if another well is in the same pool).

The model assumes that the producer maximizes lifetime profits only through the exten-

sive decision for the operating state, but not through the intensive decision for how much to

extract.18 If the producer decides to extract, the per-period quantity recovered is a random

draw from a distribution that depends on the remaining per-well reserves, the age of the

well, and parameters, α, estimated in a separate estimation outside the dynamic program-

ming model (i.e., the expected production is Eq =
∫Q

0 qfq(y|Q,A, α)dy). The profit (equation

(1)) if the producer decides to produce is equal to the expected quantity recovered, Eq, times

the price of the hydrocarbon, P , less the per unit extracted royalty rate (or severance tax),

R, and a per-unit lifting cost to extract, C.19 The per-unit lifting costs also depend on age,

per well-reserves, and parameters, θ, to be estimated, C = Cg(Q,A, θ).20 The royalty rate in

Alberta adjusts according to price and quantity produced, R = R(P, q). This profit is then

reduced by the corporate income tax, τ , assumed flat for all wells. If the current state of the

well is inactive, there is a switching cost to activate, SC(2→1).
18The implication of not simultaneously modeling the decision of whether to extract and the decision of

how much to extract is that there will be a disconnect between the lifetime profit-maximized quantity and the

expected quantity I estimate outside of the model, which in turn could bias the predicted duration in a given

operating state. However, the assumption rests on the assertion that extraction is mainly driven by reserve

size and geologic factors which producers do not have full control over (further discussed in Section 5.1.1).
19Note that I do not include a fixed cost of extraction. When I include a fixed extraction cost, the estimated

parameters converge to the lower and upper bounds specified for the parameters. Presumably this is because

fixed costs are difficult to identify (as further discussed in Section 5.2).
20Chermak and Patrick [1995] and Foss et al. [2002] show how the lifting cost of natural gas depends on

quantity extracted and remaining reserves. Chermak and Patrick [1995] use data from 29 gas wells in Wyoming

and Texas from 1988 to 1990, and Foss et al. [2002] use data from 22 gas wells in Alberta for roughly three

years. They both find that operating costs increase with quantity extracted and decrease with remaining

reserves. It is expected that extraction costs rise as reserves are depleted; however, Livernois and Uhler [1987]

explain that the discovery of new reserves can increase the reserves by more than what is extracted, but these

new reserves are more costly to extract. This is how Livernois and Uhler [1987] explain a positive relationship

between extraction costs and reserves using aggregate data from the Albertan oil industry. However, upon

disaggregation, they find the typical results of extraction costs increasing with reserve depletion and quantity

extracted.
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If the producer instead chooses that the well be inactive, the producer pays a annual

inactivity cost, M , and if the current state of the well is active, a switching cost SC(1→2).

To decommission a well is to enter an absorbing state for which the producer pays a

one-time switching cost, SC(1,2→3), assumed to be the same for active and inactive wells.21

Leaving the well in its current state entails no switching costs, SC(1→1) = 0, SC(2→2) = 0,

and SC(3→3) = 0. The expected profit from a single period is:

π(s, d, ε) =


((1−R)P − C) Eq − τ max{((1−R)P − C) Eq, 0} − SC(o→1) + ε1 if d=1

−M − SC(o→2) + ε2 if d=2

−SC(o→3) + ε3 if d=3

(1)

The expected present discounted value of the well can be expressed as the unique solution to

the Bellman equation22:

V (s, ε) = max
d

[π(s, d, ε) + β

∫
s′

∫
ε′
V (s′, ε′)h(s′, ε′|s, ε, d)dε′ds′]

The state transition probability density function, h(s′, ε′|s, ε, d), is assumed to be a

Markov process. The Conditional Independence assumption, as per Rust [1987, 1988], is

adopted, allowing for the factorization, h(s′, ε′|s, ε, d) = f(s′|s, d)ρ(ε′|s′). Specifically in the

case of this model, the state transition probability density function can be written:

h(Q′
, P ′, A′, ε′|Q,P,A, ε, d) = fq(Q−Q′|Q,A, d)fQ(Q′|Q,P )fP (P ′|P )fA(A′|A)ρ(ε′|Q′

, P ′)

Price is assumed to follow the exogenous process fP (P ′|P, ς), characterized by param-

eters ς. Recoverable reserves decrease from extraction but also increase or decrease from

new discoveries, revisions, or technological change and follow fQ(Q′|Q,P, φ). The quantity

extracted, q, is modeled as a random draw from the density, fq(q|Q,A, α). The payoff shocks

follow the transition probability ρ(ε′|s′), but I assume that ρ(ε′|s′) is independent of s so

the payoff shocks are assumed to be independent and identically distributed (i.i.d.) across
21It is not necessary to make decommissioning an absorbing state, but in the sample there are only 261 ob-

servations of a switch from decommissioned to active, whereas there were 22,308 observed deactivations, 15,369

reactivations of inactive wells, 1,917 active wells decommissioned, and 3,664 inactive wells decommissioned
22Following Blackwell’s theorem (outlined in Rust [1994], Theorem 2.3).
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choices, state variables, and time. They capture unobserved, current period events that make

a choice more or less expensive for the operator. For example, the shocks would capture a

blowout that forces the operator to shut in an active well or capture an unexpected surplus

of available workover rigs that make it cheaper to reactivate or decommission a well. While

it is possible to allow serial dependence in the process {ε} (see Norets [2009]), it is compu-

tationally burdensome and as a first approximation, the main dependencies are captured by

the serial dependence in the observed state variables.

