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Foreword
 
It has become abundantly clear that fossil fuel powered industrialization as we have known 
it has had unanticipated adverse environmental impacts. One of the most significant 
challenges faced by global leaders today is how to achieve inclusive and sustainable industrial 
development, hereby creating jobs and reducing poverty, while combating climate change and 
resource depletion. As the world gears up for common actions to meet this end, one must 
ask whether current ‘green growth’ efforts towards low-carbon resource-efficient industrial 
development will lead to the sustained generation of new jobs.

The present paucity of policy-related information on the impact of green industrial investment 
on employment prevents policy makers and businesses from obtaining a full picture of 
the potential benefits of such investments, and thus to undertake investments that will be 
successful in terms of achieving both environmental protection and job creation. The absence 
of this information might cause the great expectation for green industries to dwindle. Indeed, 
it might jeopardize the global efforts to meet the emission reduction targets set by the 
Intergovernmental Panel on Climate Change (IPCC) to control climate change. 

This project comes at a time when policy makers are focusing their national strategies on 
employment creation while they face a still faltering global economy with slow and uneven 
recovery. Against this background, there is a pressing need to combine the objectives of green 
growth with the broader targets for economic development in order to achieve a sustainable, 
low-carbon trajectory. Developing countries in particular will have to balance these objectives 
so as not to sacrifice opportunities to expand decent employment opportunities and reduce 
poverty. Designing and implementing effective industrial policies within all countries at all 
levels of development and effective international coordination will be critical for expanding 
green investments and hence facilitating the transformation to a global low-carbon economy. 

The project has resulted in two reports. Volume I focuses on the employment generation 
opportunities of measures to reduce carbon dioxide emissions through investments in 
renewable energy and energy efficiency, and reviews some of the main considerations with 
respect to advancing effective industrial policies. The report concludes that if most countries 
devote about 1.5 percent of their economy’s GDP to such investments each year, it will be 
possible for the global economy to meet the IPCCs’ 20-year intermediate emission reduction 
target, while also enjoying energy security for supporting sustainable growth rates. 

Volume I also shows that there are clear net-gains in employment generation in shifting from 
conventional energy sources to renewable energy sources and enhancing energy efficiency. 
These gains have wider societal implications, as decent job opportunities are likely to open 
up for people in the informal sector with low educational attainment levels. Targeted industrial 
policies will need to help these groups realize such opportunities as well as providing the 
training and skill acquisition needed for other positions created through green investments. 

Volume II examines the specific industrial policy measures promoting a low-carbon transition 
in five focus countries, specifically Brazil, Germany, Indonesia, the Republic of Korea and South 
Africa, through a compilation of expert review studies. Across all levels of development, major 
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attention is being paid to the threats of climate change and opportunities of pursuing a low-
carbon development path, and dedicated efforts are presented to operate efficient industrial 
policies to enhance green growth. However, it is clear that the major focus in developing 
countries will need to be on green investments and on creating an enabling environment for 
such investments if the global economy is to effectively combat climate change. 

It is our pleasure to note that the reports are the result of a major effort that has brought 
together the expertise of UNIDO and GGGI as well as experts from around the world. We hope 
that the findings of this project will provide policy makers, other global actors and businesses 
with a bigger picture of the employment generation opportunities of investing in green energy 
sources. At the same time, we hope that the specific attention to industrial policy will inspire 
countries when they formulate their own industrial development strategies and approaches, 
so that they are prepared to make their own effective contributions to the transformation to a 
global clean energy economy. 

Li Yong
Director General of UNIDO

Yvo de Boer
Director-General of GGGI
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SUMMARY OF MAIN FINDINGS

As of 2010, total world greenhouse gas (GHG) emissions amounted to about 45,000 million 
metric tons (mmt). In order to control climate change, the Intergovernmental Panel on Climate 
Change (IPCC) estimates that total emissions will need to fall by about 40 percent as of 2030, 
to 27,000 mmt, and by 80 percent by 2050, to about 9,000 mmt. 

Of the 45,000 mmt of total GHG emissions, about 82 percent are generated by energy-based 
sources. This includes 33,615 in CO2 emissions from energy sources, equaling about 75 percent 
of total GHG emissions itself. 

This report focuses on measures to reduce CO2 emissions from energy-based sources. Ex-
pressed on a per capita basis, global CO2 emissions in 2010 averaged 4.6 metric tons (mt). We 
can express our intermediate emissions reduction goals in terms of this measure, within the 
framework of reducing the absolute level of carbon emissions by 40 percent, to around 20,000 
mmt, within 20 years. With global population expected to rise to about 8.4 billion by 2030, this 
means that carbon emissions will need to be at no more than 2.4 mt per capita within 20 years. 

The purpose of this report is to examine policy frameworks through which these CO2 emission 
reduction targets can be met, without inhibiting the opportunities for economies to grow and 
expand well-being for their citizens. We are especially concerned that developing countries be 
able to grow at healthy rates as the global clean energy transition advances. For developing 
countries to sacrifice economic growth as a means to reverse climate change will also entail 
sacrificing opportunities to expand decent employment opportunities and dramatically reduce 
poverty. Limiting opportunities for countries to proceed on a healthy economic growth trajectory 
will also face formidable political resistance. This resistance will in turn create unacceptable 
delays in proceeding with effective policies to control climate change. 

The core arguments of this report are simple. We argue that the global economy is capable of 
meeting the IPCCs’ 20-year intermediate emission reduction target if most countries - including 
especially most countries with either large GDPs or population - devote about 1.5 percent per 
year of their economy’s GDP to investments in energy efficiency and clean renewable energy 
sources. These clean renewable sources include solar, wind, geothermal, and small-scale 
hydropower, as well as low-emissions bioenergy sources. They exclude corn ethanol and other 
high-emissions bioenergy sources, whose use generates CO2 emissions at levels equivalent 
to oil. We conclude that, as a general proposition, countries that sustain this 1.5 percent of 
GDP level of annual investments in energy efficiency and clean renewables will also be able 
to maintain economic growth at healthy rates while providing a sufficient supply of energy 
resources to undergird growth. These investments in energy efficiency and renewable energy 
will also be a net new source of job opportunities. More specifically, new investments in energy 
efficiency and renewable energy will generate more jobs for a given amount of spending than 
maintaining or expanding each country’s existing fossil fuel sectors. 

Global GDP in 2013 was $87 trillion. Thus, 1.5 percent of global GDP is about $1.3 trillion at 
current GDP levels. This would mean channeling about $650 billion each for clean renewables 
and energy efficiency investments, if new investment funds were divided evenly between these 
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two sectors. If spending were instead divided at something closer to 1 percent for renewables 
and 0.5 percent for energy efficiency, as will probably be appropriate in most country settings, 
that entails devoting about $870 billion for renewables and $435 billion for energy efficiency 
at the current global GDP level. These clean energy investment figures would also increase 
annually, corresponding with the growth of each country’s GDP.

As of the most recent credible data, total global renewable investments were at $227 billion 
in 2011 and energy efficiency investments were between $150 and $300 billion. This totals 
between $377 and $527 billion, or between 0.4 and 0.6 percent of global GDP. In other words, 
current global investments in clean energy are at roughly 30-40 percent of where they need to 
be to reach the 1.5 percent of GDP level. It is clear that a great deal needs to be accomplished 
to reach the 1.5 percent figure. At the same time, with the current investment level already at 
between 0.4 and 0.6 percent of global GDP, getting to a 1.5 percent of GDP figure is not so far 
out of reach as to appear implausible.

Industrial Policies for Clean Energy Transition
To bring global clean energy investments up to about 1.5 percent of global GDP will certainly 
require the development of effective industrial policies for countries at all levels of development. 
This begins with governments playing a leading role in adapting clean energy technologies. As 
the UNIDO 2013 Industrial Development Report usefully summarized specifically with respect 
to uptake of green technologies in manufacturing, “technological change rarely takes place 
in a vacuum, and often requires incentives. Success stories of new energy technologies are 
the product of forward-thinking ambitious government policies,” (UNIDO, 2013, p. 124). 
Governments will also need to play a leading role in delivering affordable and flexible financing 
arrangements for clean energy investments to be sustained on a large-scale basis.

In conjunction with the need for a major expansion in clean energy investments worldwide, it 
is also the case that the burning of oil, coal and natural gas will need to contract substantially 
in absolute terms throughout the globe to achieve the IPCC’s emissions reduction targets. 
This conclusion is unaffected by whether new fossil fuel reserves are discovered, such as 
the so-called “pre-salt” deposits in Brazil or elsewhere. It is also unaffected by whether new 
technologies, such as hydraulic fracturing - i.e. “fracking” - are employed to produce fossil fuel 
energy more cheaply. This means that, over the next generation and further into the future, all 
owners of fossil fuel assets, including public sector entities as well as private oil, coal, and 
natural gas corporations, will, by necessity, experience a major decline in the value of these 
fossil fuel holdings.

Workers tied to the oil, coal, and natural gas industries will inevitably face job losses as a 
consequence. Economic policies are therefore needed in all countries to assist these workers, 
as well as their families and communities, with transitional support into new areas of economic 
activity, where decent job opportunities are expanding. In most countries, the energy efficiency 
and clean renewable energy sectors will be among the most important new areas of expanding 
job opportunities. 
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Country-Specific Perspectives
As of 2010, total global energy consumption amounted to about 510 quadrillion BTUs (Q-BTUs) 
from all energy sources - including fossil fuels, all renewable sources and nuclear power. This 
is while total CO2 emissions were at 33,615 mmt, or 4.6 mt per capita. The two leading countries 
in terms of both energy consumption and CO2 emissions are China and the United States 
(U.S.). Their respective levels of energy consumption were nearly identical in 2010, with China 
at 100.9 Q-BTUs and the U.S. at 98 Q-BTUs. Together, China and the U.S. account for nearly 
39 percent of world energy consumption. In terms of carbon emissions, China is at a higher 
level, at 7,997 mmt, or 6 mt per capita. The U.S. produces 30 percent fewer emissions overall, 
at 5,637 mmt, but three times more emissions on a per capita basis, at 18.2 mt. Together, they 
account for 43 percent of all global carbon emissions. Obviously, we must give major attention 
to developments in the U.S. and China - both the specifics within both countries and their 
impact in combination - in terms of mounting an overall project for controlling climate change. 

But the cases of the U.S. and China also underscore another fundamental fact. Despite their 
obvious centrality, they are still, in combination, contributing well less than half to the overall 
level of global carbon emissions. This therefore means that we must be at least equally 
concerned to develop policies that apply to all other countries. This report focuses in particular 
on the challenges faced by five specific countries: Brazil, Germany, Indonesia, South Africa, 
and the Republic of Korea (ROK). 

Economic conditions obviously range widely between these five countries. But they are all, in 
their own distinctive ways, leading economies within their respective regions of the world. It 
is also notable that with all five selected countries, policymakers have already proposed clean 
energy/emissions reduction policy frameworks ranging between 1-2 percent of their country’s 
GDP. Our proposal for a clean energy project sustained at about 1.5 percent of GDP therefore 
builds from the perspectives developed within our five selected countries. In examining these 
individual cases in some depth, we will also clearly be able to gather insights on a broader set 
of countries at various levels of development.

Consider, for example, the case of Indonesia, which is defined as a lower-middle income 
economy according to the World Bank. Indonesia aims to grow rapidly over the next 20 years - 
i.e. in the range of 6-7 percent per year - following the examples in recent decades of the ROK, 
China, India and other fast-growing Asian economies. However, the Indonesian government’s 
own estimates show that the country’s CO2 emissions will increase by more than 500 percent 
by 2030 relative to 2010 if the economy’s GDP growth is fueled primarily by oil, coal, and 
natural gas. By contrast, we estimate that, under reasonable assumptions, a significant 
share of Indonesia’s energy needs for fueling a rapid growth trajectory can be met through 
investments in energy efficiency and clean renewable energy, as long as Indonesia channels 
about 1.5 percent of GDP annually into these clean energy areas. We also estimate Indonesia’s 
investments in energy efficiency and renewable energy can also be a significant new source of 
job creation within the country. 

Valuable perspectives also emerge through our explorations of our four other selected 
countries. Brazil is important because it is the world’s best-performing upper-middle income 
economy in terms of maintaining low emissions levels amid a healthy GDP growth trajectory. 
Germany, similarly, has an excellent record in terms of emissions levels relative to other high-
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income countries. Germany’s clean energy agenda for the next 20 years is also highly ambitious 
and innovative. South Africa is critical because it is the largest and most advanced economy 
in Sub-Saharan Africa. At present, it also depends heavily on its major coal reserves, both to 
meet its domestic energy needs and to generate export revenues. A clean energy transition is 
nevertheless still realistic for South Africa. The case of the ROK is unique because, in 2009, the 
previous government of President Lee Myung-bak established a project of “Green Growth” as 
a major national development objective. Consistent with the goals of the ROK’s Green Growth 
project, our research finds that, in fact, the ROK could realistically reduce its absolute level of 
CO2 emissions per capita by roughly 50 percent within 20 years without having to lower the 
economy’s GDP growth rate. We reach this conclusion based on a set of relatively conservative 
assumptions about the ROK’s prospects for integrating energy efficiency and clean renewables 
into the country’s energy mix.
 

Global CO2 Emissions Projections for 2030 
We can obtain valuable perspective on the magnitude of the challenges ahead by considering 
the CO2 emission level projections for 2030 by the International Energy Agency (IEA), which 
publishes an annual World Energy Outlook. The IEA provides projections under three scenarios: 
a Reference case; a "New Policies case" and a 450/Low Carbon case. The IEA describes its 
New Policies case as taking into account “broad policy commitments and plans that have 
already been implemented to address energy-related challenges as well as those that have 
been announced….” But this New Policies case also “assumes only cautious implementation 
of current commitments and plans.” The IEA describes its 450/Low Carbon case as setting 
out “an energy pathway that is consistent with a 50 percent chance of meeting the goal of 
limiting the increase in average global temperature to 2oC compared with pre-industrial levels,”  
(IEA, 2013a, p. 645). That is, the IEA believes that its 450/Low Carbon case provides a  
50 percent chance for the world to control climate change. 

Under the IEA’s 2030 Reference case, global CO2 emissions are at 40,825 mmt, which is more 
than twice as high as the IPCCs’ 20,000 mmt 2030 target level. The situation is only modestly 
improved in the IEA’s New Policies case, in which they project 2030 CO2 emissions to total 
36,493 mmt. Even under the 450/Low Carbon case, the IEA still projects global emissions to be 
24,663 mmt. Of course, this is a dramatic improvement relative to the other two cases. But it is 
still 23 percent higher than the 20,000 mmt 2030 target. It is critical to underscore, moreover, 
that the IEA describes the 450/Low Carbon case as offering only a 50 percent chance of the 
world succeeding in controlling climate change. 

It cannot be a satisfactory situation when, even under the most aggressive policy framework 
for controlling climate change modeled by the IEA, we still face only a 50 percent chance of 
achieving success.

Options for Reducing Carbon Emissions
Notwithstanding the wide differences in levels of development among Brazil, Germany, 
Indonesia, South Africa and the ROK, and more broadly, across the globe, the fact remains 
that there are only a limited number of ways in which any country, regardless of its level of 
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development, can control its carbon emissions while still consuming energy resources to an 
extent sufficient to support rising average living standards. These are (listed in no particular 
order of significance): 

1. Raise the economy’s level of energy efficiency through the operations of buildings, 
industry and transportation systems;

2. Among fossil fuel energy sources, increase the proportion of natural gas consumption 
relative to coal, since carbon emissions from burning natural gas are about one-half 
those from coal;

3. Invest in the development and commercialization of some combination of the 
following technologies:

a. Clean renewables, including solar, wind, hydro, geothermal and some types of 
bioenergy;

b. Nuclear power;

c. Carbon Capture and Sequestration (CCS) processes in generating coal, oil, and 
natural gas-powered energy.

We conclude through our review of these alternative approaches that, considering all factors 
within a long-term perspective, there are only two truly viable options. These are: 1) Investments 
to raise energy efficiency levels; and 2) Investments to expand capacity in clean renewables. 
Pursuing these two options should therefore constitute the core of the 1.5 percent of GDP 
clean energy investment project. The reasoning behind these choices becomes clear through 
comparing the relative prospects for non-renewable energy sources moving forward versus 
those for clean renewable and efficiency investments.

Prospects for Non-Renewable Energy Sources
By far, the major source of global CO2 emissions is burning oil, coal, and natural gas to produce 
energy. Emissions do vary significantly between these three sources. Coal emissions, at roughly 
100 mmt per Q-BTU, are, respectively, about 50 percent higher than those for oil and 80 percent 
than those for natural gas. Oil emissions are therefore also about 20 percent higher than those 
for natural gas. Yet, despite the fact that oil, and still more, natural gas, are cleaner burning 
than coal, there are still no scenarios through which the IPCC’s 20-year global emissions target 
is achievable if consumption levels increase over this time period through any combination 
of oil, coal, and natural gas usage. This includes an implausible scenario in which natural gas 
substitutes for 100 percent of global coal usage.

 Following from this finding, we then also consider the alternative ways to continue utilizing 
non-renewable energy sources while still reducing emissions. Nuclear power is the first option, 
since it does generate electricity without producing CO2 emissions. But nuclear power does 
also create major environmental and public safety concerns, which have only intensified 
since the March 2011 meltdown at the Fukushima Daiichi power plant in Japan. Similarly, CCS 
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technologies present hazards. These technologies aim to capture emitted carbon and transport 
it, usually through pipelines, to subsurface geological formations, where it would be stored 
permanently. But such technologies have not been proven at a commercial scale. The dangers 
of carbon leakages from flawed transportation and storage systems would, in any case, only 
increase to the extent that CCS technologies are commercialized.

Prospects for Clean Renewables
It will be necessary to create a rapidly expanding and successful clean renewable energy sector 
in order to achieve both the IPCC’s 20-year emissions reduction target as well as its target for 
2050. In fact, it is realistic to allow that renewables could provide in the range of 30 percent of 
all global energy supplies within 20 years. The main driver here is that the trajectory for prices 
and costs for renewables is becoming increasingly favorable. In a wide range of conditions - 
though of course not under all circumstances - renewable energy from most sources will be at 
cost parity with non-renewables within the next 5–10 years. Costs for renewables become still 
more favorable relative to fossil fuels through the establishment of either carbon tax or carbon 
cap policies that reflect the environmental costs of carbon emissions. Either measure would 
raise the prices of emissions-generating energy sources. 

There are certainly areas of concern with renewables, as with non-renewables. The most 
significant is that, as mentioned above, some bioenergy sources, including corn ethanol and 
woodburning, offer little to no improvement on emissions relative to burning coal or oil. A 
rapidly expanding bioenergy sector could also create strains on global agricultural resources 
and, thereby, global food prices. Also, large-scale hydro projects, under most circumstances, 
will generate serious environment problems. We conclude that, even while recognizing these 
specific concerns, the prospects are quite favorable for the large-scale expansion of solar, 
wind, geothermal, small-scale hydro as well as clean bioenergy. These renewable sources 
constitute the core of what we term the clean renewable options.