This paper abstracts away from modeling the decision to decommission as a function

of the strategic interaction between agents competing for the same oil. The common pool

resource problem would arise if more than one company competes for a migratory hydrocar-

bon [Libecap and Wiggins, 1984, 1985]. However, each oil and gas pool in the sample is a

distinct reservoir that is confined within impermeable rock or water and so only within pools

would we expect to see behavior influenced by the common-pool. For the majority of the

pools in this paper only one firm has access to the pool and the number of wells in a pool

is small (Table 1). The average number of wells in a gas pool is 3.5 (and 4.4 for oil pools),

but the majority of the time there is only 1 well per pool (the median and mode are 1 for

both oil and gas). This may be driven by the fact that 81% of the mineral rights in Alberta

are owned by the Crown, and then leased to companies, whereas in the U.S., mineral rights

are mainly determined by surface landownership resulting in more fragmentation of mineral

rights.23 Nonetheless, observations of wells that are in pools that have no other wells are

modeled and estimated separately from wells that are in pools with other wells. Wells in

single-well pools and multi-well pools are modeled differently through their transition prob-

ability of recoverable reserves from extraction, fq. For wells on single-well pools, only when

the decision is to extract, d = 1, is the transition probability of reserves dependent on the

probability of how much can be extracted, fq(Q−Q
′|Q,A, α, d), while for wells on multi-well

pools, reserves transition according to this probability whether the operator extracts or not,
23In Alberta, most leases are for one quarter section (160 acres). Only one oil well can be drilled on a

quarter section, and only one gas well on one section (a company must obtain the mineral leases for all four

quarters of the section).
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fq(Q − Q
′|Q,A, α). Exogenous to whether the well is active or not, recoverable reserves

also follow another process, fQ(Q′|Q,P, φg), that accounts for the probability of change from

improved technology, discoveries, reassessment, and additions. The per-well reserves, Q, also

decrease whenever another well is drilled in the pool. It is assumed that the number of new

wells drilled is an exogenously determined random shock.24 The probability of a decrease in

per-well reserves by another well being drilled is incorporated into the exogenous change dic-

tated by the transition probability density fQ. Although there may be strategic interactions

between different firms extracting from the same pool, modeling these in the probability of

reserve decreases of multi-well pools is beyond the scope of this paper. A justification for

this simplification is that a large fraction of the multi-well pools are operated by a single

firm25, alleviating much of the concern of strategic extraction driven by the common-pool.

However, it could still be the case that firms are making joint decisions for all the wells in

the same pool, yet the model is treating these as separate decisions. Given that not all wells

in the same pool have the same operating state, this is not a very large concern, however if

joint decisions were being made it would be because of increasing returns to scale in which

case I would be under-estimating the per-well costs.

Assuming that ε is drawn from the type I extreme value distribution, the Bellman equation

becomes [Rust, 1988]:

Vθ(s, ε) = max
d

[vθ(s, d) + bε(d)]

where θ are the parameters to be estimated for each well group (including the cost parameters

in the profit equation and the parameters in the transition probability density functions) and

vθ is the fixed point of vθ = Γ(vθ), where Γθ is a contraction mapping:

Γθ(v)(s, d) = π(s, d, θ) + β

∫
s′
b log

3∑
d′=1

[
exp

{
vθ(s′, d′)

b

}]
f(s′|s, d)ds′ (2)

24For a model of where to drill for oil and gas, see Levitt [2009].
25On average there are 1.8 (1.9) firms per oil (gas) pool but 54.1% (49.9%) of the oil (gas) pools only have

one firm and pools that have more than one firm are larger (2.6 (4.2) times for oil (gas)).
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with location parameter of the extreme value distribution of ε normalized to zero and scale

parameter, b, to be estimated.26

The assumption of the extreme value distribution27 allows for a closed form solution of

the choice probabilities–that of the multinomial logit:

p(d|s, θ) =
exp vθ(s,d)

b∑
d′ exp vθ(s,d′)

b

(3)

5 Estimation

The estimation consists of three stages. First, I estimate the parameters of the producer’s

subjective belief for how the state variables progress over time as a standard parametric

estimation. Second, the parameter estimates from the first stage are taken as given, and

the remaining parameters in the Bellman equation, the costs in the profit function, are

estimated via the Nested Fixed Point Algorithm [Rust, 1987]. Nested within the algorithm

to maximize the likelihood function of the choice probabilities (equation (3)), there is an inner

algorithm to compute the fixed point, vθ, of equation (2). The outer loop of the algorithm, the

maximization of the likelihood, was submitted to the solver KNITRO [Byrd et al., 2006]. The

inner loop, which solves the fixed point of equation (2), consists of successive approximations

followed by Newton-Kantorovich iterations. The third step is to obtain consistent standard

errors from the full likelihood function. The parameter values from the first stage contain a

measurement error, but they are treated as the true parameters in the second stage, and so

the standard errors for the second stage parameters are inconsistent. To obtain consistent

standard errors, the consistent parameter values from the first and second stages are used as

starting points for one Gauss-Newton step of the full likelihood function [Rust, 1994].

Well-level heterogeneity is accounted for by estimating the dynamic programming model

separately for different well-types, g. All wells of the same type are treated as homogeneous,
26A location parameter of zero means that ε has a mean zero; a scale parameter of one would mean ε has a

variance of π2/6. As b approaches zero, Vθ(s, ε) converges to the ordinary Bellman equation.
27Dagsvik [1995] showed that the generalized extreme value class is dense; choice probabilities from any

distribution can be approximated arbitrarily closely by choice probabilities from the generalized extreme value

class.
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and wells of the same type that also have the same reserve size and the same age are assumed

identical. The well types are determined by (1) whether the well is an oil or gas well, (2)

whether the well is in a single-well pool or a multi-well pool, (3) the royalty regime applicable,

(4) PSAC area, and within these groups, (5) clusters based on time invariant characteristics

(depth, initial pressure, density, water saturation, and temperature). The group is divided

into clusters only if the likelihood ratio test confirms that clustering improves the fit over not

clustering. This results in 88 different types of wells. The royalty regime depends on when

the pool was discovered: there is an “old” category for oil from pools discovered before 1974,

“new” for oil from pools discovered between 1974 and 1992, and “third tier” for oil from pools

discovered after 1992. For gas wells, “old” refers to gas from pools discovered before 1974

and “new” to gas from pools discovered after 1974. Within each type, the royalty depends

on price and the quantity extracted. The royalty regime remained the same from 1993 to

2009 [Province of Alberta, 2008], coinciding with the study period.

5.1 First Stage Estimates

The producer’s beliefs about future prices and recoverable reserves are estimated in the

first stage. These beliefs are unobservable and subjective, but here I assume that the pro-

ducer’s beliefs are recoverable from objective probability measures estimated from the data.

I estimate the parameters, θ1st , that maximize the first stage partial likelihood function:

L1(θ1st) =
Ni∏
i=1

Ti∏
t=1

f(sit+1|sit, θ1st) (4)

These parameters and their transition probability densities are described in the next three

subsections.

5.1.1 Transition in Remaining Reserves from Extraction, fq

Reserve changes due to extraction are such that when the well is active, the quantity

extracted is modeled as a random draw from a distribution that depends on the per-well re-

maining reserves, Q and age of the well. It implies that the producer only chooses whether to

extract and does not have control over the quantity extracted. Although producers do have

control over extraction rates, ultimately extraction is also driven by geological constraints
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that the producer does not have control over. In a regression of the annual quantity extracted

on factors that the producer does not have control over, I find that the remaining reserves,

porosity, temperature, depth, density, water saturation, and initial pressure are all statis-

tically significant in determining extraction. Furthermore, these exogenous factors explain

more of the variation in extraction quantities than the price of oil or gas.28

Therefore, the quantity extracted is modeled as a random draw from a distribution esti-

mated using an equation that describes the production by well w in year t:

log qwt = α0 + α1 logQwt + σεwt (5)

assuming an independent and identically distributed N(0, 1) error, ε. The regression is

estimated separately for each well type-age group combination.29 Extraction from a well

is truncated to fall in the interval [qL, qU ] where the lower bound, qL, is 10−8 (not zero

because of the subsequent logarithm), and the upper bound, qU , is equal to the well’s per-

well remaining reserves, Q, multiplied by a factor, κm, which depends on whether the well

is in a single-well pool, m = 0, or a multi-well pool, m = 1. In the dataset there are a few

observations where the amount produced in a year is greater than the per-well remaining

reserves even for wells that are on their own pools (6% of the production data would be

classified as such). Evidently the reserve size is sometimes an underestimate. Therefore,

the factor κm is equal to the 99th percentile of the observed fractions qw/Qw (different for
28The adjusted R2 of a regression of the quantity extracted on a constant and price is much smaller than

the adjusted R2 of a regression that instead of price includes the remaining reserves (specifically, price results

in 0.0068 for oil wells and 0.0002 for gas wells whereas remaining reserves result in 0.1275 for oil and 0.3635

for gas). Per-well remaining reserves also depend on price, however the adjusted R2 from a regression that

includes the truly exogenous characteristics of porosity, temperature, depth, density, water saturation, and

initial pressure is also larger than the adjusted R2 when only including price (i.e., 0.0836 for oil and 0.2405

for gas).
29If there are less than 30 observations of production within a given type’s age group, then observations

from the age group without clustering was used.
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single-well pools and multi-well pools).30 The weighted average (across well-types) of the

coefficients in equation (5) are displayed in Table 3. As expected, the older the well, the less

production is expected from the well, for both oil and gas wells.

5.1.2 Exogenous Transition in Reserves, fQ
Apart from production there are exogenous changes in reserves from, for example, more

wells being drilled, reassessments, improved technology, or new discoveries. Changes in

reserves from production are already accounted for by including fq, so to estimate exogenous

changes, fQ, the estimates of initial established reserves (IER) are used. A pool’s IER is

an estimate of the initial oil or gas in place multiplied by the recovery factor, and does not

include what has been extracted.

The current price of oil or gas might have different effects on the transition probability

of remaining reserves. For example, under high prices, one would expect there to be more

research and development into extraction technology, which would in turn increase the recov-

erable reserves. Once developed these technologies would remain available, even under low

gas prices, and therefore, one would not expect there to be symmetrical decreases in reserves

under low prices, but rather only smaller increases. On the other hand, higher prices would

also result in the drilling of more wells, which would in turn reduce the per-well remaining

reserves. I therefore estimate the distribution of the size of reserve increases separately from

the distribution of the size of reserve decreases. As well as the likelihood of the size of a

change, the transition probability, fQ, also includes the probability to increase, decrease or

remain the same. Depending on the type of pool (i.e., PSAC area, single- or multi-well,

year discovered), 63% to 84% of the pool-year observations have no change in per-well initial

established reserves.

The distribution of the natural logarithm of changes that did occur are depicted in Fig-

ure 7 in the Appendix, and can be approximated by two exponential distributions spliced

together. When there is an increase in reserves, the size of the increase, ln(QIERt+1 /Q
IER
t ), can

30The 99th percentile is used because there are a few outliers where qw dramatically exceeds Qw. (That is,

the 99th percentile of qw/Qw for gas wells on single-well pools, k0, is 2.9 compared to a maximum of 66 and

for gas wells on multi-well pools, k1, is 25.2 compared to a maximum of 807.)
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be approximated by an exponential distribution, as when there is a decrease in reserves, and

the size of the decrease, − ln(QIERt+1 /Q
IER
t ), can be approximated by a different exponential

distribution. That is, when there is an increase (or decrease), ∆ =
∣∣∣ln(QIERt+1 /Q

IER
t )

∣∣∣ follows
a distribution with density function:

fQ (∆|λ) = λ exp (−λ∆)

The current price is incorporated into the probability via λ, where:

λ =


(φ0U + φ1UP )−1 when increase,

(φ0D + φ1D/P )−1 when decrease.

Therefore, using any observations of a reserve increase (QIERit > Q
IER
it−1), I maximize the

likelihood of the size of a increase as:

L(φU) =
∏
i

∏
t

1
(φU0 + φU1Pt−1) exp

−
∣∣∣ln(QIERit /Q

IER
it−1)

∣∣∣
(φU0 + φU1Pt−1)



And likewise, using any observations of a reserve decreases (QIERit < Q
IER
it−1), I maximize the

likelihood of the size of a decrease as:

L(φD) =
∏
i

∏
t

1
(φD0 + φD1/Pt−1) exp

−
∣∣∣ln(QIERit /Q

IER
it−1)

∣∣∣
(φD0 + φD1/Pt−1)