Prospects for Energy Efficiency
Significantly raising energy efficiency levels in all three major areas of energy usage - i.e. 
buildings, industry and transportation - offers major opportunities for all countries at all levels 
of development. This is why, along with investments in clean renewables, it needs to be one 
of the cornerstones of a global clean energy investment project. One major area of support for 
this conclusion is the evidence we review from a range of studies as to the costs of large-scale 
gains through energy efficiency investments. These cost estimates vary widely. But even at the 
highest cost estimates, of around $30 billion in investments per Q-BTU of energy savings, these 
investments are cost effective, in that they still generally pay for themselves within three years. 
UNIDO’s 2011 Industrial Development Report shows that, in a wide range of specific settings, 
returns from efficiency investments only increase further over time. The main challenge for 
enabling the global energy efficiency investment market to grow rapidly is to develop more 
effective systems of financing and risk-sharing. 

It is possible that efficiency investments may not have their intended effect of reducing energy 
consumption at all. This would be due to the “rebound effect,” whereby better energy efficiency 
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encourages consumers to expand their energy-using activities. However, we conclude that 
any rebound effect that may emerge as a byproduct of an economy-wide energy efficiency 
investment project will not be large enough to counteract their significant benefits in terms 
of both cost savings and emissions reductions. Still, the most effective way to limit rebound 
effects is to combine efficiency investments with complementary measures to greatly expand 
the supply of clean renewables and to raise the prices of oil, coal, and natural gas through 
either a carbon tax or carbon cap.

Industrial Policy and Domestic Content 
As we have discussed above, operating effective industrial policies within all countries at 
all levels of development will be critical for expanding investments in renewable energy and 
energy efficiency to the scale necessary to achieve the IPCC’s emissions reduction targets. Such 
policies would be fully complementary with establishing a carbon price through either carbon 
tax or carbon cap measures. Effective industrial policies will also be needed to effectively 
manage the unavoidable major retrenchments in the oil, coal and natural gas industries.

In addition to presenting general perspectives on the role of industrial policies in the clean 
energy investment project, our particular focus is on the question of how much, in each of our 
five selected countries, expanding clean energy investments can be accomplished through 
utilizing domestic resources versus relying increasingly on imports. To the extent that a country 
runs up against domestic productive capacity constraints while expanding its investments in 
energy efficiency and clean renewable energy sources, it then faces two alternatives: either 
scale back the clean energy investment strategy or rely increasingly on imports to maintain the 
ambitious investment agenda. Our particular concern for this report is employment effects. 
That is, to what extent will changes in the domestic content of the country’s output in the 
relevant sectors affect the overall job-generating prospects of its clean energy investments? 
For each of our five selected countries, we develop estimates of employment creation through 
clean energy investments based on two scenarios. In the first scenario, domestic content 
remains stable in the relevant sectors as clean energy investments expand, while in the second 
scenario, we assume domestic content declines by 20 percent in the relevant sectors. 

We then also consider the extent to which countries currently rely on fossil fuels to both meet 
their energy consumption needs, and, potentially, to also generate export earnings. Within this 
context, the experiences of a wide range of countries with respect to the “curse” of operating as 
a resource-rich economy offers useful perspectives for our analyses, especially for Indonesia 
and South Africa, which are currently both major coal exporters.

Job Creation Estimates from Clean Energy Investments 
We present two sets of estimates of the employment impacts of large-scale clean energy 
projects in Brazil, Germany, Indonesia, South Africa, and the ROK. The first is the aggregate 
level of new employment generated through investments in various types of renewable energy 
and energy efficiency. We generated these figures directly from national survey data of public 
and private economic enterprises and organized systematically within each country’s national 
input-output (I-O) model. We recognize that there are limitations with our use of the I-O model. 
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But we nevertheless conclude that this is the most reliable methodology for our purposes. 

We then disaggregate these country-specific employment estimates according to four criteria: 
gender balance; the share of self-employment versus wage employment; the share of jobs 
created in micro-enterprises versus larger enterprises; and the educational attainment 
levels associated with each type of job linked to clean energy activities. These disaggregated 
employment statistics enable us to gain clarity as to which groups in society are likely to benefit 
from new employment opportunities generated by clean energy investments. 

Aggregate employment effects. With these country-level aggregate figures, we focus on the 
levels of employment generated through spending $1 million within the various specific energy 
sectors. Overall, we find that, per $1 million in spending in each country (converted at current 
exchange rates), clean energy investments generate, on average, about 37 jobs in Brazil, 10 jobs 
in Germany, 100 jobs in Indonesia, 70 jobs in South Africa, and 15 jobs in the ROK. Critically, we 
also find that the clean energy investments create more jobs in all five countries than spending the 
same amount of funds within each country’s fossil fuel sectors. In the cases of Brazil, Indonesia, 
and South Africa, the net employment gains for clean energy investments are substantial. They 
are more modest in Germany and especially the ROK. Still, in all cases, we find that investing in 
building a clean energy economy will also be a net positive source of job creation.

Disaggregated Employment effects. The disaggregated employment creation patterns also 
vary substantially by country. We observe, for example, a high proportion of employment in 
informal sectors in Brazil, Indonesia, and South Africa, as indicated by our figures on both 
self-employment and micro-enterprise employment. This is less significant in the ROK and 
a negligible factor for Germany. The high rates of informal employment in Brazil, Indonesia, 
and South Africa are tied, first, to the large proportion of agricultural employment that will be 
generated by the growth of clean bioenergy production. It is also associated with the large 
increase in construction work that would result through the expansion of energy efficiency 
building retrofit projects. The major increase in investment funds flowing into construction 
and agriculture should also provide opportunities to raise the level of formalization for these 
sectors. This should entail increased mechanization and productivity growth. 

In its current composition, employment in clean energy areas is heavily male dominated in all 
five countries. This is due to the significant role played by both manufacturing and construction 
in overall clean energy investments. Advancing major clean energy initiatives in all five countries 
(and elsewhere) could therefore be seen as an opportunity to open up decent job opportunities 
for women in these heretofore male employment strongholds. 

The levels of educational attainment in the clean energy areas are generally not especially high. 
Indeed, if anything, they are somewhat lower than those for workers in the fossil fuel sectors. 
This suggests that, at least at the level of general educational levels, there should not be major 
challenges in finding qualified workers to cover the rising employment needs for expanding 
clean energy activities. At the same time, some of these new employment activities will entail 
new activities and skills. For example, installing solar panels on roofs and wiring these panels 
so they supply electricity are distinct tasks relative to the jobs that are traditionally performed 
by either roofers or electricians. As one important component of its clean energy industrial 
policy agenda, countries will need to make provisions for these and similar areas that demand 
new types of training and skill acquisition. 
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We are not able to observe directly the possible ways in which a large-scale expansion of clean 
energy investments can contribute toward reducing poverty per se. But our disaggregated 
employment figures can provide relevant data for better understanding the interconnections 
between the two fundamental projects of reducing global poverty and fighting global climate 
change. In general, people who work in informal employment with low educational attainment 
levels also tend to receive low earnings. Creating new employment opportunities for people 
in these circumstances - including creating more formal employment jobs operating at higher 
productivity levels - should also provide opportunities for better pay and more job security. In 
addition, the expansion of employment generally through the clean energy investment project 
will help reduce poverty resulting from mass unemployment.

Country-Specific Analyses
In this section of our report, we present estimates of the overall effects on emissions reductions 
and employment expansion through clean energy projects in each of our five selected countries. 
For Germany, Indonesia, South Africa, and the ROK, we assume clean energy investments at 
1.5 percent of GDP every year over the 20-year cycle. With Brazil, we assume clean energy 
investments at lower rate, at 0.9 percent of GDP annually. This is first of all because Brazil 
is already a strong performer in both its reliance on renewable energy and its level of energy 
efficiency. In addition, CO2 emissions in Brazil, uniquely among our five selected countries, 
account for less than 40 percent of the country’s total GHG emissions. As such, for roughly the 
next decade at least, Brazil should devote a relatively large share of its resources to controlling 
methane and nitrous oxide emissions from non-energy sources.

We generated our estimates on emission reductions and employment expansion on the basis 
of: 1) our cost estimates for investments in clean energy and energy efficiency; 2) our estimates 
of employment creation per dollar of expenditure in each of the five countries; and 3) our 
assumptions for average GDP growth in each country over the 20-year cycle. We deliberately 
work with conservative GDP growth assumptions, derived from projections by the IEA, IMF and 
the countries’ own forecasting models. Our purpose in working with these conservative GDP 
growth forecasts is not that they should necessarily be accurate but that, if anything, they err 
on the low side. If our five selected countries experience faster GDP growth than we assume, 
they then have more resources to channel towards clean energy investments. 

In Table S.1, for each of our five selected countries, we summarize the impact of our 20-year 
clean energy investment project on emissions levels and employment creation as of Year 20. 
As the table shows, in all cases, the clean energy investment strategy generates major gains in 
emissions reductions relative to both 2010 levels and Business-as-Usual (BAU) assumptions as 
of Year 20. Brazil is at 2.0 mt per capita emissions under the clean energy strategy. This is a 38 
percent improvement over the BAU model, even while Brazil is devoting only 0.9 percent of GDP 
to the project. Germany is at 5.5 mt per capita emissions through our clean energy investment 
strategy. This is a 43 percent improvement relative to 2010 and a 29 percent improvement 
relative to Germany’s 2030 BAU scenario. Indonesia is at 2.6 mt at the end of the 20-year 
investment strategy. This figure is is 67 percent lower than Indonesia’s BAU framework for 
2030. This result for Indonesia underscores how Indonesia can proceed on a rapid GDP growth 
path without increasing its per capita emissions. The situation is similar for South Africa. We 
show that South Africa can support a 4 percent GDP growth trajectory while still lowering its 
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emissions within 20 years by 50 percent relative to its 2030 BAU scenario. Our estimates for the 
ROK are equally impressive. Here again, we find that the ROK could reduce its CO2 emissions 
per capita by 56 percent relative to its 2030 BAU scenario over the 20-year investment cycle, 
while still maintaining an average annual GDP growth rate over this period of 3.3 percent.

Table S.1: Summary of emissions reduction and employment expansion effects through  
20-year country-specific clean energy investment projects

Brazil Germany Indonesia South Africa ROK

 Emissions reductions

Year 20 per capita emissions 2.0 mt 5.5 mt 2.6 mt 8.7 mt 5.9 mt

Year 20 per capita emissions 
relative to 2010 -13.0% -43.3% +52.9% -8.4% -49.1%

Year 20 per capita emissions 
relative to 2030 BAU -37.5% -28.6% -66.7% -49.7% -55.6%

Employment expansion          

Clean energy jobs per $1 million 37.4 jobs 9.5 jobs 103.3 jobs 66.2 jobs 15.1 jobs

Clean energy minus fossil fuel 
jobs per $1 million 16.2 jobs 1.9 jobs 81.3 jobs 33.1 jobs 1.5 jobs

Midpoint Year 20 employment 
through clean energy 
investments

806,000 352,000 1.8 million 398,000 276,000

Midpoint Year 20 employment 
as share of labor force 0.7% 0.9% 1.3% 1.9% 1.0%

Source: For emissions figures, Tables 1.4, 8.4 9.3, 10.5, 11.6, and 12.6. For employment figures, Tables 7.1, 7.5, 7.9, 7.13, 7.17, 8.7, 9.5, 10.7, 11.8, 12.8.

 
In conjunction with these major across-the-board gains in emissions reductions, we also see 
in Table S.1 that clean energy investments will be a positive source of net job creation for all 
five countries. These positive job effects are proportionally larger for South Africa, Indonesia, 
and, operating on a smaller scale, Brazil. They are relatively modest in Germany and the 
ROK, because the levels of employment creation per dollar of expenditure are more similar 
to those in the fossil fuel sectors in these countries. Therefore, for Germany and the ROK, the 
job increases generated by clean energy investments will be more closely matched by the job 
losses produced by retrenchments in the oil, coal and natural gas sectors. 

The most critical point of our report nevertheless remains valid for all five selected countries 
and emerges clearly from the results in Table S.1. In all five cases, our research finds that the 
clean energy investment project is capable of achieving dramatic reductions in CO2 emissions 
while overall job opportunities are expanding and GDP growth proceeds along a healthy long-
run growth trajectory.
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CHAPTER 1:  THE GLOBAL CLEAN 
ENERGY CHALLENGE 
This report addresses the profound challenge now facing humanity to control climate change. 
The climate scientist Professor Kerry Emanuel recently summarized some of the consequences 
of failing to control climate changes as follows: 

subtropics may become barren, and blights may seriously affect both natural vegetation 
and crops.” 

pressure on governments and social systems whose failure to respond could lead to 
famine, disease, mass emigrations, and political instability.”

many coastal regions, including much of Southern Florida and lower Manhattan. Eleven 
of the fifteen largest cities in the world are located on estuaries and all would be affected.” 

warmth of the tropical Atlantic….Globally, tropical cyclones cause staggering misery 
and loss of life,” (Emanuel, 2012, pp. 55-57).”

As of 2010, total world GHG emissions amounted to about 45,000 mmt. In order to control 
climate change, the Intergovernmental Panel on Climate Change (IPCC) estimates that total 
emissions will need to fall by about 40 percent as of 2030, to 27,000 mmt, and by 80 percent 
by 2050, to about 9,000 mmt.

Of the 45,000 mmt of total GHG emissions, about 82 percent are generated by energy-based 
sources. This includes 33,615 in CO2 emissions from energy sources, equaling about 75 percent 
of total GHG emissions itself. It also includes about 3 mmt in energy-based methane emissions 
and 0.4 mmt energy-based nitrous oxide emissions.

This report focuses on measures to reduce CO2 emissions from energy-based sources. In 
advancing an overall global project for controlling climate change, it will of course be necessary 
to undertake policies to control emissions from methane, nitrous oxide and other sources at 
the rate at which CO2 emissions are also being reduced. But we do not consider these parallel 
issues regarding non- CO2 emission sources in this report. With respect to CO2 itself, we establish 
the goal that global emissions will need to fall at the same rate as overall GHG emissions, by 
40 percent as of 2030 and 80 percent as of 2050 relative to 2010. This means that global CO2 
emissions will need to be no more than about 20,000 mmt by 2030 and 6,700 mmt by 2050.

Our aim in this report is to explore the pathways through which these CO2 emission reduction 
targets can be met, without sacrificing the opportunities for economies to continue growing and 
expanding well-being for their citizens. We are especially concerned that developing countries 
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be able to grow at healthy rates as the transformation to a global clean energy economy 
proceeds. For developing countries to sacrifice economic growth as a means to reverse climate 
change will also entail sacrificing opportunities to expand decent employment opportunities 
and to dramatically reduce poverty. Limiting opportunities for countries to proceed on a healthy 
economic growth trajectory will also face formidable political resistance. This in turn will create 
unacceptable delays in proceeding with effective policies to control climate change. 

Overall then, the purpose of this research is to develop economic policy agendas through 
which a global clean energy transition can proceed in a mutually supportive way with measures 
to expand decent employment opportunities and reduce poverty.

At the same time, to be clear at the outset, it is not the purpose of this report to explore policy 
ideas that are most capable of promoting economic growth or expanding decent employment 
independent of their impact on reducing CO2 emissions. This report is rather focused on 
advancing policies capable of achieving the IPCC’s global emissions targets within the next 20 
years and by 2050, and, within that context, to develop strategies capable of also supporting 
economic growth and expanding employment opportunities. 

This general approach applies in particular to our focus on the provision of sufficient energy 
resources within each country as it seeks to meet its appropriate emissions reduction targets. 
Within all country settings, there is, of course, a wide range of issues that need to be explored 
in behalf of the goals of promoting economic growth and employment opportunities. Many 
of these issues are not particularly concerned with a country’s energy sector. For example, 
there are good reasons for countries to consider the potential economic benefits of promoting 
specific economic sectors such as electronics, textiles, or food processing. However, given that 
this report is focused on achieving CO2 emissions reduction targets, we need to concentrate 
our attention on how this can be accomplished while also providing economies with sufficient 
energy resources for supporting a healthy growth trajectory. 

To be more specific, this report does not consider the merits of investments that can reduce CO2 
emissions versus investments that can, for example, promote a successful high-tech sector. 
Correspondingly, it is only within the context of reducing CO2 emissions that we explore the 
impact of a clean energy investment agenda on generating decent job opportunities. Once 
again, we do not consider, for example, whether expanding a country’s electronics sector is 
more conducive to promoting decent job opportunities than investing in clean energy resources. 
This is because it is only through investing in clean energy resources that we are able to deal 
with the challenge of achieving a country’s emissions reduction targets.

This report ranges widely and presents large amounts of data, calculations, and detailed 
examinations of particular problems. At the same time, our core arguments are simple. That 
is, we argue that the global economy is capable of meeting the IPCCs’ 20-year intermediate 
emission reduction target if most countries—including especially most countries with either 
large GDPs or population — devote about 1.5 percent per year of their economy’s GDP to 
investments in energy efficiency and clean renewable energy sources. These clean renewable 
sources include solar, wind, geothermal, and small-scale hydropower, as well as low-emissions 
bioenergy sources. They exclude corn ethanol, woodburning and other high-emissions 
bioenergy sources, whose use generates CO2 emissions at levels equivalent to coal or oil. We 
conclude that, as a general proposition, countries that sustain this 1.5 percent of GDP level of 
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annual investments in energy efficiency and clean renewables will also be able to maintain 
economic growth at healthy rates while providing a sufficient supply of energy resources to 
undergird growth. These investments in energy efficiency and renewable energy will also be a 
net new source of job opportunities. More specifically, we find that new investments in energy 
efficiency and renewable energy will generate more jobs for a given amount of spending than 
maintaining or expanding each country’s existing fossil fuel sectors. 

It will be useful here to briefly place this 1.5 percent of GDP figure in context. Global GDP in 
2013 was $87 trillion. Thus, 1.5 percent of global GDP is about $1.3 trillion at current GDP 
levels. This would mean channeling about $650 billion each for clean renewables and energy 
efficiency investments, if new investment funds were divided evenly between these two 
sectors. If spending were instead divided at something closer to 1 percent for renewables and 
0.5 percent for energy efficiency, as will probably be appropriate in most country settings, that 
will entail devoting about $870 billion for renewables and $435 billion for energy efficiency 
at the current global GDP level. These clean energy investment figures would also increase 
annually, corresponding with the growth of global GDP.

As of the most recent credible data, total global renewable investments were at $227 billion 
in 2011 and energy efficiency investments were between $150 and $300 billion.1 This totals to 
between $377 and $527 billion, or between 0.4 and 0.6 percent of global GDP. In other words, 
current global investments in clean energy are at roughly 30-40 percent of where they need to 
be to reach the 1.5 percent of GDP level. It is clear that a great deal needs to be accomplished 
to reach the 1.5 percent figure. At the same time, with the current investment level already at 
between 0.4 and 0.6 percent of global GDP, getting to a 1.5 percent of GDP figure is not so far 
out of reach as to appear implausible.

To bring global clean energy investments up to about 1.5 percent of global GDP will certainly 
require the development of effective industrial policies for countries at all levels of development. 
In Chapter 5, we review some of the main considerations with respect to advancing effective 
industrial policies. The core project is described well by Mazzucato (2013), when she writes that 
“Governments have a leading role to play in supporting the development of clean technologies 
past their prototypical states through to their commercial viability. Reaching technological 
‘maturing’ requires more support directed to prepare, organize, and stabilize a healthy ‘market,’ 
where investment is reasonably low risk and profits can be made” (2013, p. 136). UNIDO’s 2013 
Industrial Development Report usefully examines this theme in the specific context of uptake 
of green technologies in manufacturing, writing that “technological change rarely takes place 
in a vacuum, and often requires incentives. Success stories of new energy technologies are the 
product of forward-thinking ambitious government policies,” (UNIDO, 2013, p. 124).

In conjunction with the need for a major expansion in clean energy investments worldwide, it 
is also the case that the burning of oil, coal and natural gas will need to contract substantially 
in absolute terms throughout the globe if the world economy is going to achieve the IPCC’s 
emissions reduction targets. As we will show, this conclusion is unaffected by whether new 
fossil fuel reserves are discovered, such as the so-called “pre-salt” deposits in Brazil or 

1 The figure on global renewable energy investments is from the Frankfurt School-UNEP Collaborating Centre’s 2014 report Global Trends in Renewable 
Energy Investment 2014, Key Findings, p. 11. The figures on global energy efficiency investments are from the International Energy Agency’s 2013 
Energy Efficiency Market Report, pp. 47-50. The IEA study provides an extensive methological discussion on the challenges involved in “measuring the 
market for energy efficiency,” (Chapter 2 of study). Through this discussion, they do nevertheless conclude that “the IEA estimates that total global 
investment in energy efficiency measures in 2011 was up to USD 300 billion,” (p. 49). But they also provide, as a range, $147-$300 billion (p. 47).
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elsewhere. It is also unaffected by whether new technologies, such as hydraulic fracturing - i.e. 
“fracking” - are employed to produce fossil fuel energy more cheaply. Workers tied to the oil, 
coal, and natural gas industries will therefore inevitably face job losses as a consequence. 
Economic policies are needed in all countries to assist these workers, as well as their families 
and communities, with transitional support into new areas of economic activity, where decent 
job opportunities are expanding. In most countries, the energy efficiency and clean renewable 
energy sectors will be among the most important new areas of expanding job opportunities. 

This report presents a global perspective on the challenges of controlling climate change 
through strategies that will concurrently expand employment opportunities and contribute 
toward reducing mass poverty. At the same time, we focus in particular on the challenges 
faced by five specific countries: Brazil, Germany, Indonesia, South Africa, and the ROK. As 
we will discuss throughout this report, and as should be apparent in any case, economic 
conditions range widely between these five countries. But they are all, in their own distinctive 
ways, leading economies within their respective regions of the world. It is also notable that 
with all five selected countries, policymakers have already proposed clean energy/emissions 
reduction policy frameworks ranging between 1 and 2 percent of their country’s GDP. Our 
proposal for a clean energy project sustained at about 1.5 percent of GDP therefore builds from 
the perspectives developed within our five selected countries. In examining these individual 
cases in some depth, we will also clearly be able to gather insights on a broader set of countries 
at various levels of development.

Consider, for example, the case of Indonesia, which is defined as a lower-middle income 
economy according to the World Bank. Indonesia aims to grow rapidly over the next 20 years - 
i.e. in the range of 6-7 percent per year - following the examples in recent decades of the ROK, 
China, India and other fast-growing Asian economies. However, the Indonesian government’s 
own estimates show that the country’s CO2 emissions will increase by more than 500 percent 
by 2030 relative to 2010 if the economy’s GDP growth is fueled primarily by oil, coal, and 
natural gas. By contrast, we estimate that, under reasonable assumptions, a significant 
share of Indonesia’s energy needs for fueling a rapid growth trajectory can be met through 
investments in energy efficiency and clean renewable energy, as long as Indonesia channels 
about 1.5 percent of GDP annually into these clean energy areas. We also estimate Indonesia’s 
investments in energy efficiency and renewable energy can also be a significant new source of 
job creation within the country. In short, we show how Indonesia’s goal of sustaining a rapid 
economic growth trajectory can be accomplished through relying to an increasing extent on 
clean energy resources. The Indonesian case also has broader implications. It shows that low- 
and lower-middle income countries can achieve rapid economic growth without their growth 
having to depend heavily on oil, coal, and natural gas. This in turn means that Indonesia 
and similarly situated economies can achieve rapid growth without having to increase their 
country’s CO2 emissions as a necessary, if unfortunate, byproduct of sustained growth.

Valuable perspectives also emerge through our explorations of our four other selected countries. 
The case of Brazil is important because, as we will see, it is the world’s best-performing upper-
middle income economy in terms of maintaining low emissions levels amid a healthy GDP 
growth trajectory. Germany, similarly, has an excellent record in terms of emissions levels 
relative to other high-income countries. Germany’s clean energy agenda for the next 20 years 
is also highly ambitious and innovative. South Africa is critical because it is the largest and 
most advanced economy in Sub-Saharan Africa. At present, it also depends heavily on its major 
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coal reserves, both to meet its domestic energy needs and to generate export revenues. It is 
therefore a major challenge to consider how South Africa can reduce its dependence on coal 
while still growing at a healthy rate. But a clean energy transition is also realistic for South 
Africa. 

The case of the ROK is especially important because, in 2009, the previous government of 
President Lee Myung-bak established a project of “Green Growth” as a major national 
development objective.2 Consistent with the goals of the ROK’s Green Growth project, our 
research finds that within 20 years, the ROK could realistically reduce its per capita emissions 
by roughly 50 percent relative to 2010 levels without having to lower the economy’s GDP growth 
rate. We reach this conclusion based on a set of relatively conservative assumptions about 
the ROK’s prospects for integrating energy efficiency and clean renewables into the country’s 
energy mix.

In short, by focusing on the cases of Brazil, Germany, Indonesia, South Africa, and the ROK, we 
are able to develop new perspectives on the global challenges presented by climate change. We 
believe we are also able to provide a realistic framework for controlling climate change while, 
concurrently, expanding job opportunities and supporting long-term economic growth. It is, 
more specifically, realistic to expect that most countries can devote about 1.5 percent of their 
GDP annually to investments in renewable energy and energy efficiency. It is correspondingly 
realistic to expect that when countries commit to this clean energy investment agenda, they 
will also be able to support a healthy GDP growth trajectory and an increase in overall job 
opportunitites. 

Total Energy Consumption and Carbon Emissions
As an initial step in developing our research framework, it will be useful to review some basic 
evidence on energy consumption and CO2 emissions on a global scale, and within our five 
selected economies. We begin this review with Table 1.1, which provides relevant data as of 
2010. As Table 1.1 shows, as of 2010, total global energy consumption amounted to about 
510 Q-BTUs from all energy sources - including fossil fuels, all renewable sources and nuclear 
power. This is while total CO2 emissions were at 33,615 mmt.

2 World Bank (2012).
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Table 1.1: Energy consumption and CO2 emissions levels for world and selected countries, 2010

Energy consumption CO2 emissions

Total primary energy 
consumption

Per-capita energy 
consumption Total CO2 emissions Per capita CO2 emissions

(Q-BTUs) (M-BTUs) (mmt) (mt)

World 510.5 74 33,615 4.6

China 100.9 75.4 7,997 6.0

U.S. 98 316.9 5,637 18.2

Brazil 11.3 58 450.9 2.3

Germany 13.9 170.4 793.3 9.7

Indonesia 6.0 25.2 414.6 1.7

South Africa 5.6 111.8 473.2 9.5

ROK 10.8 218.2 581 11.7

Sources: U.S. Energy Information Administration, “International Energy Statistics,” (for energy consumption and per capita emissions);  
World Bank (2014), “World Development Indicators,” Table 3.9: Trends in greenhouse gas emissions (for total emissions).

 
The two leading countries in terms of both energy consumption and CO2 emissions are China 
and the U.S. As Table 1.1 shows, their respective levels of energy consumption were nearly 
identical in 2010, with China at 100.9 Q-BTUs and the U.S. at 98 Q-BTUs. Together, China 
and the U.S. account for nearly 39 percent of world energy consumption. In terms of carbon 
emissions, China is at a higher level, at 7,997 mmt, while the U.S. is at 5,637 mmt. Together, 
they account for 43 percent of all global carbon emissions. Obviously, we must give major 
attention to developments in the U.S. and China in terms of mounting an overall project for 
controlling climate change.

But even from this first set of statistics in Table 1.1, it is also clear that the challenges in terms 
of a clean energy agenda are dramatically distinct for the U.S. and Chinese cases. The U.S. is 
an advanced industrial economy in which energy consumption per capita is among the highest 
in the world for large population countries, at 316.9 million BTUs (hereafter M-BTUs) per capita. 
China, by contrast, despite its historically unprecedented growth experience over the past 35 
years, is still a developing country, in which energy consumption per capita, at 75.4 M-BTUs, is 
one-fourth that of the U.S. A major part of the challenge for advancing a viable global agenda 
for controlling climate change in the most effective ways is to recognize the distinctive issues 
and industrial development needs facing the U.S. and China.

The cases of the U.S. and China also underscore another fundamental fact. As important as 
they are to grasping the overall global climate change challenge, they are still, in combination, 
contributing well less than half to the overall level of global carbon emissions. This therefore 
means that we must be at least equally concerned to develop policies that apply to all other 
countries - including, of course, Brazil, Germany, Indonesia, South Africa and the ROK. Moreover, 
as with the comparative situations for the U.S. and China, the differences among our five 
selected countries are dramatic. For example, the current energy consumption levels are even 
more different than those between the U.S. and China. We can obtain a first basic picture of 
these differences through the data in Table 1.1. As we see there, per capita energy consumption 
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in Germany is 170.4 M-BTUs. This is 45 percent below the level of per capita consumption in 
the U.S. But it is also nearly seven times greater than the per capita consumption level for 
Indonesia. 

Considering another pair of countries, per capita energy consumption as well as emissions 
are actually higher now in the ROK than Germany, even while their overall level of energy 
consumption, at 10.8 Q-BTUs, is about 20 percent below that of Germany. Brazil is nearly at the 
same consumption level as Germany, but its per capita level of consumption and emissions are 
in the range of 20-30 percent that of Germany. Another notable comparison that we see in Table 
1.1 is that South Africa’s per capita emissions level is roughly equal to that in Germany. This 
reflects the greater use by Germany of clean energy sources. South Africa, in particular, remains 
heavily dependent on burning coal to generate electricity. Coal, in turn, is the most emissions-
intensive source of fossil fuel energy. Per BTU of energy, CO2 emissions from coal are roughly  
50 percent higher than those from oil and 80 percent higher than those from natural gas.

Specifying the Climate Change Challenge
Table 1.1 shows us world per capita carbon emissions in 2010 at 4.6 mt, with figures ranging 
in our selected countries between 1.7 mt for Indonesia and 18.2 mt for the U.S. This ratio will 
provide an important measure for clarifying the scale and types of policy initiatives that will be 
necessary for controlling climate change.

Thus, we can express our intermediate emissions reduction goals in terms of this measure, 
within the framework of reducing the absolute level of carbon emissions by 40 percent, to 
around 20,000 mmt, within 20 years. With global population expected to rise to about 8.4 
billion by 2030, this means that carbon emissions will need to be at no more than 2.4 mt per 
capita by 2030. The question will be how to achieve this in a way that is also supportive of 
rising average living standards and declining poverty.

This challenge becomes especially sharp when we consider the current pattern in the 
relationship between per capita GDP levels and emissions. Not surprisingly, there is a strong 
direct correlation between rising per capita GDP and rising per capita emissions. This is evident 
even through the basic figures shown in Table 1.1. As we see, Indonesia has the lowest per 
capita emission level of our selected countries, at 1.7 mt. 

We can see this pattern more generally in Table 1.2, which divides all countries into four broad 
income categories, and shows the emissions per capita for each of the four income categories. 
Starting with the upper panel of Table 1.2, we see that low income countries, averaging $592 in 
per capita GDP and with a total population of 709 million people, operate with emissions level 
of 0.3 mt per capita. Per capita emissions then rise to 1.6 mt for lower income countries, 5.4 
for upper-middle income countries and 11.6 for high-income countries. That is, on average, the 
1.3 billion residents of high-income countries generate 7.2 times more emissions than the 2.5 
billion people living in lower-middle income countries, and 38 times more emissions than the 
709 million people living in low-income countries.
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Table 1.2: World income-level groupings and CO2 emissions levels, 2010
 
a) Per capita income, population and emissions

Income Categories Average GDP per capita
($2005 PPP) Total population

Average 
emissions per 

capita
(mt)

Low $592 709 million 0.3 mt

Lower middle $1,920 2.5 billion 1.6 mt

Middle $4,560 4.9 billion 3.4 mt

Upper middle $7,340 2.4 billion 5.4 mt

High $37,720 1.3 billion 11.6 mt

b) Countries with low, medium, and high per capita emissions

  Number of countries Average GDP per 
capita

Countries with per capita CO2 emissions below 
2.4 mt 60 $1,768

Countries with per capita CO2 emissions below 
4.6 mt 74 $3,058

Countries with per capita CO2 emissions above 
10.0 mt 13 $33,700

Source: Authors’ calculations based on World Bank (2014), “World Development Indicators,” Table 1.1: Size of the economy, 3.8: Energy dependency, 
efficiency and carbon dioxide emissions, 3.9: Trends in greenhouse gas emissions. 
Note: Sample includes countries with over 5 million in population

The lower panel of Table 1.2 gives further perspective on this relationship. Of the total of 60 
countries in which emissions per capita are currently below 2.4 mt - the average level for all 
countries that the world needs to reach within 20 years - average GDP per capita was $1,768. 
Further, of the 74 countries in which per capita emissions was below the current world average 
of 4.6 mt, average GDP per capita was $3,058. By contrast, of the 13 countries in which per 
capita emissions were above 10 mt, average GDP per capita was $33,700. 

At the same time, we do see some significant outliers. This is evident from Figure 1.1, which 
plots the relationship between per capita GDP levels and per capita emissions. The positive 
correlation is clearly strong. But we do still see large outliers on either side of the regression 
line. As the figure shows, the low emissions countries in the high-income category include 
Norway, Switzerland, Sweden and Singapore. Among countries whose per capita GDP ranges 
between $10,000 and $30,000, the best performer is Brazil, one of our five selected countries. 
Brazil is also important among the full set of countries, since it is the only large economy that 
is operating at significantly below the regression line in terms of lower emissions. As we see, 
the U.S. and China are both substantially above the regression line. We of course consider the 
case of Brazil more fully in later chapters.
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Figure 1.1: Country-by-Country per Capita CO2 Emissions and GDP, 2010

Source: World Bank (2014), “World Development Indicators,” Table 3.8: Energy Dependency, Efficiency, and Carbon Dioxide Emissions.

Global CO2 Emissions Projections for 2030 

We can obtain further perspective on the magnitude of the challenges ahead by considering the 
CO2 emission level projections for 2030 by two of the largest and most influential organizations 
that have developed models that address this question. These are the U.S. Department of 
Energy’s Energy Information Agency (EIA), which produces an annual International Energy 
Outlook; and the OECD’s International Energy Agency (IEA), which publishes an annual World 
Energy Outlook.

In Table 1.3, we show the most recent projections of the EIA and IEA for world CO2 emissions 
levels under various scenarios. The EIA reports a world emissions projection for 2030 only 
under its Reference case3. As we see in Table 1.3, under this 2030 Reference case, the EIA 
projects that total global CO2 emissions will be at 41,468 mmt - i.e. at a level that is more than 
twice as high as the 2030 target level for climate change control of 20,000 mmt.

3 In addition to its Reference case, with projections for 2030, as well as through 2040, the EIA also reports results for four other scenarios - both high 
and low economic growth cases and both high and low oil price cases. But they do not report on CO2 estimates under 2030 under these four other 
scenarios.
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Table 1.3: Projected world CO2 emissions levels for 2030 by U.S. Energy Information 
Administration and OECD International Energy Agency

  2030 CO2 emissions projections

U.S. Energy Information Administration (EIA)  
Reference case 41,468 mmt

OECD International Energy Agency (IEA)  

• Reference case 40,825 mmt

• New Policies case 36,493 mmt

• 450/Low Carbon case 24,663 mmt

Sources: Authors’ compilation based on U.S. Energy Information Administration, “International Energy Outlook 2013.”;  
International Energy Agency (2013) “World Energy Outlook 2013,” Tables for Scenario Projections, pp. 574-575.
 
The IEA provides projections under three scenarios: a Reference case; a “New Policies” case 
and a 450/Low Carbon case. The IEA describes its New Policies case as taking into account 
“broad policy commitments and plans that have already been implemented to address energy-
related challenges as well as those that have been announced….” But this New Policies case 
also “assumes only cautious implementation of current commitments and plans.” The IEA 
describes its 450/Low Carbon case as setting out “an energy pathway that is consistent with a 
50 percent chance of meeting the goal of limiting the increase in average global temperature 
to 2oC compared with pre-industrial levels,” (IEA, 2013a, p. 645). That is, the IEA believes that 
its 450/Low Carbon case provides a 50 percent chance for the world to control climate change. 

As we see in Table 1.3, as with the EIA’s reference case, under the IEA’s 2030 Reference case, 
global emissions are at 40,825 mmt CO2 - again, more than twice as high as the 20,000 mmt 
target for controlling climate change. The situation is only modestly improved in the IEA’s New 
Policies case, in which they project 2030 CO2 emissions to total 36,493 mmt. Even under the 
450/Low Carbon case, the IEA still projects emissions to be 24,663 mmt CO2. Of course, this is 
a dramatic improvement relative to all the other cases. But it is still 23 percent higher than the 
20,000 mmt 2030 target. 

It is critical to underscore that the IEA describes the 450/Low Carbon case as offering only 
a 50 percent chance of the world succeeding in controlling climate change. This estimate 
underscores the urgency of advancing a realistic agenda that offers a significantly higher 
probability of achieving success in controlling climate change than the IEA’s 450 program.

Component Parts of CO2 Emissions per Capita Ratio
To provide additional perspective on variations in per capita CO2 emissions level by country, 
it will be useful to decompose the emissions per capita ratio into three component parts. This 
yields three ratios, each of which provides a simple measure of one major aspect of the global 
climate change challenge. That is, CO2 emissions per capita can be expressed as follows:
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Emissions/population = (GDP/population) x (Q-BTUs/GDP) x (emissions/Q-BTU).

These three ratios provide measures of the following in each country setting: 

1. Level of development: Measured by GDP/capita;

2. Energy intensity: Measured by Q-BTUs/GDP;

3. Emissions intensity: Measured by emissions/Q-BTU.

Table 1.4 shows the results of the decomposition for the world, the U.S, China, as well as Brazil, 
Germany, Indonesia, South Africa, and the ROK. Considering first the U.S. and China, we see 
that emissions per capita are three times higher in the U.S, at 18.2 mt versus 6 for China. The 
three factors generating this overall result are as follows:

1. Level of development: Average GDP per capita in the U.S, at $50,000, is 8 times higher 
than that for China;

2. Energy intensity: The U.S. is twice as efficient as China, with its Q-BTU/GDP ratio at 6.2 
versus 12.1 for China;

3. Emissions intensity: The mix of energy sources in the U.S. is 40 percent cleaner than that 
in China, at 57.5 emissions/Q-BTU versus 79.3 for China.