5.1.3 Transition in Price

Analysis of the price of oil is a well-researched area, although there is little consensus

for the best- fitting model. Models differ by allowing for mean reversion, non-stationary

unit roots, underlying market fundamentals, unexpected jumps, or time-varying volatility,

for example. To limit the number of states included in the model, I assume price follows an

exogenous first order Markov process, which is an assumption for the formation of expecta-

tions for future prices: the producer bases their expectation on current prices. At the same

time, producers have experienced periods of both low and high prices in the past. There-
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fore, I include a switching process between a high price regime and a low price regime in

the Markov process. The regimes are determined depending on whether the price is above

or below the average price observed from 1971 to 2007. Because we know which regime we

are in simply by knowing whether the price is above or below the average price, there is no

need to include “price regime” as a state variable in the model. That is, the final matrix

of transition probability weights for price depends only on the current price. The transition

probability of switching from regime H to L is simply the number of times that regime H

was followed by regime L divided by the number of times the process was in regime H:

p̂HL =
∑T
t=1 I{rt = L, rt−1 = H}∑T

t=1 I{rt−1 = H}

While the opposite holds true for switching from L to H. For each regime, the parameters

from a regression with deviations from the mean logarithm of price, ℘t,r = logPt − µr, are

estimated:

℘t,r = ϑr℘t−1,r + ςrεt (6)

where ε is independent and identically distributed N(0, 1). The process is truncated so that

price does not fall below P = 1E − 6 (and not zero because of the subsequent logarithm).

The transition probability of price in regime r is:

FP (Pt|Pt−1, r) =
Φ ((℘t,r − ϑr℘t−1,r) /ςr)− Φ

((
℘
r
− ϑr℘t−1,r

)
/ςr
)

1− Φ
((
℘
r
− ϑr℘t−1,r

)
/ςr
)

where Φ is the standard normal cumulative distribution function and ℘
r

= ln(P )− µr.

The transition probability matrix is derived from a mixture of the distributions under

high and low price regimes, including the transition probabilities between the two regimes:

FP (Pt|P ) =


pHHFP (Pt|Pt−1, r = H) + pHLFP (Pt|Pt−1, r = L) if P > P ,

pLHFP (Pt|Pt−1, r = H) + pLLFP (Pt|Pt−1, r = L) if P ≤ P .

.
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5.1.4 Transition in Age

To save computing time the age variable is discretized into the intervals A = 1, 5, 15, 30 for

1 ≤ age < 5, 5 ≤ age < 15, 15 ≤ age < 30, age ≥ 30, under the assumption that wells within

these age intervals are similar. Oil and gas production over the life of a well typically follows

an exponential decline, with the steepest decline within the first several years. Therefore, I

make smaller intervals for younger wells, when the difference in age matters more.31 These

intervals also divide the sample into roughly four even groups (of 19%, 31%, 29% and 18%

of the observations in each age group, respectively). The transition probability of entering

the next interval is 1/nyears where nyears is the number of years in the current interval.

5.2 Second Stage Estimation

For each different well type, g, a different set of structural parameters, θ2nd = (C, M ,

SC(2→1), SC(1,2→3)), is estimated. The likelihood of observing the decisions d that were

made for each well (w = 1...Wg) in the well group is maximized:

L(θ2nd) =
T∏
t=1

Wg∏
w=1

p(dwt |Pt, Qwt , Awt , θ2nd , θ̂1st)

where p is the multinomial logit probability, given in equation (3), that the choice for well w

at time t is decision d. For each iteration of the likelihood there is a nested subroutine to find

the fixed point to the Bellman equation (2). The model is in discrete time and the producer

chooses the operating mode on a yearly basis. In reality, this decision is in continuous time;

however, a well is classified as an inactive well by the Alberta Energy Regulator if it has

not reported any volumetric activity (production, injection, or disposal) within the last 12

months. Therefore, the data are assigned as follows: for a well in 2000, the current operating

state, o, is the operating state in 1999, where the decision, d, is the operating state in 2000,

given the average wellhead price of oil (or gas for gas wells) in 2000, the reserve size in 2000,

and the age of the well in 2000.

The royalty rate is calculated using formulas specified by the Alberta Department of
31Also, when estimating production, q, from a well, the shorter intervals for younger wells helps capture

this nonlinearity in production over the life of the well.
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Energy [Alberta Energy, 2006]. The rates range from 5% to 35% depending on the price of

oil (or gas), when the reserve was discovered, and the volume of oil (or gas) produced. As

this model is based on the expected production, and not the actual production, the royalty

rate is the expected royalty rate.32 The Alberta corporate income tax rate is 10% of taxable

income while the federal corporate income tax rate is 22.12%. The combined federal and

provincial tax rate on corporate income, τ , is set at 32.12% [Alberta Department of Energy,

2007].

Estimating the discount factor, β, along with the cost parameters is difficult. For example,

both a high reactivation cost and a low discount factor will prolong reactivation. Therefore,

for each well group I estimate the cost parameters under seven candidate discount factors,

ranging from .7 to .99. By examining the sum of the log-likelihoods across well groups for each

candidate discount factor, a discount factor of .90 results in the highest total log-likelihood

(illustrated in Appendix A.3).

The estimation requires specifying the functional form of the profit equation. I estimated

the model under many different specifications that seemed reasonable and were flexible to

incorporate features such as costs increasing as age increases and remaining reserves decrease.

A parsimonious specification that led to timely convergence and high likelihood values is a

specification where the lifting cost depends on the reserve size and age, C = θ1 + θ2/Q
θ3 ; the

fixed inactivity cost is a constant, M = θ4; the reactivation cost depends on age, SC2→1 =

θ5(1 + θ6)A; and deactivation and decommissioning costs are constant, SC1→2 = θ7 and

SC1,2→3 = θ8. By construction of the multinomial logit (equation (3)), identifying all fixed

costs of the model is not possible. To identify the absolute costs external information on

actual well sale prices would be needed. The cost parameters are interpreted in million

dollars, but also in relation to a normalized reactivation cost of zero for active wells (i.e.,

SC(1→1) = 0). Furthermore, the scale of the profit equation is already normalized because

the coefficient on price is normalized (to one) which also means that I can estimate the scale

parameter of the type I extreme value error term, ε.
32Formulas can be found in Alberta Energy [2006].
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5.3 Third Stage Estimation: Maximizing the Full Likelihood

The parameter estimates from the partial likelihood estimation are used as starting val-

ues in the maximization of the full likelihood function. I allow for one iteration of the

maximization routine of the full likelihood function to determine a consistent estimate of

the asymptotic covariance matrix for the estimates, which is used to determine consistent

standard errors. The average estimates and standard errors of the 88 different well-types,

weighted by the number of observations, are displayed in Table 3. The coefficients were de-

rived using price data scaled by one million dollars. The coefficient on price in the probability

distribution for an exogenous increase in reserves, φ1,U , appears to be very different for oil

and gas wells; however, because the prices are in millions of dollars, inverted, and taken to

the negative power of Euler’s number, the difference in the probability of an increase is not

as large as these coefficients suggest. Nonetheless, gas reserve growth is more responsive to

price changes than oil reserve growth, which is most likely because gas reserves are more

difficult to estimate than oil reserves [Vanorsdale, 1987].33

It is important to note that the estimates in Table 3 do not represent the costs for switches

that were actually made, but are the costs for a hypothetical well to switch to an arbitrary

operating state [Kennan and Walker, 2011]. Operators only choose to switch when the costs

net of the payoff shocks are favorable, which would be less than the estimates in Table 3.