Table 1.4: Determinants of per capita CO2 emissions levels by country, 2010:  
Level of development, energy intensity and energy mix

CO2 Emissions/population = (GDP/population) x (Q-BTUs/GDP trillions) x (Emissions/Q-BTU)

  CO2 emissions/
population

GDP/
population

($2005 PPP)

Energy intensity ratio: 
Q-BTUs/ trillion dollars 

GDP

Emissions intensity 
ratio: CO2 emissions/ 

Q-BTU

World 4.6 mt $10,300 7.1 Q-BTUs 65.9 mmt

         

China 6.0 mt $6,200 12.1 Q-BTUs 79.3 mmt

U.S. 18.2 mt $50,000 6.2 Q-BTUs 57.5 mmt

         

Brazil 2.3 mt $11,600 5.1 Q-BTUs 39.9 mmt

Germany 9.7 mt $41,500 4.1 Q-BTUs 57.1 mmt

Indonesia 1.7 mt $3,600 6.8 Q-BTUs 69.1 mmt

South Africa 9.5 mt $7,500 14.6 Q-BTUs 84.5 mmt

ROK 11.7 mt $22,000 9.8 Q-BTUs 53.8 mmt
Source: Authors’ calculations based on Tables 1.1 and 1.2.
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Both the U.S. and China will need to sharply reduce their levels of emissions per capita, to 
bring the world to an average of 2.4 mt per capita within 20 years. Obviously, in absolute terms, 
the U.S. challenge is far greater, given its current per capita emissions level of 18.2 mt. But the 
U.S. is at least much further along in both operating at a higher level of efficiency and utilizing 
cleaner energy sources. Nevertheless, the U.S. still needs to intensify the efforts already 
underway to raise efficiency and increase reliance on low-carbon energy sources.

Table 1.4 also makes clear that there are sharp disparities between our five selected countries, 
not only in terms of income levels, but also in terms of energy efficiency and their existing 
mixes of energy sources. 

Let’s first again consider Brazil, which is performing quite well in terms of energy emissions, 
at 2.3 mt per capita. Brazil is accomplishing this while still operating at a fairly high per capita 
GDP level of $11,600. The reasons for Brazil’s strong performance in per capita emissions is 
that it both operates at a high level of efficiency - utilizing only 5.1 Q-BTUs of energy per $1 
trillion in GDP, and by utilizing clean renewable energy sources to a substantial degree. This 
allows Brazil to produce only about 40 mmt of emissions per Q-BTU of energy.

The cases of South Africa and Germany are again useful for comparative purposes. As we have 
seen, their levels of emissions per capita are nearly identical, at 9.7 and 9.5 mt respectively. 
But Germany is generating this level of emissions while its average capita GDP level is $41,500, 
while in South Africa, average GDP per capita is $7,500. Of course, the reason emissions per 
capita are nearly identical is because Germany is operating at a very high level of efficiency, 
4.1 Q-BTUs per GDP. This is nearly four times more efficient than South Africa, where the energy 
intensity ratio is 14.6 Q-BTUs/GDP. The German energy mix is also nearly 50 percent cleaner 
than that for South Africa. 

This comparison suggests a pathway for South Africa to dramatically lower its emissions level 
by both raising its efficiency standards as well as its reliance on clean energy sources. To do so 
will enable the South African economy to at least approach the 2.4 mt per capita CO2 emissions 
standard within 20 years while still experiencing healthy economic growth. As for the German 
economy, the figures in Table 1.4 show that there is considerable room for improvement, 
particularly with its emissions intensity ratio. As we discuss in Chapter 9, investments on 
the order of 1 percent of GDP per year in clean renewables should enable Germany to cut 
its emissions ratio by about 15 percent in 20 years. Germany also plans to make still greater 
improvements in hits energy intensity ratio over this same time period.

There are similarly useful perspectives to extract for the Indonesian case, its much lower 
level of per capita GDP relative to both Germany and even South Africa notwithstanding. As 
we see in Table 1.4, Indonesia operates at roughly the world average in terms of both energy 
intensity emissions intensity. But this is with an economy in which per capita GDP is $3,600. 
For Indonesia to reach a substantially higher level of average income over the next 20 years 
while still maintaining an acceptable level of emissions per capita, they will need to raise their 
level of efficiency and reliance on clean energy. This is what will enable Indonesia to increase 
per capita GDP at a healthy rate while still maintaining their CO2 emissions level at roughly 
the global target figure of 2.4 mt per capita. As mentioned above, and as we consider in more 
depth in subsequent chapters, building a clean energy economy in Indonesia does not need 
to be an obstacle to operating along a strong long-term growth trajectory. Rather, clean energy 
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investments in Indonesia can be a major engine supporting Indonesia’s favorable long-term 
growth performance.

The ROK is a high-income country, with per capita GDP at $22,000 per year. The economy 
operates at a higher per capita CO2 emissions level than both Germany and South Africa, at 
11.7 mt. It is also generating energy with relatively clean sources, with its emissions intensity 
ratio at 53.8. This is modestly better than both the U.S. and Germany. However, the ROK’s 
energy intensity ratio, at 9.8 Q-BTUs/GDP, is nearly double that for Brazil, and 60 percent 
higher than the U.S. Of course, the ROK has a history of success with implementing industrial 
policies capable of integrating cutting-edge technologies into the economy. As we discuss in 
Chapter 12, its current share of research and development spending relative to GDP is already 
the highest in the world. This background enables us to conclude that there is indeed a strong 
prospect for the ROK to dramatically reduce its absolute emissions levels within 20 years; and 
to do so without having to sacrifice GDP growth in the process. 

Options for Reducing Carbon Emissions
Notwithstanding the wide differences in levels of development among Brazil, Germany, 
Indonesia, South Africa and the ROK, and more broadly, across the globe, the fact remains 
that there are only a limited number of ways in which any country, regardless of its level of 
development, can control its carbon emissions while still consuming energy resources to an 
extent sufficient to support rising average living standards. These are (listed in no particular 
order of significance):

1. Raise the economy’s level of energy efficiency;

2. Among fossil fuel energy sources, increase the proportion of natural gas consumption 
relative to coal, since carbon emissions from burning natural gas are about one-half 
those from coal;

3. Invest in the development and commercialization of some combination of the following 
technologies:

a. Clean renewables, including solar, wind, hydro, geothermal and some types of 
bioenergy;

b. Nuclear power;

c. Carbon Capture and Sequestration (CCS) processes in generating coal, oil, and 
natural gas-powered energy.

The focus of this report is to examine the prospects for each of these options in our distinct 
country settings. That, indeed, is what will constitute the core of any country’s clean energy 
investment agenda. As we will show, once we have identified the key components of a clean 
energy investment project for each country, we will then be in a position to estimate the impact 
of this project on creating employment opportunities. But here again, we emphasize that the job 
creation elements of the project will emerge as an outgrowth of each economy’s investments in 
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clean energy. We are not advancing a jobs policy that operates independently of each country’s 
clean energy investment agenda.

We present two sets of estimates of the employment impacts of large-scale clean energy 
projects in Brazil, Germany, Indonesia, South Africa, and the ROK. The first is the aggregate 
level of new employment generated through investments in various types of renewable energy 
and energy efficiency activities in each of our five specific country settings. Overall, we find 
that, in all five selected countries, clean energy investments generate more jobs than spending 
the same amount of money within each country’s fossil fuel sectors. There are of course 
differences in the relative levels of job creation by country, as well as the quality of the jobs 
generated by investments in clean energy versus fossil fuels. We obtain further perspective 
on these questions of job quality when we disaggregate these country-specific employment 
estimates according to four criteria: gender balance; the share of self-employment versus 
wage employment; the share of jobs created in micro-enterprises versus larger enterprises; 
and the educational attainment levels associated with each type of job linked to clean energy 
activities. These disaggregated employment statistics enable us to gain clarity as to which 
groups in society are likely to benefit from new employment opportunities generated by clean 
energy investments. 

We have not been able to observe directly the possible ways in which a large-scale expansion 
of clean energy investments can contribute toward reducing poverty per se in either our five 
country settings or elsewhere. But our disaggregated employment figures can nevertheless 
provide relevant data for better understanding this critical aspect of the global clean energy 
investment project. In general, people who work in informal employment with low educational 
attainment levels also tend to receive low earnings. Creating new employment opportunities 
for people in these circumstances - including more formal employment jobs operating at higher 
productivity levels - should also provide opportunities for better pay and more job security. In 
addition, the expansion of employment generally will help reduce poverty resulting from mass 
unemployment.

Structure of Report
The remainder of this report is divided into three sections. Section 1 examines prospects for 
supplying energy over the next 20 years through alternative energy sources. Within Section 1, 
Chapter 2 covers non-renewable energy sources, including oil, coal, natural gas and nuclear 
power. We first review in Chapter 2 the basic facts on the extent of CO2 emissions that are 
generated from consuming oil, coal and natural gas, as well as high-emissions bioenergy 
sources. This will enable us to see clearly the levels of fossil fuel consumption that can be 
sustained while still achieving the target of reducing global CO2 emissions to no more than 
20,000 mmt within 20 years. We will then consider the alternative ways to continue utilizing 
non-renewable energy sources while still reducing emissions from these energy sources. The 
possibilities here are to expand nuclear power and CCS technologies as well as fuel switching, 
with cleaner-burning natural gas substituting for emissions-intensive coal. But we conclude 
in this chapter that none of these alternatives with non-renewables can produce an adequate 
framework for controlling CO2 emissions. Specifically, there is no scenario for achieving the 
IPCC’s 20-year emissions reduction targets through consuming any combination of oil, coal 
and natural gas at close to their current levels. In addition, CCS technologies and nuclear power 
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create major and unavoidable public safety concerns. 

Chapter 3 covers renewable energy sources, including bioenergy, hydro, wind, solar, and 
geothermal power. We argue that in order for the world economy to meet its intermediate CO2 
emissions reduction targets within 20 years and, subsequently for 2050, it will be necessary 
to create a rapidly expanding and successful renewable energy sector. This means producing 
energy increasingly from wind, solar, geothermal, bioenergy, and hydropower sources. As we 
will review in this chapter, it is in fact realistic to allow that clean renewables could provide in 
the range of 30 percent of all global energy supplies within 20 years. The main driver here is that 
the trajectory for prices and costs for renewables is becoming increasingly favorable. In a wide 
range of conditions - though not under all circumstances - renewable energy from most sources 
will be at cost parity with non-renewables within the next 5-10 years. There are certainly areas 
of concern with renewables. The most significant is that, as mentioned above, some bioenergy 
sources, including corn ethanol and woodburning, offer little or no improvement on emissions 
relative to burning coal or oil. A rapidly expanding bioenergy sector could also create strains on 
global agricultural resources and, thereby global food prices. Also, large-scale hydro projects, 
under most circumstances, will generate serious environment problems. We examine these 
issues in Chapter 3. We conclude that, even while recognizing these various concerns, the 
prospects are quite favorable for the large-scale expansion of solar, wind, geothermal, small-
scale hydro as well as clean bioenergy.

Chapter 4 addresses a range of issues concerning energy efficiency. The first basic conclusion 
of this chapter is that significantly raising energy efficiency levels for all countries, at all levels 
of development, is necessarily one of the two cornerstones of the global green growth project, 
along with clean renewable energy investments. One major area of support for this conclusion 
is the evidence we review from a range of studies as to the costs of large-scale gains through 
energy efficiency investments. These cost estimates vary widely. But as we will show, at even 
the highest cost estimates, of around $30 billion in investments per Q-BTU of energy savings, 
these investments are cost effective, in that they still generally pay for themselves within three 
years. The main challenge for enabling the global energy efficiency investment market to grow 
rapidly is to develop more effective systems of financing and risk-sharing. We do also consider 
the prospect that large-scale efficiency investments may not have their intended effect of 
reducing energy consumption at all. This would be due to the “rebound effect, ” whereby better 
energy efficiency encourages consumers to expand their energy-using activities. However, we 
conclude that any rebound effect that may emerge as a byproduct of an economy-wide energy 
efficiency investment will not be large enough to counteract their significant environmental 
benefits. Still, the most effective way to limit rebound effects is to combine efficiency 
investments with complementary measures to greatly expand the supply of clean renewables 
and to raise the price or put firm limits on producing CO2 emissions. 

Section 2 of this report focuses on employment impacts of economic activity in the clean energy 
sectors - including here both renewables and efficiency investments - and the non-renewable 
energy sectors. We also address issues related to the employment question, in particular 
the extent to which any given country’s clean energy investment project can operate through 
expanding domestic economic activity as opposed to relying increasingly on imports. Answering 
this question, in turn, entails considering the types of national industrial policies that will be 
needed for countries to successfully mount large-scale clean energy investment projects. 
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Our primary focus in Chapter 5 is to examine how much any country, and our five selected 
countries in particular, is likely to expand its investments in clean energy sectors on the basis 
of its own domestic resources. To the extent that a country runs up against domestic productive 
capacity constraints while expanding its investments in energy efficiency and clean renewable 
energy sources, it then faces two alternatives: either scale back the clean energy investment 
project or rely increasingly on imports to maintain the ambitious investment agenda. Our main 
consideration in raising these questions is employment effects. That is, to what extent will 
changes in the domestic content of the country’s output in the relevant sectors affect the overall 
job-generating prospects of its clean energy investments? We focus on two considerations. 
The first is the role that can be played by a country’s industrial policies to expand domestic 
productive capacity in the relevant sectors of the economy. We emphasize here both credit and 
labor market policies as central components within a broad industrial policy framework. We 
then also consider the extent to which countries currently rely on fossil fuels to both meet their 
energy consumption needs, and, potentially, to also generate export earnings. We address the 
effects of retrenchments in the fossil fuel sectors on the economy broadly, and, in particular, on 
the workers whose livelihoods depend on these sectors, as these sectors face retrenchment. 

Chapter 6 considers our methodology for generating estimates of employment impacts of 
economic activity in both the clean energy and fossil fuel sectors of Brazil, Germany, Indonesia, 
South Africa and the ROK. Our estimates are figures generated directly from data from national 
surveys of public and private economic enterprises and organized systematically within each 
country’s national I-O model. Here is one specific example of how our methodology works. If a 
business invests an additional $1 million on energy efficiency retrofits of an existing building 
(or its equivalent within each country’s national currency), how much of the $1 million will they 
spend on hiring workers, how much will they spend on non-labor inputs, including materials, 
energy costs, and renting office space, and how much will be left over for business profits? 
Moreover, when businesses spend on non-labor inputs, what are the employment effects 
through giving orders to suppliers, such as lumber and glass producers or trucking companies? 
We also ask this same set of questions for investment projects in renewable energy as well as 
spending on operations within the non-renewable energy sectors. There are certainly limitations 
with our use of the I-O model, which we review. But we conclude that this is the most reliable 
methodology for our purposes. We also consider in Chapter 6 some broader methodological 
and measurement questions. For example, should we regard a high employment impact for 
a given clean energy investment strategy as necessarily being a favorable development, or 
are we simply observing the effects of a moving onto a lower level of labor productivity? We 
also address a series of more technical measurement issues in Chapter 6, and pursue these 
questions further in Appendices 3 and 4.

Chapter 7 presents these employment estimates by country, both the aggregated and 
disaggregated figures. With respect to aggregate figures, we focus on the levels of employment 
generated through spending $1 million within the various specific energy sectors. With the 
disaggregated employment figures, we show the percentage of jobs based on our four criteria 
- gender balance; the proportions in self-employment and working in micro-enterprises; and 
the educational attainment levels of people employed in the various energy-linked activities. 

Overall, we find here that, per $1 million in spending in each country (converted at current 
exchange rates), clean energy investments generate, on average, about 37 jobs in Brazil, 
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10 jobs in Germany, 100 jobs in Indonesia, 70 jobs in South Africa, and 15 jobs in the ROK. 
Critically, as mentioned above, we also find that the clean energy investments create more jobs 
in all five countries than spending the same amount of funds within each country’s fossil fuel 
sectors. In the cases of Brazil, Indonesia, and South Africa, the net employment gains for clean 
energy investments are substantial. They are more modest in Germany and especially the ROK. 
Still, in all cases, we find that investing in building a clean energy economy will also be a net 
positive source of job creation.

Not surprisingly, our disaggregated employment results vary by country. We observe, for 
example, a high proportion of employment in informal sectors in Brazil, Indonesia, and 
South Africa, and, to a somewhat lesser extent, the ROK, as indicated by our figures on both 
self-employment and micro-enterprise employment. This pattern is linked, first, to the large 
proportion of agricultural employment that will be generated by the growth of clean bioenergy 
production. It is also associated with the large increase in construction work that would result 
through the expansion of energy efficiency building retrofit projects. The major increase in 
investment funds flowing into construction and agriculture should also provide opportunities 
to raise the level of formalization for these sectors. This should entail increased mechanization 
and productivity growth. 

In its current composition, employment in clean energy areas is heavily male dominated in all 
five countries. This is due to the significant role played by both manufacturing and construction 
in overall clean energy investments. Advancing major clean energy initiatives in all five countries 
(and elsewhere) could therefore be seen as an opportunity to open up decent job opportunities 
for women in these heretofore male employment strongholds. 

The levels of educational attainment in the clean energy areas are generally not especially high. 
Indeed, if anything, they are somewhat lower than those for workers in the fossil fuel sectors. 
This suggests that, at least at the level of general educational levels, there should not be major 
challenges in finding qualified workers to cover the rising employment needs for expanding 
clean energy activities. At the same time, some of these new employment activities will entail 
new activities and skills. For example, installing solar panels on roofs and wiring these panels 
so they supply electricity are distinct tasks relative to the jobs that are traditionally performed 
by either roofers or electricians. Similarly, refining agricultural wastes into biofuels is different 
than refining corn into ethanol or, for that matter, refining petroleum into gasoline. Countries 
advancing clean energy investment projects will need to make provisions for these and similar 
areas that demand new types of training and skill acquisition. This is an issue we address 
separately in Chapter 5.

We do not present figures in Section 2 on actual numbers of jobs that are likely to be generated 
within each country through the various investment projects. Rather, this is one of the central 
topics we take up in Section 3, which consists of our five country-specific studies. The chapters 
proceed as follows: Chapter 8, Brazil; Chapter 9, Germany; Chapter 10, Indonesia; Chapter 11, 
South Africa; and Chapter 12, the ROK. In each of these country-specific chapters, we examine 
their broad energy indicators; some alternative projections for energy development over the 
course of a 20-year cycle; the country’s likely economic growth trajectory over such 20-year 
cycles; and the range of costs each country is likely to face through undertaking large-scale 
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investments in clean energy.4 

In all five country settings, we deliberately work with relatively conservative assumptions 
on each country’s economic growth trajectory and the costs that countries will face in 
implementing large-scale investment activities in renewable energy and energy efficiency. 
As we will see, the cost estimates for renewable energy and energy efficiency projects range 
widely, according to which countries and regions are being considered and, at a more technical 
level, what specific methodologies are being used to generate estimates. For the purposes 
of this report, it is less important to try to establish what are the most reliable GDP growth 
forecasts and cost estimates than to be able to evaluate the viability of large-scale clean energy 
investments when we assume that GDP growth will be moderate and investment costs will be 
relatively high. If the actual costs of renewable and efficiency investments are lower than what 
we have assumed, then this only strengthens our conclusion that a transformative clean energy 
investment agenda is a realistic prospect for all five of our selected countries.

For all of the countries except Brazil, we consider the impact on energy supply and CO2 
emissions levels of the country devoting 1.5 percent of annual GDP on investments in renewable 
energy and energy efficiency. For two reasons, we assume a lower rate of investment in these 
areas for Brazil. The first reason is that Brazil is already a very strong performer in both its 
reliance on renewable energy and its level of energy efficiency. The second reason is that, in 
Brazil, uniquely among our five selected countries, CO2 emissions from energy-based sources 
accounts for less than 40 percent of the country’s total GHG emissions. As such, for roughly 
the next decade, Brazil should devote a relatively large share of their resources to controlling 
methane and nitrous oxide emissions from non-energy sources. 

Overall, our country-specific analyses demonstrate that each of our five selected countries 
can achieve major advances forward in reducing CO2 emissions through the clean energy 
investment projects that we outline. The projects that we outline, in turn, build from the existing 
policy approaches and prospects being developed in each of the five countries. Through 
this approach, we are able to describe trajectories through which each of the countries can 
realistically reduce its ratio of per capita CO2 emissions to an extent that the world as a whole 
can expect to achieve the overall 20-year CO2 emissions target of 20,000 mmt. 

Once we identify the broad levels of investment activity for each country - i.e. about 1.5 percent 
of annual GDP for all the countries other than Brazil, and with Brazil at about 0.9 percent of 
GDP - we can then estimate total amounts of employment creation through investments in 
renewable energy and energy efficiency. We show these employment figures both in absolute 
terms and as a share of each country’s total labor market. 

We also examine our estimates for the total numbers of jobs generated through clean energy 
investments in comparison with the same level of spending in each country on its existing 
fossil-fuel based energy infrastructure. Crucially, we find that in all countries, investing in 
building a clean energy economy is a net source of job creation relative to maintaining the 

4 In developing these scenarios for 20-year clean energy investment projects, we have had to be specific as to what we mean by a “20-year project.” 
In particular, many of the scenarios we consider provide projects for the year 2030, as if the year 2030 were 20 years from the present. But at present, 
of course, the year 2030 is now only 16 years away. At the same time, in some cases, the most recent data points are for the year 2010, while in 
other cases, data are available as recently as 2012 or even parts of 2013. Our approach to managing this issue is, in general, to present our analyses 
within a 20-year time frame, rather than specifically focusing on 2030 as our end-point. But we do also make considerable use of projections that are 
specifically focused on the year 2030. Most importantly, we have attempted to manage this issue in ways that do not distract focus on the basic issues 
at hand, regardless of whether our time frame ends in the year 2030 or, perhaps one, two or three years later.
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economy’s fossil fuel-based operations. We present these country-by-country employment 
creation estimates first in terms of employment levels in Year 1 of the overall 20-year clean 
energy investment cycle. We then also provide projections on employment creation in Year 20 
of the 20-year cycle, building from a range of assumptions as to each country’s relative rates of 
labor productivity growth as well as GDP growth. Overall, our results on employment creation 
throughout the 20-year clean energy investment cycle enable us to conclude that, in all five of 
our specific country settings, the project of building a clean energy economy is also a project 
for expanding employment opportunities.
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CHAPTER 2: PROSPECTS FOR  
NON-RENEWABLE ENERGY 
As we noted at the end of Chapter 1, there are only a limited number of possible ways for 
economies to reduce their absolute levels of carbon emissions while still either increasing 
their per capita consumption of energy-based services or at least maintaining their current 
consumption levels. These are: raising energy efficiency; expanding the use of either clean 
renewable energy sources or nuclear power; capturing the CO2 emissions from burning fossil 
fuels through CCS technology; or switching to cleaner-burning natural gas or oil and out of coal.

In this chapter, we will first review the basic facts on the extent of CO2 emissions that are 
generated from consuming oil, coal and natural gas, as well as high-emissions bioenergy 
sources. This will enable us to see clearly the levels of fossil fuel consumption that can be 
sustained while still achieving the target of reducing global CO2 emissions to no more than 
20,000 mmt within 20 years. We will then consider the alternative ways to continue utilizing 
non-renewable energy sources while still reducing emissions from these energy sources - i.e. 
through expanding nuclear power and CCS technologies as well as through fuel switching from 
coal to natural gas and oil.

Emission Levels from Alternative Energy Sources 
To estimate the impact on emissions of any given level of energy consumption supplied from 
oil, coal, natural gas and high-emissions renewable sources, we need to begin with the basic 
data on emissions that result from these alternative non-renewable sources. 

Table 2.1 reproduces figures reported by the US Energy Information Administration (EIA) as 
to the CO2 emissions levels from oil, coal, natural gas and bioenergy sources, with specific 
figures referring to the use of these energy sources for alternative purposes.5 As we discuss 
further below, generating electricity from operating nuclear power plants does not produce 
GHG emissions.6 The data in Table 2.1 are shown in terms of millions of metric tons of carbon 
dioxide equivalent per Q-BTU of energy. The basic results are as follows:

5 The IEA publication CO2 Emissions from Fossil Fuel Combustion (IEA, 2013b) provides an extensive discussion on methodologies for estimating 
CO2 emissions from oil, coal, and natural gas combustion. Among other useful features of this discussion is its explanation as to how differences 
can emerge in estimating emissions from a given level of combustion from a specific fossil fuel source. They also note that “in most cases, these 
differences will be small,” (p. 1.5).
6 We also review below the evidence regarding emissions generated through mining and refining uranium needed in generating nuclear energy, and 
in the process of constructing nuclear power plants. 
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Table 2.1: CO2 emissions levels from alternative fossil fuel energy sources

CO2 emissions per Q-BTU of energy generated (mmt)

Petroleum  

Gasoline (net of ethanol) 71.3

Liquefied petroleum gas used as fuel 63

Liquefied petroleum bas used as feedstock k 12.3

Jet fuel 70.9

Distillate fuel (net of biodiesel) 73.2

Residual fuel 78.8

Asphalt and road oil 0

Lubricants 37.1

Petrochemical feedstocks 25.1

Kerosene 72.3

Petroleum coke 92.1

Petroleum still gas 64.2

Other industrial 74.5

Coal  

Residential and commercial 95.4

Metallurgical 93.7

Coke 114.1

Industrial other 94

Electrical utility 95.5

Natural gas  

Used as fuel 53.1

Used as feedstock 28

High-emissions bioenergy  

Biomass 88.5

Biogenic waste 90.7

Biofuels heats and coproducts 88.5

Ethanol 65.9

Biodiesel 73.9

Liquids from biomass 73.2

Source: U.S. Energy Information Administration (2012b), “Assumptions to the Annual Energy Outlook 2012”.
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Petroleum. We see in Table 2.1 that emissions levels vary according to how petroleum is being 
utilized. This includes the extent to which the oil is being combusted with the various usages. 
Thus, when petroleum is used for gasoline, it emits 71.3 mmt of CO2 per Q-BTU of energy. 
By contrast, as a petrochemical feedstock, the emissions level is 25.1 mmt of CO2 per Q-BTU 
equivalent. There are no emissions when gasoline is used for producing asphalt and road oil, 
since these processes entail no petroleum combustion. 

Coal. The range of emission levels is narrower with coal, between 94-95 mmt of CO2 per Q-BTU, 
for all purposes other than combusting coke, in which case, the emissions are higher, at 114.1 
mmt per Q-BTU.

Natural gas. Emissions are at 53 mmt of CO2 per Q-BTU when natural gas is used as a fuel, i.e. 
about 45 percent lower than those for coal-based energy. Emissions from natural gas are then 
cut roughly in half when used as a feedstock, to 28 mmt of CO2 per Q-BTU.

High-emissions bioenergy. The level of emissions varies according to the specific uses being 
put to bioenergy sources. Thus, biomass and biogenic waste are roughly equivalent to coal in 
their level of emissions per Q-BTU of energy, while ethanol and biodiesel are comparable to 
gasoline.

Weighted Averages for Emissions Levels

Given the range of emissions levels within each of the fossil fuel energy sources, it is useful 
to calculate weighted averages of emissions levels, based on the proportions of consumption 
within each energy source. We show these weighted average figures in Table 2.2, working from 
overall global energy consumption and emissions levels for oil, coal and natural gas in 2010. 

Table 2.2: Weighted averages of global emission levels for oil, coal, and natural gas, 2010

 

(1)
Energy consumption

(Q-BTUs)
 

(2)
 CO2 emissions

(mmt)
 

(3)
CO2 emissions per Q-BTU

(mmt)
(= column 2/1)

Petroleum and other 
liquid fuelsa 163 Q-BTUs 11,200 mmt 68.7 mmt

Coal 138 Q-BTUs 13,800 mmt 100 mmt

Natural gasb 110.6 Q-BTUs 6,200 mmt 56.1 mmt

Source: Authors’ calculations based on U.S. Energy Information Adminstration (2013), “International Energy Outlook 2013,”  
Table 20 (for emissions); IEA, “Key World Energy Statistics 2012,” p. 37 (for energy consumption).
Notes: a) The “petroleum and other liquid fuels” category includes, according to the EIA, petroleum- derived fuels and non-petroleum derived fuels, 
such as ethanol and biodiesel, and coal-based synthetic liquids. Petroleum coke, which is a solid, is included. Also included are natural gas plant 
liquids, crude oil consumed as a fuel, and liquid hydrogen. b) The average emissions per Q-BTU of natural gas are slightly lower in the U.S. (53.1 
mmt/Q-BTU) than the world average (56.1 mmt/Q-BTU). The lower value of carbon content is used by the U.S. Energy Information in its “Annual 
Energy Outlook” and is presented in here in Table 2.1. The higher value is used by the International Energy Agency in its “World Energy Outlook” and 
is presented here in Table 2.2 The difference in these values is a result of product mix, differences in production processes, and the age and heat rate 
of natural gas plants, as documented in IEA (2013d), Deutsche Bank Climate Change Advisors (2011), and EIA (2012b).
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As we see, these weighted average figures, rounded, are 69 mmt per Q-BTU of energy derived 
from petroleum or other liquid fuels; 100 mmt per Q-BTU of coal-derived energy; and 56 per 
Q-BTUs for natural-gas derived energy. We note that the figure for petroleum and other liquid 
fuels is inclusive of ethanol and other biofuel sources.7 

Environmental and Safety Concerns 
Nuclear Power

As of 2010, nuclear power provided 27 Q-BTUs of energy throughout the global economy, which 
represented about 5.2 percent of global energy supply.8 Eighty-five percent of global nuclear 
power supply is generated within the OECD economies.9 In terms of the world achieving GHG 
emission targets - both the 20-year intermediate target and the 2050 target - nuclear power 
provides the obvious important benefit that it does not generate GHG emissions or air pollution 
of any kind while operating. 

At the same time, the processes for mining and refining uranium ore and making reactor 
fuel require large amounts of energy. Nuclear power plants have large amounts of metal 
and concrete, which also require large amounts of energy to manufacture. If fossil fuels are 
used to make the electricity and manufacture the power plant materials, then the emissions 
from burning those fuels could be associated with the electricity that nuclear power plants 
generate.10

It is difficult to reach firm conclusions as to the extensiveness of these secondary emissions 
effects from producing nuclear energy. In their survey of the relevant literature, Beerten et al. 
(2009) conclude that none of the relevant studies on this question “takes into account the 
different mining techniques in a proper manner”. They also conclude that insufficient evidence 
is available as to the “energy and GHG emissions involved with the waste processing, storage 
and disposal on the one hand and the decommissioning of the plant on the other hand,” (p. 
5067).

However, even if we assume a best-case scenario in terms of full cycle emission from generating 
nuclear energy, we still of course need to recognize the longstanding environmental and public 
safety issues associated with nuclear energy. These concerns include:

Radioactive wastes. These wastes include uranium mill tailings, spent reactor fuel, and 
other wastes, which according to the EIA “can remain radioactive and dangerous to 
human health for thousands of years” (EIA 2012c, p. 1).

7 The average emissions per Q-BTU of natural gas are slightly lower in the U.S. (53.1 mmt/Q-BTU) than the world average (56.1 mmt/Q-BTU). The lower 
value of carbon content is used by the U.S. Energy Information in its “Annual Energy Outlook” and is presented in here in Table 2.1. The higher value 
is used by the International Energy Agency in its “World Energy Outlook” and is presented here in Table 2.2. The difference in these values is a result 
of product mix, differences in production processes, and the age and heat rate of natural gas plants, as documented in IEA (2013d), DeutschBank 
(2011), and EIA (2012b). In addition, the “petroleum and other liquid fuels” category does not include emissions from biomass sources. In the EIA’s 
2012 Annual Energy Outlook, Table D-5, these emissions are included, at least in part, in the “other” category. We incorporate these emission figures 
into our coal category. We also note that these weighted averages of emissions per Q-BTU of energy, as derived from the 2010 actual levels of energy 
consumption in the U.S., are nearly identical to the estimated figures the EIA projects in their scenarios for U.S. energy consumption in 2030 and 
beyond, and thus we use these in our calculations of emissions generated through the alternative 2030 scenarios. 
8 EIA (2012d).
9 ibid.
10 This paragraph is paraphrased from the EIA, (“Nuclear Explained,” 2014).
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Storage of spent reactor fuel and power plant decommissioning. Spent reactor fuel 
assemblies are highly radioactive and must be stored in specially designed pools or 
specially designed storage containers. When a nuclear power plant stops operating, the 
decommissioning process involves safely removing the plant from service and reducing 
radioactivity to a level that permits other uses of the property.

Political security. Nuclear energy can obviously be used to produce deadly weapons as 
well as electricity. Thus, the proliferation of nuclear energy production capacity creates 
dangers of this capacity being acquired by organizations - governments or otherwise - 
who would use that energy as instruments of war or terror.

Nuclear reactor meltdowns. An uncontrolled nuclear reaction at a nuclear plant can 
result in widespread contamination of air and water with radioactivity for hundreds of 
miles around a reactor.

Even while recognizing these problems with nuclear energy, it is still the case, as noted 
above, that nuclear power supplies over five percent of global energy supply. For decades, the 
prevalent view throughout the world was that these risks associated with nuclear power were 
relatively small and manageable, when balanced against its benefits. However, this view has 
been upended in the aftermath of the March, 2011 nuclear meltdown at the Fukushima Daiichi 
power plant in Japan, which resulted from the massive 9.0 Tohuku earthquake and tsunami. 

The full effects of the Fukushima meltdown cannot possibly be known for some time. But an 
initial recent research paper by Ten Hoeve and Jacobson (2012) on the overall health effects of 
Fukushima finds that they are likely to be very large. Ten Hoeve and Jacobson conclude that 
the health effects from inhalation, external exposure, and ingestion of radionuclides will range 
between 15-1,100 cancer related deaths and between 24 and 1,800 morbidities, with most of 
the impact within Japan itself. Their estimates do not include the effects on the roughly 20,000 
workers at the plant in the months following the accident. They also do not include the nearly 
600 deaths that had been certified as “disaster related,” through fatigue or aggravation of 
chronic illnesses due to the disaster.11

In its most recent 2013 International Energy Outlook, the EIA acknowledges that Fukushima 
has substantially intensified concerns worldwide about the viability of expanding, or even 
maintaining, nuclear energy as a major power source. The EIA writes:

The Fukushima Daiichi disaster could have long-term implications for the future of world 
nuclear power development in general. Even China - where large increase in nuclear 
capacity have been announced and are anticipated in the IEO 2013 Reference case 
- halted approval processes for all new reactors until the country’s nuclear regulator 
completed its safety review. Germany and Switzerland announced plans to phase out 
or shut down their operating reactors by 2022 and 2034, respectively…The uncertainty 
associated with nuclear power projections for Japan and for the rest of the world has 
increased (EIA, 2013, p. 95).

11 The edited volume by Schreurs and Yoshida (2013) addresses a broader set of political and economic considerations of the Fukishima disaster. As 
of August 2013, the Fukushima crisis escalated seriously as Japan’s Nuclear Regulatory Authority (NRA) stating , as reported by Reuters, “that it feared 
more storage tanks were leaking contaminated water. According to Reuters, “Water in the latest leak is so contaminated that a person standing close 
to it for an hour would receive five times the annual recommended limit for nuclear workers,” (Takenaka and Topham, 2013).
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Overall then, it is clear that these safety considerations with nuclear energy must be accorded 
significant weight. As such, nuclear energy cannot be seen as serving as a reliable long-term 
source of non-carbon emitting energy supplies. This means that, to the extent possible, it is far 
preferable to rely on clean renewable energy sources and advances in energy efficiency as the 
preferred alternatives as we proceed with reducing our dependence on oil, coal, and natural gas.
 

Carbon Capture and Sequestration
CCS is a broad term that encompasses a number of specific technologies that are capable of 
capturing CO2 from point sources, such as power plants and other industrial facilities. Through 
CCS technologies, the captured CO2 is then transported, usually through pipelines, in some 
form to locations where it is then stored indefinitely in subsurface geological formations. 

One specific approach entails converting the captured CO2 into liquid form, then moving the 
liquid CO2 through pipelines to oil reservoirs. If the oil has already been extracted from such 
reservoirs, then the dormant reservoir can serve as a permanent CO2 storage facility. But if the 
reservoir does still contain oil, then the CO2 injections can be used to push the remaining oil 
out of the repository more efficiently. As of 2009, Science reported on five CCS projects around 
the world of this type that were in operation and another seven that were in the process or 
being planned. Two of the operating projects were in the North Sea, and the other three were 
in Sastatchewan, Canada; Kaniow, Poland; and In Salah, Algeria (Science, September 2009, 
“Carbon Sequestration,” pp. 1644-45.)

The broad case on behalf of CCS is straightforward: the development of effective CCS 
technologies will allow for the world’s enormous fossil fuel energy resources to continue to be 
exploited without these energy sources continuing to release such high levels of CO2 into the 
atmosphere. As former U.S. Energy Secretary Steven Chu wrote in 2009: 

The world has abundant fossil fuel reserves, particularly coal. The United States 
possesses one-quarter of the known coal supply, and the United States, Russia, China 
and India account for two-thirds of the reserves. Coal accounts for 25 percent of the 
world’s energy supply and 40 percent of the carbon emissions. It is highly unlikely that 
any of these countries will turn their back on coal any time soon, and for this reason, the 
capture and storage of CO2 emissions from fossil fuel power plants must be aggressively 
pursued (Chu, 2009, p. 1599).