I find that on average the costs to decommission a well are higher than the costs to

reactivate a well, and so one might expect that wells are more likely to be reactivated than

decommissioned. However, the lifting costs increase as the remaining reserves decrease, and
33Gas reserves are not only made up of “free” gas, but also the more difficult to measure “adsorbed”

gas attached to the rock surface. There are other less probable reasons for differences in reserve-growth

elasticities. For example, by construction of the model, newly drilled wells reduce per-well recoverable reserves,

which combined with four times stricter well-spacing limits for gas wells (see footnote (23)) would reduce the

probability of a reserve decrease for gas compared to oil. However, gas pools are on average four times larger

than oil pools, so this is not likely to be the case. It is also not likely that the difference in reserve-growth

elasticities is driven by a difference in the age of pools. Gas pools are slightly younger (84% of the gas pools

were discovered after 1974 compared to 82% for oil) however not significantly.
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therefore, reactivating the well for a lower range of Q would result in paying more to extract

than the price of gas or oil.

Firms could be postponing decommissioning because they intend to declare bankruptcy

in the future, however, the number of orphan wells is relatively small in Alberta implying

that bankruptcy is not a very important option.34 In other empirical contexts in which

bankruptcy is an important option, the model would have to take the full portfolio of wells

that a firm owns into consideration (e.g., a firm would not declare bankruptcy if they have

many producing wells). In this case, to the extent that bankruptcy is an option, I am omitting

an option that is available to active and inactive wells (i.e., the option to declare bankruptcy,

at some cost, and avoid decommissioning costs) and by omitting this option, the estimated

costs of an inactive or active well are biased downwards and the decommissioning costs biased

upwards as compared to a model that incorporates this option. However, more important

than interpreting the cost estimates is correctly simulating counterfactual scenarios, in which

case the biased cost parameters to some extent account for the omitted bankruptcy option.

34For example, in 2012, a year noted for having a “large increase in the number of new orphan wells,” 50

new wells were added to the inventory of 14 orphan wells [Orphan Well Association, 2013].
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Table 3: Weighted Average Parameter Estimates from the Full Likelihood
Parameters Oil Gas

Estimate Std.Err. Estimate Std.Err.
Reserves Transition
α0,1 0.312 (0.596) 3.333 (2.324)
α0,5 0.3 (0.581) 2.522 (1.797)
α0,15 0.07 (0.430) 2.454 (1.036)
α0,30 -0.103 (0.411) 2.288 (1.369)
α1,1 0.43 (0.163) 0.438 (0.263)
α1,5 0.274 (0.147) 0.47 (0.194)
α1,15 0.317 (0.128) 0.492 (0.115)
α1,30 0.404 (0.161) 0.51 (0.179)
σ1 1.288 (0.178) 1.501 (0.100)
σ5 1.267 (0.078) 1.52 (0.132)
σ15 1.273 (0.077) 1.504 (0.231)
σ30 1.171 (0.242) 1.344 (0.302)
φ0,U 0.373 (0.026) 0.268 (0.071)
φ1,U 2.00E-07 (3.81E-01) 571.55 (371.032)
φ0,D 0.69 (0.082) 0.432 (0.040)
φ1,D 1.00E-08 (3.13E-03) 6.56E-05 (7.56E-06)
Price Transition
ϑL 0.427 (0.972) 0.707 (0.747)
ςL 0.155 (0.477) 0.17 (0.357)
ϑH 0.603 (0.498) 0.594 (0.660)
ςH 0.145 (0.206) 0.213 (0.378)
Lifting Cost (C)
θ1 0.032 (0.066) 1.64E-04 (7.76E-05)

θ2 0.046 (0.202) 0.147 (0.286)
θ3 1.588 (1.229) 3.775 (1.066)
Inactivity Cost (M)
θ4 0.26 (0.259) 0.386 (0.415)
Cost to Reactivate (SC(2→1))
θ5 4.86 (1.131) 5.957 (2.629)
θ6 0.087 (0.095) 0.024 (0.019)
Cost to Temporarily Deactivate (SC(1→2))
θ7 1.774 (2.267) 2.594 (1.311)
Cost to Decommission (SC(1,2→3))
θ8 7.923 (3.673) 9.703 (1.333)
Scale Parameter
b 1.134 (0.376) 1.346 (0.300)
Not Estimated in Likelihood
pHL 0.272 0.062
pLH 0.160 0.100
P 0.031 1.143e-4
µH -3.203 -8.784
µL -3.772 -9.726
β .90 .90

Notes: These are the weighted averages of the estimates across 88 well groups. Using specification
C = θ1 + θ2/Q

θ3 ; M = θ4; SC2→1 = θ5(1 + θ6)A; SC1→2 = θ7 SC1,2→3 = θ8. The standard errors are
derived from the White [1982] misspecification consistent information matrix.
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5.4 Goodness-of-Fit Tests

To test the dynamic programming model’s ability to fit the data, the choice probabili-

ties from the estimated dynamic programming model p(d|s, θ̂) are compared to the observed

(non-parametric) estimates of the conditional choice probability function p̂(d|s). The non-

parametric estimate p̂ is the sample histogram of choices made in the subsample of wells with

state s. Following Rust and Phelan [1997] and Rothwell and Rust [1997], by sample enumer-

ation, if S is a collection of s cells, the nonparametric estimate of the choice probability is

computed as:

p̂(d|S) =
∫
s∈S

p̂(d|s)F̂ (ds|S)

= 1
NS

N∑
i=1

I{di = d, si ∈ S}

where F̂ (ds|S) is the nonparametric estimate of the conditional probability distribution of

s given S, equal to the number of observations in cell ds divided by the total number of

observations in all cells that comprise S. This is compared to the estimates of the choice

probability from the dynamic programming model:

p(d|S, θ̂) =
∫
s∈S

p(d|s, θ̂)F̂ (ds|S)

= 1
G

G∑
g=1

1
Ng

Ng∑
i=1

p(d|s, θ̂g)I{sig ∈ S}

where p(d|s, θ̂g) is the probability given by equation (3) and θ̂g are the estimates of the

structural parameters for group g.