At the same time, as surveyed forcefully by Joseph Romm (2008) of the U.S. Center for 
American Progress there are four major problems associated with CCS technologies, which 
in combination, render the approach unsuitable for serving as a major clean-energy strategy 
either in the in the relatively short- or the longer term. These four problems entail issues of 1) 
costs; 2) timing; 3) scale; and 4) permanence and transparency. It is worth quoting at length 
from Romm’s overview: 

1. Cost: Coal plants with CCS are very expensive today. A 2012 study by the U.S. 
Congressional Budget Office found that plants equipped with CCS technology have 
capital costs averaging 76 percent higher than non-CCS plants.12 The modeling work 

12 CBO (2012), p. 7.
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done for the California Public Utility Commission (CPUC) on how to comply with the AB32 
law (California’s Global Warming Solutions Act), puts the cost of coal gasification with 
carbon capture and storage at a staggering 16.9 cents per kWh.

2. Timing: The world does not even have a single large-scale (300+ MW) coal plant with 
CCS anywhere in the world…. Most governments and most U.S. utilities have scaled 
back, delayed, or cancel their planned CCS projects (see below). As Howard Herzog of 
MIT’s Laboratory for Energy and the Environment said in February 2008, “How can we 
expect to build hundreds of these plants when we’re having so much trouble building 
the first one?”13 

3. Scale: We need to put in place a dozen or so clean energy “stabilization wedges” by mid-
century to avoid catastrophic climate outcomes….For CCS to be even one of those would 
require a flow of CO2 into the ground equal to the current flow of oil out of the ground. 
That would require, by itself, re-creating the equivalent of the planet’s entire oil delivery 
infrastructure, no mean feat.

4. Permanence and transparency: We need to set up some sort of international regime for 
certifying, monitoring, verifying, and inspecting geologic repositories of carbon - like 
the U.N. weapons inspections systems. The problem is, this country [the U.S.] hasn’t 
been able to certify a single storage facility for a high-level radioactive waste after two 
decades of trying and nobody knows how to monitor and verify underground CO2 storage. 
It could take a decade just to set up this system (Romm, 2008).

In addition to the issues highlighted by Romm’s survey, there are also broader environmental 
issues at stake. The possibility of leakages from the underground CO2 repositories is one such 
danger. Any such leakages could produce contamination of ground water, and thereby, drinking 
water. Leakages could also mean new releases of the very CO2 emissions that the technology 
is designed to mitigate. Still another issue is the environmental damage from continuing to 
extract coal through mountaintop removal and strip mining. 

Considering all of these factors, the IEA’s 2013 World Energy Outlook presents a highly 
pessimistic assessment of the prospects for CCS:

Progress in developing CCS has been disappointingly slow. Only a handful of large-scale 
CCS projects, mainly in natural gas processing, are operating, together with some low-
cost schemes in industrial applications. While projects are more economically viable if the 
captured CO2 can be used for enhanced oil recovery, there is, to date, no commercial CCS 
application in the power sector or in energy-intensive industries. Beyond technological 
and economic challenges, there could be legal challenges related to the potential for 
CO2 gas escape from underground storage. Although some progress has been made in 
developing regulatory frameworks, deployment support is lacking and the absence of a 
substantial price signal has so far impeded necessary technological development and 
more widespread update (IEA, 2013a, p. 53).

In short, following from this most recent assessment by the IEA, we conclude that the prospects 
for deploying CCS technologies on a large scale globally are not favorable. Thus, as we noted 
13 Quoted in Biello, 2008.
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above with respect to nuclear power, to the extent possible, it is far preferable to rely on 
clean renewable energy sources and advances in energy efficiency rather than unproven CCS 
technologies as the preferred alternatives as we proceed with reducing our dependence on 
oil, coal, and natural gas. It is of course possible that major technological breakthroughs will 
create a much more favorable outlook for CCS than those presented in summary assessments 
by Romm (2008) and the IEA (2013). But the evidence for any such major breakthroughs does 
not presently exist. As such, as we will explore in depth in Chapters 3 and 4, the more prudent 
approach for building clean energy economies is to encourage the rapid advances that are 
already underway with clean renewables and energy efficiency.

Hydraulic Fracturing 
The EIA (2012b) forecasts that total levelized costs for generating electricity from natural 
gas-powered processes will be substantially lower than those from any other conventional 
or renewable energy source. We discuss this in detail in Chapter 3, in comparing the costs 
generating electricity from renewable sources relative to those from coal, natural gas and 
nuclear power. But these figures are also critical for our current discussion, so we present the 
main findings in Table 2.3 below, as they relate specifically to the issue of assessing hydraulic 
fracturing technology. 

Table 2.3: Total levelized costs for electricity generation from alternative energy sources

U.S. EIA projections for 2017

  Total 2017 estimated costs per 
megawatt hour (dollars)

Total 2017 estimated costs 
relative to natural gas (percent)

Conventional natural gas (no CCS) $66.1 -

Hydro $88.9 + 34.5%

Wind $96.0 + 45.2%

Conventional coal (no CCS) $97.7 + 47.8%

Nuclear $114.7 + 73.5%

Biomass $115.9 + 75.3%

Solar PV $152.7 + 131.0%

Source: Authors’ calculations based on U.S. Energy Information Administration (2012b), “Assumptions to the Annual Energy Outlook 2012.”

 
As we see in Table 2.3, the EIA projects that, as of 2017, the total costs of electricity generation 
from natural gas without CCS technology will be $66.1 per megawatt hour. This figure is 26 
percent lower than for hydro, the next lowest source for electricity generation, at $88.9 per 
megawatt hour. According to the EIA’s 2017 projections, the costs of natural-gas-fired electricity 
(without CCS) are lower than all other sources of electricity generation, both non-renewable 
and renewable, ranging from wind and coal (45 and 48 percent more expensive than natural 
gas, respectively) to solar PV (131 percent more).

The factor that is producing such low-cost electricity projections from natural gas is the 
EIA’s assumption of a rapidly expanding use of hydraulic fracturing technology to extract 
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natural gas from shale rock. But the issue with fracking technology is that some, though not 
all, credible research finds that fracking consistently produces serious environmental costs 
along with an inexpensive energy supply. In particular, fracking has been demonstrated to 
contaminate drinking water with methane gas in aquifers overlying the major shale formations 
of northeastern Pennsylvania and upstate New York. Yet other recent research has found that 
methane emissions can be significantly reduced when producers take active measures to 
control methane emissions.

It will be useful here to review these alternative perspectives. To begin with, we draw from 
an important 2011 overview paper by Jackson, Pearson, Osborn, Warner and Vengosh of Duke 
University. Jackson et al. begin by describing the basics of fracking technology and explain 
why this technology is capable of extracting natural gas at significantly lower costs than 
conventional extraction methods: 

The extraction of natural gas from shale formations is one of the fastest growing trends 
in American on-shore domestic oil and gas production….Large-scale production of 
shale gas has become economically viable in the last decade attributable to advances in 
horizontal drilling and hydraulic fracturing (also called “hydrofracturing” or “fracking”). 
Such advances have significantly improved the production of natural gas in numerous 
basins across the United States, including the Barnett, Haynesville, Fayetteville, 
Woodford, Utica, and Marcellus shale formations. In 2010, shale gas production doubled 
to 137.8 billion cubic meters, and the EIA projects that by 2035 shale gas production will 
increase to 340 billion cubic meters per year, amounting to 47% of the projected gas 
production in the United States.

Hydraulic fracturing typically involves millions of gallons of fluid that are pumped into an 
oil or gas well at high pressure to create fractures in the rock formation that allow oil or gas 
to flow from the fractures to the wellbore. Fracturing fluid is roughly 99% water but also 
contains numerous chemical additives as well as propping agents, such as sands, that 
are used to keep fractures open once they are produced under pressure. The chemicals 
added to fracturing fluid include friction reducers, surfactants, gelling agents, scale 
inhibitors, acids, corrosion inhibitors, antibacterial agents, and clay stabilizers. The 
Interstate Oil and Gas Compact Commission (IOGCC) estimates that hydraulic fracturing 
is used to stimulate production in 90% of domestic oil and gas wells, though shale 
and other unconventional gas recovery utilizes high-volume hydraulic fracturing to a 
much greater extent than conventional gas development does. Horizontal wells, which 
may extend two miles from the well pad, are estimated to be 2-3 times more productive 
than conventional vertical wells, and see an even greater increase in production from 
hydraulic fracturing. The alternative to hydraulic fracturing is to drill more wells in an 
area, a solution that is often economically or geographically prohibitive (Jackson et al., 
2011, pp. 1-2).

What is the environmental impact of fracking? One perspective is the environmental/safety 
issues with shale extraction are manageable. This position is most strongly supported by the 
findings reached in a major 2013 research study directed by David T. Allen of the University 
of Texas-Austin, which was funded by the natural gas industry (Allen et al., 2013). Allen et al. 
found that methane emissions could be cut by as much as 98 percent - from 81 to 1.7 megatons 
per well - when controls were utilized to capture these emissions. 
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The 2011 study by Jackson et al. presents a sharply different view, especially around the issue 
of groundwater contamination. They conclude as follows: 

A recent study by Osborn and colleagues in the Proceedings of the National Academy 
of Sciences, USA provides to our knowledge the first systematic evidence of methane 
contamination of private drinking-water in areas where shale gas extraction is occurring. 
The research was performed at sites above the Marcellus and Utica formations in 
Pennsylvania and New York. Based on groundwater analyses of 60 private water wells 
in the region, methane concentrations were found to be 17-times higher on average in 
areas with active drilling and extraction than in non-active areas, with some drinking-
water wells having concentrations of methane well above the “immediate action” hazard 
level (2011, pp. 3-4).

In a more recent 2013 study, “Increased Stray Gas Abundance in a Subset of Drinking Water  
Wells Near Marcellus Shale Gas Extraction,” Jackson et al., reached basically the same 
conclusion as their 2011 paper regarding the impact of fracking technology on drinking water. 
For example, in their 2013 paper, they conclude that “Methane was detected in 82 percent of 
drinking water samples, with average concentrations six times higher for homes less than one 
kilometer from natural gas wells,” and that “Ethane was 23 times higher in homes less than 
one kilometer from gas wells,” (2013, p. 1).

Certainly, neither the University of Texas nor the Duke University studies can be considered 
to have produced definitive findings. Yet taken together, they bring greater clarity regarding 
a key question at hand: whether adequate controls can be put in place for greatly reducing 
the methane emissions that are occurring in the absence of such controls. Establishing such 
controls would no doubt be costly, and, as such, the industry would prefer to avoid paying 
these costs.14 From this perspective, the safety concerns regarding fracking are comparable to 
those connected with nuclear energy.

As a result of the negative findings regarding contamination of drinking water, in May, 2012, 
Vermont became the first state in the U.S. to pass legislation banning fracking. As of this 
writing, New York also operates with a moratorium on fracking. Other states and municipalities 
have either imposed temporary moratoria or are in the process of debating such measures. 

In Europe, as of October 2013, countries that have banned fracking include France and Bulgaria, 
which have the largest deposits of exploitable shale rock resources in on the Continent. The 
Czech Republic, Northern Ireland, and the regions of Canatabria in Spain, and Friebourg in 
Switzerland have also established bans, while Romania, Germany and Luxembourg have 
declared moratoria. 15 

It is also the case that the recent political crisis in the Ukraine has created pressure for 
European countries to reduce their dependence on natural gas supplies imported from 
Russia.16 Regardless of how these geopolitical issues are resolved, it remains the case, as we 
will discuss below, that allowing current, or even increasing levels of natural gas consumption 
levels is not compatible with achieving the 20-year global emission reduction target.

14 Koch 2103 presents a range of reactions to the findings by Allen et al. quoted in Koch, (2013). 
15 This listing of countries comes from Petro Global News (2013). 
16 EurActiv (2014).
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Fuel Switching from Coal to Natural Gas
In addition to the safety issues raised through hydraulic fracturing technology, it is also the 
case that relying heavily on coal to natural gas fuel switching will not provide anywhere close 
to an adequate level of emissions reductions necessary to meet the global 2030 emission 
reduction target. We can see this clearly by considering the EIA’s reference case for total global 
energy consumption in 2030. As we have discussed, with this 2030 reference case, total global 
energy consumption is at 729 Q-BTUs in 2030. Total emissions are at 41,000 mmt, i.e. roughly 
twice as high as the target level of 20,000 mmt for meeting the climate change control target.

Within the framework of this reference case, let us consider two alternative global fuel-switching 
scenarios: that both 50 percent and 100 percent of global coal consumption is replaced through 
natural gas, but that otherwise, the EIA’s reference case remains as they have projected it. Of 
course, even the 50 percent coal-to-natural gas fuel-switching scenario is implausibly large. We 
have included the 100 percent fuel switch to establish the outer boundary of a fuel-switching 
scenario on a global scale. We show the results of these illustrative exercises in Table 2.4. 
 
Table 2.4: Impact on CO2 emissions of coal-to-natural gas fuel switching within  
U.S. EIA’s 2030 Reference case Global Energy Consumption Scenario

  2030 Reference 
case

2030 with 50 percent coal-to-
natural gas fuel switching

2030 with 100 percent coal-
to-natural gas fuel switching

Coal consumption (Q-BTUs) 200 Q-BTUs 100 Q-BTUs 0 Q-BTUs

CO2 emissions from coal 
(mmt) 19,500 mmt 9,800 mmt 0 mmt

Natural gas consumption 
(Q-BTUs) 126 Q-BTUs 226 Q-BTUs 326 Q-BTUs

CO2 emissions from natural 
gas (mmt) 8,600 mmt 15,400 mmt 22,300 mmt

Coal + natural gas CO2 
emissions (mmt) 28,100 mmt 25,200 mmt 22,300 mmt 

Oil and other liquid fuel CO2 
emissions (mmt) 13,300 mmt 13,300 mmt 13,300 mmt 

Total CO2 emissions (mmt) 41,400 mmt 
38,500 mmt 35,600 mmt 

(7% reduction) (14% reduction)

Source: Authors’ calculations based on U.S. Energy Information Administration (2013), “International Energy Outlook 2013.

As Table 2.4 shows, on its own, the overall impact of even these highly aggressive coal-to-
natural gas fuel-switching scenarios is quite modest. Within the context of the EIA’s 2030 
Reference case global energy consumption scenario, the 50 percent coal-to-natural gas fuel 
switch reduces overall CO2 emissions by 7 percent, from 41,400 mmt to 38,500 mmt globally. 
Even the 100 percent coal-to-natural gas fuel switch produces an emissions reduction of only 
14 percent, to 35,600 mmt globally. Of course, these emissions reduction levels need to be 
evaluated against the need to reduce global emissions down to about 20,000 mmt by 2030 or 
thereabouts. 
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What these illustrative exercises illustrate clearly is the importance of exploring the prospects 
for investments in energy efficiency and clean renewable energy sources as the central elements 
of a global green growth strategy.
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CHAPTER 3: PROSPECTS FOR 
RENEWABLE ENERGY SOURCES 
In order for the world economy to meet its intermediate CO2 emissions reduction targets within 
20 years and, subsequently for 2050, it will be necessary to create a rapidly expanding and 
successful renewable energy sector. This means producing energy increasingly from wind, 
solar, geothermal, bioenergy, and hydropower sources. Even if, with strong energy efficiency 
measures accompanying ongoing economic growth, the absolute level of global energy 
consumption were to fall by 10-20 percent over the next 20 years, it would still be necessary 
that clean renewable energy sources would provide about one-third of global energy supply. At 
present, total renewable sources account for about 13 percent of global energy supply.

As we will review in this chapter, it is in fact realistic to allow that clean renewables could 
provide in the range of one-third of all global energy supplies within 20 years. It is already 
the case that, in terms of additions to capacity, renewable power generation technologies 
account for about half of all new power generation worldwide.17 The main driver here is that the 
trajectory for prices and costs for renewables is becoming increasingly favorable. In particular, 
clean renewables are already close to closing the cost gap with non-renewable energy sources. 
In a wide range of conditions - though of course not under all circumstances - renewable energy 
from most sources will be at cost parity with non-renewables within the next 5-10 years.

The current dynamic of the global renewable energy sector is well summarized in the 2013 
report by the International Renewable Energy Agency (IRENA):

In the past, deployment of renewables was hampered by a number of barriers, 
including their high up-front costs. Today’s renewable power generation technologies 
are increasingly cost-competitive and are now the most economic option for off-grid 
electrification in most areas, and, in areas with good resources, they are the best option 
for centralized grid supply and extension….The rapid deployment of these renewable 
technologies has a significant impact on costs, because of the high learning rates for 
renewables, particularly for wind and solar. For instance, for every doubling of the 
installed capacity of solar photovoltaic (PV), module costs will decrease by as much as 
22 percent (IRENA, 2013, p. 12).

In considering the prospects for renewable energy supplies to achieve an ambitious growth 
target, the first point to emphasize is that these energy sources vary widely, in terms of their 
basic feedstocks, the means by which they generate energy, their costs, and their environmental 
impacts and related externalities.18

Bioenergy provides the most critical case in point here. This is first of all because bioenergy 
sources account for 75 percent of global renewable energy supply, which amounts to about 10 
percent of total energy supply (IEA, 2014). Considering the short- to medium term - i.e. within 

17 IRENA, 2012.
18 The massive IPCC study Renewable Energy Sources and Climate Change Mitigation (2013) provides a comprehensive reference guide on these 
issues.
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the 20-year time frame on which we are focused in this report - bioenergy will continue to be 
the largest source of renewable energy throughout the globe. For this reason alone, prospects 
for the bioenergy sector merit our careful attention.

But expanding the bioenergy sector also presents major challenges. To begin with, depending 
on the production processes utilized, bioenergy may not be - and, in most cases, in fact, is 
not - a low-emissions energy source. For example, corn ethanol is the most heavily consumed 
bioenergy source in the U.S. at present. Under currently prevailing refining methods used, the 
CO2 emissions produced by corn ethanol can be comparable to burning oil. This is also true 
for biomass energy when - as is mostly the case at present throughout the globe - the energy 
sources and production practices are not carefully managed to minimize carbon emissions. 

An equally serious concern with producing bioenergy is that it can entail significant increases in 
the demands on the world’s agricultural resources. This in turn could lead to rising agricultural 
prices. This problem is especially serious with respect to food prices. We have seen over the 
past decade how sharp increases in global food prices have produced massive increases in 
food insecurity and malnutrition worldwide.

Biomass/biofuels can also be a carbon-neutral source of energy, if the raw materials are 
wastes and non-food crops and if these raw materials are refined through the use of renewable 
sources. The impact of bioenergy production on agricultural resources and food prices can also 
be minimized when the underlying feedstocks are wastes and non-food crops. But, to date, 
these other techniques for producing bioenergy are utilized only to a small extent worldwide. 
In considering the expansion of renewable energy sources, our focus therefore needs to be 
on low- to zero-emissions sources, which we term “clean renewables. We return to this point 
below.