Table 4 shows the observed choice probabilities alongside the expected choice probabilities

from the dynamic programming model for oil and gas wells. The three panels in Table 4 show

the cases that S is a collection of all possible s cells, that S is a collection of wells that are

active, and that S is a collection of wells that are inactive. The dynamic programming model

does a very good job at predicting the overall observed choice probabilities. In predicting the

operating state all wells, the chi-square test cannot reject the dynamic programming model
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Table 4: Actual versus Predicted Choice Probabilities

Oil Gas

Current State:
Active or Inactive Observed Expected Observed Expected
Pr(Active) 0.6207 0.6205 0.6878 0.6822
Pr(Inactivate) 0.3683 0.3684 0.3026 0.3042
Pr(Decommission) 0.0110 0.0111 0.0096 0.0136
No. Obs. 150,078 186,274
χ2 0.15 227.37
Marg.Sig. 0.93 0
Active
Pr(Active) 0.9253 0.9256 0.9421 0.9330
Pr(Inactivate) 0.0691 0.0690 0.0534 0.0572
Pr(Decommission) 0.0056 0.0054 0.0046 0.0097
No. Obs. 96,880 129,322
χ2 0.90 402.53
Marg.Sig. 0.64 0
Inactive
Pr(Activate) 0.0660 0.0652 0.1105 0.1128
Pr(Inactive) 0.9132 0.9133 0.8685 0.8650
Pr(Decommission) 0.0209 0.0216 0.0210 0.0222
No. Obs. 53,198 56,952
χ2 1.67 7.25
Marg.Sig. 0.44 0.03

Notes: The chi-square test statistic was calculated as χ2 = N
∑3

d=1{(ObsPr(d) − ExpPr(d))2/ExpPr(d)},
where N is the number of observations.

at the 93% significance level for oil wells and at the 70% significance level for gas wells. In

the case of gas, as well as when the sample is separated by current operating state, the chi-

squared test rejects the dynamic programming model, however the observed and expected

probabilities do not differ by more than .01.

5.5 Comparing Actual and Simulated Data over Time

Using the state of the industry in 2000 as a starting point, I simulate the progression of

wells, quantity extracted, and remaining reserves over seven years (Figure 1). The data used

in the estimation of the parameters are unbalanced for some wells because observations were

missing for some pools in some years. The simulations only include wells that are observed

in every year from 2000 to 2007. Each well’s path is simulated individually by a series of

pseudorandom draws from its type-specific probability density of the state transitions and

its subsequent type-specific probability density of operating-state choice. Each well path

is simulated 30 times to obtain a 90% confidence interval around the average simulation.
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The dynamic programming model is able to match the data closely for the first year of the

simulation for both oil and gas wells, but over time slightly overpredicts the number of inactive

oil wells and overpredicts the number of inactive gas wells. The purpose of these simulations

is to show that the dynamic programming model can predict decisions over time (not just

a one time snapshot). Divergence between the predicted and actual data could be driven

by the parameters being estimated on the full sample, but this comparison uses only wells

with a balanced panel of observations. Also, it is worth noting that we see production and

reserves drop off over time, but this is not a prediction for Albertan production or reserves;

this model only predicts outcomes for those wells already drilled (and does not include the

drilling of new wells).
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Figure 1: Comparison of Actual Data and Simulated Data
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5.6 Policy Application of the Model

If the option to mothball a well did not exist, then there would be a state of nature, L, of

low enough prices, remaining reserves, and expectations for their increase that the value of

operating the well, VL(1), would be less than the value of decommissioning, VL(3), and the

well would be decommissioned. When the option to mothball exists, then such a well (with

VL(1) < VL(3)) would not necessarily be decommissioned because leaving it inactive could

be more valuable (less costly) than decommissioning, VL(1) < VL(3) < VL(2). However the

values of course depend on the current state of nature, and it could be the case that when

prices or recovery rates become high enough, H, and these same wells would be reactivated in

a high state, VH(3) < VH(2) < VH(1). However, there is a problem when there are wells for

which even in a high state it is preferable to decommission them, but even more preferable

to leave them inactive, VL,H(1) < VL,H(3) < VL,H(2).

It could be the case that if the externalities associated with mothballing are internal-

ized, then the option to decommission would become preferred and wells that would not be

reactivated would be decommissioned, VL,H(1) < VL,H(2 & internalized costs) < VL,H(3).

There are various policies that a regulator could try that would persuade the inactive wells,

VH(1) < VH(3) < VH(2), to be decommissioned, VH(1) < VH(2) < VH(3), such as by increas-

ing inactivity costs or subsidizing decommissioning costs. But without knowing the social

cost of an inactive well, policies might be too bold and result in too many wells being pre-

maturely decommissioned. Specifically, the worry of regulators is that these policies might

encourage wells that would otherwise be producing, VH(3) < VH(2) < VH(1), to be decom-

missioned, VH(2) < VH(1) < VH(3). This might occur because the value of an active well

depends on the option to mothball, so when the option to mothball becomes more expen-

sive, the value of an active well also decreases. Moreover, wells that would have otherwise

been temporarily deactivated in a low state, might be decommissioned and then not able to

reactivate in a high state. Premature decommissioning is an undesirable outcome especially

when the regulator places a large value on domestic production.