The other renewable sources - hydro, wind, solar, and geothermal power - produce no CO2 
emissions. Yet at present, among these, only hydro is producing energy on a significant scale 
globally - i.e. 2.3 percent of all global energy supply, or 17.5 percent of all renewable supply (IEA, 
2013e). For the most part, it is not desirable that large-scale hydro projects expand significantly 
past their current capacity level. This is because there are likely to be serious environmental 
issues connected with additional large-scale dam construction in terms of disrupting existing 
communities and eco systems. At the same time, prospects are much more favorable for 
expanding electricity-generating capacity from small scale hydro projects. This would be in 
addition to expanding capacity from other emissions-free renewable energy sources - that is, 
wind, solar, geothermal and clean bioenergy. 
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Renewable Energy Costs
Renewable energy costs vary widely depending on technologies, feedstocks, available 
resources and the specific conditions at any given power-generating site. The prospects for 
achieving cost reductions for renewables will also vary, depending on how these same factors 
play out, in particular as investors learn to improve renewable energy technologies then to 
incorporate these technical innovations into production processes. The 2013 IRENA report 
provides a useful overview here:

Depending on local resources, biomass, geothermal, and hydropower can all produce 
electricity at very competitive costs. Onshore wind is typically the next most expensive, 
while solar PV and CSP are more costly. However, this cost order typically follows an 
inverse relationship to resource availability. The availability of low-cost resources for 
hydropower, geothermal and biomass are all constrained to a greater or lesser extent, 
while long lead times for the first two mean that capacity additions cannot be ramped 
up or down rapidly….Conversely, wind and solar resources are much larger and are 
distributed, albeit unevenly, around the world. This, together with targeted policy 
support, has seen the level of wind and solar PV capacity grow much more rapidly than 
hydropower, biomass and geothermal (IRENA, 2013, p. 24).

Figure 3.1 below, reproduced from the 2013 IRENA study, provides a clear picture on cost ranges 
for renewables both in 2012 and projected for 2020. The 2020 figures, of course, incorporate 
estimates as to the rates at which more efficient technologies are being adapted between 
2012 and 2020. These projected cost reductions thus reflect the estimated “learning curves” 
for renewable energy technologies. The cost figures being reported in the figure are the total 
levelized costs of producing electricity (LCOE) through renewable sources. Total levelized costs 
include five components:

Capital costs. The IRENA study assumes an average cost of capital at 10 percent. But 
it also discusses in detail the variables, which can lead to large differences in costs of 
capital.19

Fixed operations and maintenance. These include standard costs that do not vary with 
output levels, including land and maintenance of buildings and machines.

Variable operations and maintenance. This includes fuel costs for operating renewable 
energy projects, which will be most significant in the case of bioenergy.

Transmission. This includes the operations of the electrical grid system. In the case of 
direct distributed energy, transmissions costs are eliminated. 

Capacity utilization rate. The projected utilization rate for equipment, which varies with 
market demand and resource availability.

19 Further details on sources of variation in capital costs are provided in Limaye and Zhu (2012).
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Figure 3.1: Typical levelized cost ranges for renewable power generation technologies,  
2012 and 2020

PT = parabolic through, ST = solar tower, BFB/CFB = bubbling fluidized bed/circulating fluidized bed, AD = anaerobic digestion. 
Source: IRENA (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure ES-2.   

 
The basic findings that emerge from Figure 3.1 are as follows:

1. The largest range of costs is with solar power, both in 2012 and with their projections for 
2020. In 2012, generating electricity from solar PV technologies ranges between about 
14 and 35 cents per kilowatt hour (kWh). IRENA projects that solar PV costs will decline 
in 2020. But their projected range, between about 8 and 30 cents, will still be wide. 

2. The lowest costs are through hydro electricity generation, at about 3 cents per kWh. But 
these costs do also rise as high as about 15 cents. 

3. The costs of generating electricity through onshore wind, biomass, hydro and 
geothermal are all at rough parity with fossil fuel electrical generation prices within the 
OECD economies. Solar power, with both PV and CSP technologies, as well as offshore 
wind, are the only two renewable sources in which total levelized costs are consistently 
higher than the range for fossil fuels. 
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4. The cost range for fossil fuel electricity generation is narrower than for most renewables. 
But the differences in range are relatively small for wind, most biomass, hydro and 
geothermal. It is only with solar power that the cost range is significantly wider than that 
for fossil fuel energy.

5. The lower average costs and narrower cost range for fossil fuels reflects the fact that 
these sectors are operating with mature technologies that have been developed over 
decades, and have been supported on a massive global scale over this full period by 
both private investors and public subsidies.20

6. Rates of decline in costs between 2012 and 2020 - reflecting the technological ‘learning 
rates’ over these eight years -vary significantly by renewable energy source. For 
example, IRENA projects large cost reductions for both solar PV and Concentrated Solar 
Power (CSP) over these years. With grid-based solar PV systems, IRENA estimates that 
the levelized cost range per kWh will decline from between about 18-37 cents in 2012 
to between about 9-30 cents as of 2020. As the figure shows, at 9 cents per kWh as of 
2020, solar PV will become cost competitive with fossil fuel generated electricity under 
average circumstances. By contrast, IRENA is projecting much more modest learning 
rates and cost reductions between 2012-2020 for onshore wind, most bioenergy 
sources, and no cost improvements for either hydro or geothermal power. At the same 
time, as noted above, IRENA shows onshore wind, most bioenergy sources, hydro and 
geothermal power as already operating basically at levelized cost parity with fossil fuel-
generated electricity as of 2012.21

Differences in Renewable Electricity Costs by Region
Beyond the broad renewable energy cost estimates shown in Figure 3.1, it is important for 
the purposes of this report to also examine costs at a more detailed scale. The 2013 IRENA 
study does also provide cost estimates on a regional basis. We report on their main findings in 
Tables 3.1-3.5 below, which show cost figures for each of the renewable energy sources. Each 
of the tables shows average costs by region as well as the range of costs among the individual 
projects for which IRENA has collected data.

Wind. Table 3.1 shows cost figures for onshore wind projects. As we see, average costs per kWh 
of generating electricity from onshore wind range between 8 cents in China and India to 12 
cents in Other Asia. We do also see a wide range of costs within each region. For example, the 
average cost in Latin America is 9 cents, but the range is between 4 and 16 cents. In Africa, the 
average cost is also 9 cents, while the range is between 5 and 17 cents

20 The development of the global fossil fuel industry has been well-documented, for example, by Yergin (1992 and 2011).
21 These learning rate patterns between 2012 and 2020 projected by IRENA for various renewable sources are broadly consistent with those estimated 
by the EIA. The EIA measures learning rates as the capital cost reductions that will be associated with a doubling of capacity for any given technology. 
In EIA (2013c, p. 104), learning rates for biomass, hydro, and wind at 1 percent; geothermal as ranging between 1-8 percent, solar PV and biofuels at 
between 1-10 percent; and solar CSP as between 1-20 percent. In short, the EIA estimates that the greatest upside potential for cost reductions are with 
solar. But this is in large part because costs presently are very high and existing productive capacity is very modest.
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Table 3.1: Onshore wind: Estimated levelized costs of electricity (LCOE) generation in non-
OECD countries/regions, 2011

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

  Average Range

Africa 9 5-17

China 8 5-11

Eastern Europe and Central America 11 7-17

Other Asia 12 8-16

India 8 3-12

Latin America 9 4-16

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 4.8 and underlying IRENA 
cost database.
 
Hydro. Table 3.2 shows figures for large-scale hydro projects. Here average costs for generating 
electricity range between 3 cents per kWh in China to 12 cents in Other Asia. In addition, the 
cost range within regions is also wide. In Africa, the average cost is 6 cents per kWh, but the 
range is between 1 and 17 cents. 

Table 3.2: Large-scale hydro projects: Estimated levelized costs of electricity (LCOE) 
generation in non-OECD countries/regions, 2011

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

  Average Range

Africa 6 1-17

China 3 1-8

Eastern Europe and Central America 10 3-14

Other Asia 12 8-16

India 8 3-12

Latin America 9 4-16

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 5.8 and underlying IRENA 
cost database.

As we discussed above, these figures for large-scale hydro projects are less relevant in terms 
of expanding capacity into the future than the projects for small-scale hydro. We show the 
IRENA figures on small-scale hydro projects in Table 3.3. As we see there, average costs for 
small-scale hydro projects are generally lower than those for large-scale projects and the range 
of costs within regions is also somewhat narrower. For example, in Other Asia, the average 
cost for small-scale hydro projects is 4 cents per kWh, while large-scale hydro costs average 12 
cents. In India, small-scale hydro projects average 5 cents per kWh while large-scale projects 
average 8 cents. In Latin America, small-scale projects average 5 cents while large-scale 
average 9 cents. These figures for small-scale hydro suggest that there are major opportunities 
for expanding hydropower through smaller projects. Most significantly, in all regional settings, 
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the average costs for small-scale hydro are either at rough parity with or lower than those for 
fossil fuel sources of electricity generation.

Table 3.3: Small-scale hydro projects: Estimated levelized costs of electricity (LCOE) 
generation in non-OECD countries/regions, 2011

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

  Average Range

Africa 6 2-10

China 3 1-6

Eastern Europe and Central America 4 2-6

Other Asia 4 2-13

India 5 2-13

Latin America 5 2-9

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 5.8 and underlying IRENA 
cost database.

Solar. Table 3.4 shows cost figures for solar PV. As we saw with the average global figures for 
solar PV, as well as solar CSP, by regions, the cost figures for solar are still quite high relative to 
both fossil fuels and other renewable sources, even while costs have been falling significantly 
in recent years. Thus, by region, the average costs for solar PV range between 15 cents per kWh 
in Latin America to 30 cents in Other Asia. Costs also vary widely between regions. In China, 
average costs are 19 cents per kWh, while the range is between 11-53 cents. In India, average 
costs are 23 cents per kWh, while the range is between 8-37 cents. The average costs per region 
and the cost range are even higher for solar CSP technologies. 

Table 3.4: Solar photovoltaic: Estimated levelized costs of electricity (LCOE) generation in 
non-OECD countries/regions, 2011

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

  Average Range

Africa 21 18-54

China 19 11-53

Middle East 28 21-32

Other Asia 30 14-70

India 23 8-37

Latin America 15 12-31

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 6.9 and underlying IRENA 
cost database.
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As the IRENA study emphasizes, solar energy carries the best long-term promise as a clean 
renewable energy resource into the future. The underlying feedstock - sunshine - is generally 
abundant in all regions of the world relative to other renewable sources. The technologies can 
operate effectively at a variety of scales, including individual rooftops. With rooftop solar and 
its close equivalents - such as community-level power-generating projects - electricity can be 
distributed without having to rely on an electrical grid system. Over time, these advantages will 
be tremendously beneficial to advancing solar energy. Nevertheless, solar remains the high-
cost technology, even among renewables, and is likely to continue as such for at least the next 
decade.

Bioenergy. Table 3.5 shows cost figures on electricity generation through biomass sources. In 
this case, average costs are low, at between 5-6 cents per kWh of electricity, in all non-OECD 
regions. But the cost ranges are also very large within each region – 1-20 cents in India; 2-20 
cents in Africa; 3-18 cents in Latin America and 2-17 cents in Other Asia. The Chinese biomass 
projects report the smallest range, at 2-10 cents, but this range as well is large in absolute 
terms, if not relative to other regions. Given this wide range of costs, in pursuing opportunities 
to expand bioenergy-fired electricity production, the specific conditions will clearly be decisive. 
These figures also do not distinguish according to feedstocks and refining methods. That is, we 
do not know from these figures whether the electricity production is generating reductions in 
CO2 emissions relative to burning fossil fuels. This fact underscores further the need to examine 
the specific conditions involved in each bioenergy electricity project.

Table 3.5: Biomass: Estimated levelized costs of electricity (LCOE) generation in non-OECD 
countries/regions, 2011

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

  Average Range

Africa 5 2-20

China 6 2-10

Other Asia 6 2-17

India 5 1-20

Latin America 5 3-18

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 8.5 and underlying IRENA 
cost database.

Geothermal. Unlike with the other renewable electricity sources, IRENA does not report on 
geothermal-powered electricity costs on a region-by-region basis. They also do not provide a 
range of estimated costs. They do give figures on average costs for projects in four countries 
- Chile, Indonesia, Kenya and the Philippines. They show figures for projects ranging in size 
between about 30 megawatts up to 240 megawatts. These cost figures range between a low 
of about 3 cents per kWh for projects at about 60 and 125 megawatts to a high of 6.5 cents for 
projects of about 240 megawatts. This clearly is a very limited sample. But it does show that, 
under favorable conditions, geothermal-powered electricity can be produced at low costs in 
non-OECD countries.
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Renewable Electricity Costs in the United States
As a comparison with the IRENA renewable electricity cost data for non-OECD countries, it will 
be useful to examine comparable figures for the U.S. economy. We present such figures in Table 
3.6 for biomass/biofuels, onshore wind, large-scale hydro, solar PV, and geothermal energy. 
The first column of this table shows the reference case levelized electricity costs estimated 
by the EIA for projects coming online as of 2017, including both the average costs and the 
estimated cost range, with the range of estimates in parenthesis. Column 2 of Table 3.6 shows 
the EIA’s “Low Renewable Technology Cost case” for 2035. In this case, the EIA assumes that 
costs fall by 40 percent for all renewable sources other than hydro. The EIA assumes hydro 
costs remain fixed at their reference case, even while other renewable costs are falling by 40 
percent. For purposes of direct comparison, in column 3, we show the midpoint of the average 
levelized cost figures for the various non-OECD regions for all five renewable energy sources.

Table 3.6: U.S. renewable energy costs: Estimated levelized costs of electricity (LCOE) 
generation, 2011

Figures are current cents per kilowatt hour (kWh); figures in parenthesis are cost range 

  Average reference  
case for 2017

Low Renewable 
Technology Cost  

case for 2035

Midpoint 2011 costs for  
non-OECD regions

Biomass/biofuels
11.6

6.9 5.5
(9.8-13.7)

Onshore wind
9.6

5.8 9
(7.7-11.2)

Large-scale hydro
8.9

8.9 8.5
(5.8-14.7)

Solar PV
15.3

9.2 22
(11.9-23.9)

Geothermal
9.8

5.9 4.5
(8.4-11.2)

Sources: Authors’ calculations based on U.S. Energy Information Administration (2012c), “Levelized Cost of New Generation Resources in the Annual 
Energy Outlook 2012”, Tables 1 and 2; U.S. Energy Information Administration (2012b) “Assumptions to the Annual Energy Outlook 2012.”

The key finding here is that that the cost figures for the non-OECD countries are comparable to, if 
not generally somewhat lower than those for the U.S. This is despite the fact that the non-OECD 
figures are for 2011 while the U.S. figures are for 2017 in the reference case and 2035 in the low 
renewable technology cost case. Thus, with bioenergy, the non-OECD midpoint average, at 5.5 
cents, is lower than the low-point reference case figure for the U.S, at 9.8 cents. The non-OECD 
figure is also lower than the 2035 low-cost U.S. figure, at 6.9 cents. With geothermal energy 
as well, the non-OECD mid-point figure, at 4.5 cents is below even the low-cost case for 2035 
for the U.S. By contrast, the figures for wind and hydro are roughly comparable between the 
U.S. reference case and the non-OECD midpoint average. Solar PV is the only case where the 
non-OECD midpoint average cost figure, at 22 cents is high relative to the U.S. In this case, the 
non-OECD figure is at parity with the high-end figure for the U.S. 2017 reference case.
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Broadly speaking, these figures show that the costs of generating electricity from renewable 
sources in the non-OECD countries are within close range of the U.S. cost figures. As regards 
the U.S. cost estimates, it is also crucial to note that, even with the reference case figures 
for 2017, these costs are at rough parity with those for most non-renewable energy sources. 
We can see this in Table 3.7, which reports the EIA’s 2017 reference case figures for electricity 
generated by coal, natural gas and nuclear power, and compares those cost figures with those 
for hydro, wind, and biomass. The EIA’s figures for coal and natural gas are presented in two 
ways - through conventional production methods and through using CCS technologies to 
reduce the CO2 emissions generated by burning coal or natural gas. 

Table 3.7: U.S. energy costs: Estimated average levelized costs of renewables vs. fossil fuels 
and nuclear for plants entering service, 2017

 
Average total system 
levelized costs (2010 

dollars/mWh)

Average costs 
relative to hydro 

(percent)

Average costs 
relative to wind 

(percent)

Average costs 
relative to biomass 

(percent)

Conventional coal $97.7 +11.0% +1.8% -15.7%

Advanced coal with CCS $138.8 +57.7% +44.6% +19.8%

Natural gas - 
conventional combined 
cycle

$66.1 -24.9% -45.2% -43.0%

Natural gas - advanced 
combined cycle with 
CCS

$90.1 +2.4% -6.2% -22.3%

Advanced nuclear $111.4 +26.3% +15.8% -4.1%

Source: Authors’ calculations based on U.S. Energy Information Administration (2012c), “Levelized Cost of New Generation Resources in the Annual 
Energy Outlook 2012.”

As the table shows, the EIA estimates that, in terms of average costs, hydro, wind, and biomass 
are all competitive with four of the five nonrenewable energy sources shown - conventional 
coal, coal with CCS, natural gas with CCS, and nuclear. As of 2010, conventional coal was the 
most significant source of electricity in the U.S., generating about 48 percent of total U.S. 
supply. Nuclear power generated another 21 percent of total supply as of 2010. In combination 
then, conventional coal and nuclear power were responsible for generating nearly 70 percent 
of all U.S. electricity in 2010.22 It is therefore notable that the EIA is projecting that, in terms of 
average costs, hydro, wind and biomass will all be fully competitive with coal plants operating 
in 2017. In addition, the EIA is projecting that the average costs for hydro and onshore wind will 
both be significantly lower than those for average nuclear power plants operating in 2017. The 
EIA projects that the average costs for biomass will be only four percent more expensive that 
the average for nuclear power.

According to the EIA’s estimates, conventionally produced natural gas is the only nonrenewable 
energy source included that is consistently less expensive to produce than renewables. But 
these low cost figures for conventional natural gas result from an assumption of growing 
reliance on hydraulic fracturing technology for extracting natural gas from shale rock deposits. 
Beyond the matter of CO2 emissions from burning natural gas, we have discussed the serious 
environmental problems around hydraulic fracturing technology in Chapter 2. We also discussed 
22 Authors’ calculations based on statistics from EIA (2013d), Table 1.2.
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in Chapter 2 the equally serious problems in developing CCS technologies on a large scale.

Overall then, the EIA’s own official estimates on levelized electricity costs suggest that the 
renewable electricity sector in the U.S. is likely to become fully competitive with non-renewable 
electricity in a matter of a few years. This finding is consistent with the results for the non-OECD 
countries as reported by IRENA.

At the same time, these figures do not mean that all renewable sources will be equally cost 
competitive within all regions of the world. We have rather seen that costs vary widely among 
renewable sources by region. We have also seen that in the case of solar energy, the most 
promising long-term renewable energy source, costs are still unlikely to be competitive in the 
near future under most conditions. Nevertheless, overall, what these figures show is that in 
most regions there will be some combination of renewable energy sources that can generate 
electricity at competitive costs.

Comparative Costs after Incorporating Environmental Impacts
CCS Costs and Carbon Pricing 

In addition to the comparative cost results summarized above, it is also the case that 
renewables would become still more competitive with non-renewables if the market prices of 
non-renewables incorporated some reasonable measure of the environmental costs generated 
through producing energy from these sources. 