To evaluate a policy based on its ability to encourage decommissioning without jeopar-

dizing future production really depends on the well in question. Importantly, the value of a
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well in each of its operating states depends on the current state of nature as well as the payoff

shock, ε. Because there is a wide distribution in the age of wells and the remaining reserves,

one policy will affect each value differently. Therefore to evaluate a policy, it is important to

look at the current distribution of wells in question and to look at how the policy affects the

sum total of all wells. To do so, I simulate the choices for wells under different counterfactuals

to determine the total effect on wells in the sample. If a significant proportion of the wells in

the sample fall into the category of VL,H(1) < VL,H(3) < VL,H(2), then under a high state of

nature we would not see many reactivations. We can also see how changes to parameters in

the model affect the operating choices, current production, and cumulative production over-

all. An important caveat is that these simulations are made under the assumption that the

estimated transition probabilities reflect the actual transition probabilities of the operator.

It could be the case however that an operator is more optimistic about reserves or prices and

puts higher weight on future high states relative to those estimated in this paper. Therefore

the hypothesis that operator behavior can be explained by their waiting for better conditions

is tested under the assumption that operators forecast the future using the same transition

probabilities that are estimated in the paper. The hypothesis that operator behavior can be

explained by optimism about the future is not tested.

5.6.1 Twelve Year Forecasts of Ideal Scenarios

The model is used to simulate the industry under different scenarios that operators claim

to be waiting for: high prices, improved recovery rates and reduced reactivation costs. These

ideal scenarios are compared to a baseline scenario where prices, recovery factors and the

state of the industry are simulated to progress using only the estimated parameters.

In the first scenario, each well-type faces the costs estimated for the type, but they now

receive a constant “high price” of $197.72/bbl for oil and $462.44/e3m3 for gas produced.35

At the end of the 12 year forecast, averaged over 50 simulations, the high price for oil is

3.2 times the average forecasted price of the baseline. As illustrated in Figure 2 and listed

in the first two rows of Table 5, the high price case results in 19% more oil wells that are
35This is equal to the U.S. Energy Information Administration’s Annual Energy Outlook of 2009 “high

price” case in 2030 for oil, and 1.5 times the “high price” for gas.
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active than the baseline prediction. The high price for gas wells is on average 2.0 times the

average forecasted price of the baseline after 12 years, but only leads to 6% more wells that

are active. The annual oil production by the twelfth year is 21% higher, and there is 21%

more cumulative oil production over the prior 12 years. In the case of oil, the growth in

reserves does not compensate for the increased production, so that after 12 years there are

24% fewer oil reserves than in the baseline case. For gas reserves, the high price results in

more reserve growth showing that the expected returns from investments in exploration or

enhanced recovery are greater for gas than oil. At the end of the 12 years, there are 120%

more gas reserves and 78% more production than in the baseline case. It is fascinating that

in spite of the active wells being more productive, the increased reserves and higher prices

are not sufficient to induce many inactive gas wells to be reactivated. This is particularly

striking in the case of gas wells where, with 78% more productive wells and 120% increased

remaining reserves, there are only 6% fewer inactive wells than in the baseline case.
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Figure 2: Forecast under Baseline and High Price Scenarios

37



Table 5: Twelve Year Forecast of Counterfactual Scenarios (% 4 from Baseline)
Counterfactual Scenario Well No. No. No. Remaining Annual Cumulative

Type Active Inactive Decomm. Reserves Prod. Production
High prices (2.1-3.3×baseline P) Oil 19% -12% -7% -24% 21% 21%

Gas 6% -7% -3% 120% 78% 31%
High recovery factors (100% recovery) Oil 17% -10% -7% 514% 411% 164%

Gas 7% -6% -6% 418% 387% 275%
Low reactivation (.75×SC(2→1)g) Oil 19% -7% -12% -13% 20% 9%

Gas 9% -4% -10% -11% 14% 7%
Low decommissioning (.75×SC(1,2→3)g) Oil -17% -20% 48% 14% -17% -5%

Gas -18% -20% 46% 10% 6% -2%
Low annual inactivity (1.25×M) Oil 6% -9% 5% -4% -5% 2%

Gas 5% -13% 3% 3% 11% 2%
Notes: Values represent the percent difference between the counterfactual scenarios in the first column and
the baseline scenario. Values are averages over 50 simulations. The columns of values represent the
difference in: the number of active wells in year 12; inactive wells; decommissioned wells; remaining reserves
in year 12; annual production in year 12; and cumulative production over 12 years.

In a second scenario (Table 5, rows 3 and 4) a hypothetical technology change allows

for all of the oil or gas-in-place to be recovered. To date, according to the data, recovery

rates range from 15% to 95% with an average of 67% for gas and from .01% to 90% with an

average of 12% for oil. In the hypothetical scenario, recovery rates are simulated to be 100%

of the oil and gas that is in place. In the case of gas, increasing the recovery rate to 100%

increases the remaining recoverable reserves by 418%, increases the annual production from

producing wells by 387% (275% cumulative). But this significant increase does not induce

the reactivation of many inactive gas wells (there are only 7% more active wells at the end of

the period than in the baseline case). In the case of oil, the increased recovery rate increases

remaining reserves by 514%, increases annual production by 411% (164% cumulative), but

the number of active wells only increases by 17%. A higher recovery rate alone has less of

an effect on increasing the number of producing wells than a higher price of oil or gas.

However, technology might not only improve recovery factors, but might also decrease

the cost to reactivate a well. Therefore, I simulate the industry when the reactivation costs

for all well groups are reduced by 25% (Table 5, rows 5 and 6). In the case of gas, after 12

years of lower reactivation costs, there are 9% more active wells, 4% fewer inactive wells and

10% fewer decommissioned wells. Interestingly, the additional production from these wells

is only marginal: there is only 14% more production in the last year of the simulation (7%

more cumulative production). The reactivated oil wells are slightly more productive than
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gas wells: after 12 years there are 19% more active wells, and 20% more production (only 9%

more cumulative production than in the baseline case). Corresponding with the increased

cumulative production, there are less remaining reserves at the end of the 12 year period (a

11-13% reduction). And in the case of gas wells, the production by the end of the 12 years

is less than in the baseline case. However due to lack of data on reactivation costs, it is

more difficult to assess the probability of a reduction in reactivation costs than to assess the

probability of an increase in prices or recovery rates.36

It is also interesting to look how responsive the model is to changes in the cost of de-

commissioning the well. I simulate the 12 year forecast with decommissioning costs being

25% cheaper than in the baseline case. I find that the number of decommissioned wells is

very elastic to decommissioning costs, as a 25% reduction in cost results in 46-48% more de-

commissioned wells. Decreasing decommissioning costs might be unappealing to a regulator

because not only the number of inactive wells decrease, but also the number of active wells.

This scenario results in 20% fewer active wells, and 2-5% less production.

Instead, increasing the costs of leaving a well inactive could increase the number of decom-

missioned wells without decreasing the number of active wells. To examine how responsive

the operating choice is to the cost of leaving a well inactive, I simulate a 12 year forecast

under a scenario where inactivity is 25% more expensive per year. As long as the externalities

associated with leaving a well inactive are accounted for, ad infinitum, then leaving a well

inactive could be socially optimal. This simulation can be likened to a tax on inactive wells.

Such a policy would be more appealing to a regulator in favor of maximizing production

because under this scenario the number of decommissioned wells increases (by 3-5%) as do

the number of active wells (by 5-6%). As expected with the reactivation of wells, this sce-

nario results in an increase in the cumulative oil and gas produced over the 12 year period.

However, the increase in cumulative production is less than the increase in reactivated wells
36Cost data are very hard to come by. For example, PSAC publishes average drilling and completion costs

for 46 “typical” wells for $750 per year, however these data would not shed light on the reactivation costs

which could vary widely depending on the well.
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(cumulative production only increases by 2%), indicating that the average reactivated well

is considerably less productive.

6 Conclusion

The decision that oil and gas producers make for the operating state of their wells can be

categorized as a classic example of an irreversible investment under uncertainty. Restarting

production or finally decommissioning a well is an expensive endeavor and is made with

uncertainty in future recovery technology and prices. I show that this decision can be modeled

by a real options formulation, and the structural parameters of the model can be estimated

using data on operating decisions from oil and gas wells in Alberta. Indeed, the operating

decisions made for 84,000 wells in Alberta can be replicated by modeling well operators as

dynamic optimizers. Within-sample goodness of fit tests show that the model is able to

closely predict actual operating choices.

The example of whether to activate, temporarily deactivate, or permanently decommis-

sion is used to demonstrate real options in textbooks and classrooms, however, the case of

firms using temporary deactivation as a way to avoid paying for permanent decommissioning

has been ignored. The motivation of this paper was to determine the rational for leaving oil

and gas wells inactive; either they could be a blessing, if they eventually are reactivated and

contribute to our energy supply, or they could be a curse, if they are never reactivated, cause

environmental degradation, and must undergo costly decommissioning. With the estimated

structural parameters I can predict how the operating choices might change under different

conditions. I find that increased oil and gas prices and recovery rates might increase per

well annual production, but will not substantially increase the number of active wells. For

example, doubling the gas price results in a 120% increase in recoverable reserves, but only

a 6% increase in the number of inactive wells. On the other hand if it became cheaper for

wells to be reactivated, we would have more active wells, but these these wells would likely

not be very productive, and total production would not increase as much. The cost of de-

commissioning plays an important part in determining the number of decommissioned wells,

however a policy to decrease the cost of decommissioning a well would result in not only fewer
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inactive wells, but also fewer active wells, making such a policy less appealing to a regulator

in favor of production. On the contrary, a policy of increasing the cost of mothballing a well

would increase the number of active wells as well as decrease the number of inactive wells.

If optimistic conditions are not enough to induce well reactivation, this implies that

wells are left inactive not because of the option to reactivate, but rather the sunk cost of

decommissioning is too high to warrant undertaking. Should there be externalities from idling

the wells (such as continued contamination of groundwater) that are not accounted for in the

decision, then this behavior may not be socially optimal. This paper demonstrates that for

the majority of inactive wells, temporary closure is, in effect, permanent closure. Advances

in hydraulic fracturing and horizontal drilling have prompted a new surge in drilling for oil

and gas which has resulted in much debate and controversy, particularly in regards to the

immediate environmental impacts. Less attention has been given to concerns for the final

cleanup and reclamation of these wells—unwarrantedly so given that in many of the areas

that wells are being drilled, the financial bonds meant to ensure cleanup were set over half a

century ago. The occurrence of firms not internalizing their decommissioning costs is likely

generalizable to other industries that have high clean up costs and are also allowed extended

temporary closures.
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A Appendix

A.1 PSAC Areas

Table 6: Characteristics of PSAC Areas
PSAC
Area Surface Hydrocarbon Characteristics
1 Rocky Mountains Deep gas Strict environmental regulations
2 Ranching, farming and forest Oil and gas Easily accessed
3 Agricultural prairie grassland Gas and medium/heavy oil Easily accessed
4 Prairie and woodland Gas and heavy oil Easily accessed
5 Agricultural Oil and gas Most densely populated area
6 Prairie and woodland Shallow gas Only winter drilling
7 Agricultural and logging Oil and gas Often no road access and winter drilling

Figure 3: PSAC Areas

(a) Active Wells
(150,997)

(b) Inactive Wells
(95,575)

(c) Decommissioned
Wells (103,885)

Figure 4: The Location of Oil and Gas wells in Alberta in 2007 by Operating State
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A.2 Subsample as Compared to Full Sample
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Figure 5: Histogram of Age when Decommissioned
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A.3 Choice of Discount Factor
The optimal discount factor varies by the different well groups and no one discount factor would

result in the highest likelihood for all groups separately. However, by summing the log likelihoods

across the well groups by different fixed discount factors, a discount factor between .90 and .95 has

the highest log likelihood. Therefore, the estimation presented in this paper uses a constant discount

factor of .90 across all of the different well types. The summed log likelihoods by discount factor for

all gas well groups are displayed in Figure 6. Also depicted are the average estimated costs across the

well groups by discount factor. The reactivation costs are for inactive wells, 5 years of age and the

lifting costs are for wells with per well reserves of 3 million m3).
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Figure 6: Effect of Using Different Discount Factors on Results from All Gas Wells
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A.4 Modeling the Probability of Transition of Recoverable Reserves
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Figure 7: Histograms of the Natural Logarithm of Annual Change in Initial Established
Reserves (not including occurrences of no change)

50