One way in which we can obtain a range of estimates as to the effects of incorporating these 
environmental costs into fossil fuel prices is to consider the cost effects of utilizing CCS 
technologies in fossil fuel prices. As we saw in Table 3.7, the EIA estimates that total levelized 
costs rise by 42 percent when CCS technology is applied to coal-fired electricity generation 
(from $97.7 to $138.8 per megawatt hour), and by 37 percent when CCS is used with natural 
gas electricity generation (from $66.1 to $90.1 per megawatt hour). It would be reasonable to 
assume that utilizing CCS technology in oil production would generate a roughly equivalent 
level of cost increases - i.e. between 35 and 40 percent.

We can get a second perspective by considering estimates as to the impact on fossil fuel prices 
of either a carbon cap or carbon tax policy approach to putting a price on carbon emissions. 
In their 2011 edition of the Annual Energy Outlook, the EIA developed scenarios for both 2025 
and 2035 which they term their “GHG Price” case. Under these scenarios, the price of carbon 
emissions begins at $25 per metric ton in 2013 and rises to $75 per ton of CO2 as of 2035. 
However, the EIA estimates that this policy will not raise the price of crude oil at all relative 
to their Reference case, either in 2025 or 2035. Indeed, the EIA reports that oil prices decline 
modestly in both 2025 and 2035 in their GHG Price scenarios. The EIA does not provide an 
explanation for this counterintuitive result.23 

23 The relevant figures are in the first two rows of Table D.18, p. 200 in EIA (2011).
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An alternative scenario for carbon prices as of 2035 is presented in the IEA’s 450/Low Carbon 
case that we described in Chapter 1. Under this 450/Low Carbon case, the IEA assumes that 
the price on carbon “reaches $125 per ton of carbon in most OECD countries in 2035.” This IEA 
scenario also allows that “several non-OECD countries are assumed to put in place cap-and-
trade schemes to limit CO2 emissions,” (IEA, 2013b, p. 42). However, at least in their published 
documents, the IEA does not provide an estimate as to what the impact of this scenario would 
be on global fossil fuel prices. 

It will be useful to provide some additional perspective as to the impact of carbon pricing on 
overall fossil fuel prices. This is especially the case, given that the IEA provides no estimates 
for price effects within their 450/Low Carbon case, and that the EIA reports the highly unlikely 
result that carbon prices of $25 per ton as of 2013 and $75 per ton as of 2035 will generate 
lower crude oil prices in both 2025 and 2035. One simple alternative approach is to assume 
a straightforward mark-up framework, at least as a first approximation. This would assume 
that the cost and price increases on fossil fuels from the carbon price policy would follow 
proportionally from both the stipulated level of the given carbon price policy - such as $75 per 
ton under the EIA’s 2035 scenario and $125 per ton under the IEA’s 450/Low Carbon scenario - 
and the amount of CO2 emissions generated by oil, coal or natural gas.

For example, within the framework of a $75 per ton carbon price, as with the EIA’s 2035 model, 
we would simply calculate the number of tons of carbon that are emitted by burning a given 
amount of oil, coal, or natural gas. Once we know that figure, we then assume that the $75 per 
ton in carbon pricing would be fully passed through and incorporated in the market prices of 
oil, coal, or natural gas. 

We have performed this simple set of calculations within the framework of the EIA’s 2035 
Reference Case. That is, we use the EIA’s Reference Case estimates for the average market 
prices of crude oil, coal, and natural gas in 2035. We then use figures on the amounts of CO2 
that are emitted through burning oil, coal and natural gas. For this, we draw on the figures we 
reported in Table 2.2, showing that CO2 emissions per Q-BTU were about 69 mmt for oil, 100 
mmt for coal, and 56 mmt for natural gas.

In Table 3.8, we present our estimates of this carbon price policy using this approach.24 As Table 
3.8 shows, the impact of the $75 per ton carbon price will range widely between the market 
prices of oil, coal, and natural gas. As we see, the approximate average crude oil price will rise 
by about 21 percent, from $140 to $170 per barrel. This is a significant percentage increase, but 
it is far below those for coal and natural gas. The coal price would rise by 250 percent, by $7.50 
to $10.50 per 1 M-BTUs. The natural gas price would rise by about 64 percent, by $7 to $11.50 
per 1 M-BTUs.

24 We present the details of these calculations in Appendix 1.
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Table 3.8: Estimating fossil fuel price increases through carbon pricing

Estimates based on:
 Carbon emissions per Q-BTU reported in Table 2.2
 EIA’s 2035 carbon price of $75 per ton
 EIA’s 2035 Reference Case prices for oil, coal, and natural gas
 Simple mark-ups of carbon-price cost increases on fossil fuel prices

 
Approximate 

CO2 emissions 
levels

Approximate 
average EIA 2035 

reference case 
fossil fuel prices

Fossil fuel cost 
mark-up with 75 
dollars per ton 

carbon price

Average fossil 
fuel prices after 

75 dollars per ton 
carbon price mark-

up

Percentage 
fossil fuel price 
changes after 
carbon price 

mark-up

Oil 69 mmt per 
Q-BTU

$140 per barrel $30 per barrel $170 per barrel
21.4%(= $48 per 1 

M-BTUs)
(= $10 per 1 

M-BTUs) (= $58 per 1 M-BTUs)

Coal 100 mmt per 
Q-BTU $3 per 1 M-BTUs $7.50 per 1 M-BTUs $10.50 per 1 M-BTUs 250.0%

Natural 
gas

56 mmt per 
Q-BTU $7 per 1 M-BTUs $4.50 per 1 M-BTUs $11.50 per 1 M-BTUs 64.3%

Sources: See Table 2.2 and Appendix 1.

Two factors influence these percentage changes. The first, of course, is the level of CO2 
emissions generated by the respective fossil fuel energy sources. But the second is the initial 
pricing levels for the respective energy sources. Thus, per 1 M-BTUs, the EIA’s 2035 Reference 
Case coal price is about 40 percent lower than that for natural gas, at $3 versus $7 respectively 
per 1 M-BTUs. As such, when we impose the carbon price on coal, the percentage impact is 
greater because the initial price is lower. Note further that, even with coal prices rising much 
more than natural gas percentage-wise, the price level for coal, at $10.50 per 1 M-BTUs, remains 
lower than the $11.50 per 1 M-BTUs price for natural gas. As for comparative oil prices, Table 3.8 
first reports oil prices per barrels of oil rather than per 1 M-BTUs, but we also then convert these 
figures onto a per 1 M-BTUs basis. As Table 3.8 shows, as converted, the 2035 oil price with a 
$75 per ton carbon price is $58 per 1 M-BTUs. Therefore, on a per 1 M-BTUs of energy basis, the 
price of coal in 2035 would still be only 18 percent that for oil while operating in the framework 
of a $75 per ton carbon price.

Renewables vs. Fossil Fuel Costs with CCS or Carbon Pricing
As we have already reviewed earlier in this chapter, the average costs for generating electricity 
through onshore wind, biomass, hydro and geothermal power are already either at, or at 
least rapidly approaching, cost parity with fossil fuels and nuclear power, even prior to taking 
account of the environmental costs tied to non-renewables. Solar power is consistently more 
expensive, but its costs are also coming down most rapidly. Once we then also take account of 
the environmental costs of burning fossil fuels through either a carbon price in the range of $75 
per ton (the EIA 2035 price) or $125 per ton (the IEA’s 2035 price), or requiring the use of CCS 
technologies, most renewable costs will become significantly less expensive than fossil fuels 
and nuclear power under average conditions.
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We have also seen that the cost ranges by region for renewables are wider than those for fossil 
fuels. However, as we have estimated, even with the lower EIA $75 per ton carbon price as 
of 2035 (as opposed to the EIA’s $125 per ton price), the market prices for fossil fuels could 
increase by amounts up to about 20 percent for oil, 60 percent for natural gas, and 250 percent 
for coal. Under such circumstances, most renewable prices would become cheaper than fossil 
fuel energy even in regions where renewable prices are at the higher ends of their range.

Even if we assume that solar energy prices will decline only incrementally over the next 20 years, 
solar would also still reach approximate cost parity with fossil fuels under average conditions 
within a policy framework that includes a $75 per ton carbon price. Of course, the relative gains 
from solar would become sharper still if the carbon price is at $125 per ton.

For reasons that we discuss in Chapter 2, it is neither likely nor desirable that CCS technologies 
be relied upon as the means of controlling the environmental costs of burning fossil fuels. Still, 
as we have seen, the EIA estimates that operating with CCS technologies would raise levelized 
fossil fuel production costs by about 35-40 percent in the production of electricity. This would 
also push most fossil fuel costs above those for renewables. 

Overall though, the most effective approach for incorporating the environmental costs into 
fossil fuel prices will be to establish carbon pricing. With the global economy operating under 
a carbon pricing framework, the result will be to substantially accelerate the process whereby, 
in all regions of the world, the full range of clean renewable energy sources become cost 
competitive, if not less expensive, than fossil fuels and nuclear power. 

Capital Expenditures for U.S. Renewable Energy Investments
Given the similar range in total costs of producing electricity from renewable energy sources 
between the non-OECD countries and the U.S., the U.S. figures from the EIA on capital 
expenditures provide a useful benchmark for assessing the capital costs in other countries as 
well. We present these data in Table 3.9. These EIA figures are especially useful for this report, 
since we do not have consistent capital expenditure figures broken out for Brazil, Germany, 
Indonesia, South Africa, and the ROK. We can however use the U.S. capital expenditure figures 
for providing a reasonable cost range in our five selected countries. We emphasize that we 
are not suggesting that these U.S.-based cost figures will necessarily be accurate for specific 
settings within each of the five selected countries. For example, these figures are, if anything, 
probably too high for Indonesia, Brazil, and South Africa, where labor costs will be much lower 
than the U.S. Nevertheless, our approach is precisely to err, if anything, on overestimating the 
renewable energy investment costs in any given country setting, rather than underestimating 
these costs. As such, we will work from these figures in our country-by-country discussions as 
to how much new capacity could be produced if these countries devote roughly 1 percent of 
GDP per year to investments in clean renewables. 
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Table 3.9: U.S. capital expenditure costs for building renewable electricity capacity

Figures are present values of total capital costs; $1 per mWh = ($1 billion/3.42 Q-BTUs).

 
 

2017 Reference Case
2035 Low Cost Technology Case

Assumes 40 percent cost reduction  
except for hydro

1) Costs per 
mWh

 2) Costs per 
Q- BTU

3) Average 
costs

over 20-year 
cycle per 

Q-BTU

 4) Costs per 
mWh

 5) Costs per 
Q- BTU

6) Average 
costs over

20-year cycle 
per Q- BTU

(dollars) (Billion dollars) (dollars) (Billion dollars)

Bioenergy $709 $207 billion $10.4 billion $425 $124 billion $6.2 billion

Hydro $974 $284 billion $14.2 billion Same as reference case

Onshore Wind $1,035 $306 billion $15.3 billion $621 $183 billion $9.1 billion

Solar PV $1,782 $521 billion $26.1 billion $1,069 $312 billion $15.6 billion

Geothermal $974 $285 billion $14.2 billion $584 $167 billion $8.3 billion

Source: Authors’ calculations based on U.S. Energy Information Administration (2012b), “Assumptions to the Annual Energy Outlook 2012.”

Working first with the EIA reference case estimates for 2017, column 1 of Table 3.9 shows 
the present value of total lump-sum capital expenditures to produce one megawatt hour of 
additional electricity-generating capacity from alternative renewable energy sources. In column 
2, we convert the units of the present value figures from megawatt hours into a lump sum of 
billions of dollars per Q-BTU of new electricity-generating capacity. Column 3 presents these 
same reference case figures as an annual average level of investment per year over 20 years, as 
expressed in Q-BTUs of capacity. In columns 4-6, we present the same set of figures, except that 
we now operate under the EIA’s low technology cost assumptions for 2035. As noted above, the 
EIA’s Low Renewable Technology Cost case assumes that the levelized costs for hydropower do 
not decline at all relative to its Reference case.

These figures show that, in the EIA’s Reference case, the present value of capital expenditures 
for renewable investments range between $207 billon per Q-BTU with bioenergy to $521 with 
solar PV. Spanning over a 20-year investment period, this amounts to between $10.4 and $26.1 
billion per year. Moving to the Low Renewable Technology Cost case, the range is between $124 
and $312 billion per Q-BTU, which amounts to between $6.2 and $27.7 billion per year for 20 
years.

When we move into examining the cases of Brazil, Germany, Indonesia, South Africa and the 
ROK, we will use these capital expenditure figures to consider both how much renewable energy 
capacity can be produced through an investment strategy in the range of 1 percent of GDP per 
year. We will then estimate how many jobs will be generated through this investment strategy.

These capital expenditure figures are especially important for our efforts at estimating the 
employment-generating impacts in each of our five countries of expanding their renewable 
energy sectors. As we have discussed at the outset, we are organizing our discussions on 
employment impacts on the assumption that each of our selected countries will pursue an 
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investment project in expanding their renewable energy capacity at around 1 percent of the 
country’s GDP per year.

Bioenergy, CO2 Emissions and Food Prices
Emissions Control

The term “biomass,” as described by the U.S. Environmental Protection Agency (EPA) describes 
“many different fuel types from such sources as trees, construction, wood, and agricultural 
wastes; fuel crops; sewage sludge; and manure. Agricultural wastes include materials such as 
corn husks, rice hulls, peanut shells, grass clippings, and leaves.”25 Biomass can be converted 
into energy in either solid, liquid or gas form. A biomass energy source converted into liquid 
form is a biofuel.

Based on the feedstock used and the refining technology, biomass/biofuels energy sources 
vary greatly in their emission levels. We see this in Table 3.10 with respect to biofuels. The table 
reports on the level of GHG emissions for five types of ethanol as well as one biodiesel energy 
source relative to emissions from gasoline or diesel fuel used in 200526

Table 3.10: Percentage emissions levels reductions over 30-year cycle relative to gasoline or 
diesel fuel over 30-year cycle

Corn ethanol
+34%

Refined through coal-fired processing

Corn ethanol
-26%

Refined through biomass-fired processing with combined heat and power

Sugercane ethanol -26%

Waste grease biodiesel -80%

Corn stover ethanol -116%

Switchgrass ethanol -124%

Source: U.S. Environmental Protection Agency. 2009, May. “EPA Lifecycle Analysis of Greenhouse Gas Emissions from Renewable Fuels.”

Starting with corn ethanol refined through coal-firing, we see that, over a 30-year cycle, the 
overall level of GHG emissions - incorporating all stages in production, from growing crops, 
refining, and burning the fuel to generate energy - actually generates 34 percent higher 
emissions levels relative to burning gasoline. But corn ethanol can also produce lower emission 
levels than gasoline if it is refined through a biomass-fired refining process. However, even in 
this case, the emissions reductions compared with gasoline are relatively modest, at about 26 
percent over a 30-year cycle. The emissions reductions are also about 26% lower than gasoline 
when burning sugarcane-based ethanol.

25 “Non-Hydroelectric Renewable Energy,” EIA (2013e).
26 EPA (2009) includes a fuller listing than those shown in Table 3.5 and also includes emission figures over a 100-year cycle in addition to the 30-year 
cycle shown in the table here.
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As is clear from Table 3.10, the way to achieve major emission reductions is through burning 
waste grease biodiesel fuel, or even more so, corn stover or switchgrass-based ethanol. This 
is because with either waste grease or corn stover, there are no production costs, including 
energy consumption, required to supply the bioenergy raw material. With switchgrass as the 
raw material, the production costs - including energy consumption requirements - are minimal. 
Even when including the refining and energy-generating processes, the EPA study finds that, 
netting out everything, these fuel sources achieve reduced emission levels. 

More generally, according to the Union of Concerned Scientists (2010) bioenergy sources can 
be considered part of the terrestrial carbon cycle - the balanced cycling of carbon from the 
atmosphere into plants and then into soils and the atmosphere during plant decay. When 
bioenergy is developed properly, emissions of biomass carbon are taken up or recycled by 
subsequent plant growth with a relatively short time, resulting in low net carbon emissions. 
As such, the Union of Concerned Scientists includes the following as clean, or what they term 
“beneficial” biomass resources:

1. Energy crops that do not compete with food crops for land;

2. Portions of crop residues such as wheat straw or corn stover;

3. Sustainably-harvested wood and forest residues; and

4. Clean municipal and industrial wastes.

The Union of Concerned Scientists contrasts these with “harmful biomass resources and 
practices.” These harmful resources and practices include clearing forests, savannas or 
grasslands to grow energy crops, and displacing food production for bioenergy production 
that ultimately leads to the clearing of carbon-rich ecosystems elsewhere to grow food. They 
write that “harmful biomass adds net carbon to the atmosphere by either directly or indirectly 
decreasing the overall amount of carbon stored in plants and soils.”

At present, as mentioned above, the proportion of bioenergy generated through clean 
processes is negligible outside of Brazil. But the potential is high for a major expansion in 
these energy sources. Thus, a 2009 study by the U.S. National Academy of Sciences (NAS) 
estimated that by 2020, 550 tons of biomass could be sustainably harvested to produce 
cellulosic and other advanced biofuels - that is bioenergy exclusive of that derived from corn 
ethanol or other heavy carbon-emitting sources. This study further estimates that this supply of 
biomass could produce 45 billion gallons of ethanol in the U.S. This translates into 6.4 Q-BTUs 
of energy from “clean” biofuels. The prospects for a major expansion in clean bioenergy should 
be comparable in other countries as well. 

SECTION 1 :  PROSPECTS FOR ALTERNATIVE ENERGY SOURCES
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Will Expanding Bioenergy Production Raise Food Prices? 
One major concern raised about a rapid expansion of bioenergy production is that it will raise 
food prices with an adverse impact on low-income and poor families. The manufacture of 
bioenergy uses agricultural products as basic inputs and large increases in the production of 
bioenergy will increase the demand for agricultural output and divert production away from 
food and towards non-food bioenergy production. The potential problem is that this rapid 
growth in bioenergy demand will translate into higher prices for food (Sexton et al., 2008). 

The possibility that bioenergy production could be responsible for rising food prices became a 
growing concern with the increase in global agricultural commodity prices, which began around 
2004. Figure 3.2 below documents the movement of global food prices from 1991-September 
2013. As the figure shows, the most intense period of the global economic crisis - from the 
second half of 2008 through 2009 - interrupted the upward trend in food commodity prices, 
but, by 2011, the prices of many food commodities had rebounded to around their pre-crisis 
peaks (Abbott, Hurt and Tyner, 2011). This was also a period in which production of bioenergy 
surged. In particular, world biofuel production, as a liquid energy source, grew five-fold 
between 2001 and 2011, with the most rapid increases occurring in 2007/8 - the peak of the 
food price hikes (HLPE, 2013). The fact that the growth in biofuels production corresponded 
with the increase in agricultural commodity prices raised questions of whether biofuels were 
responsible for high food prices. 

Figure 3.2: Food commodity price index, January 1991-September 2013

Food commodity price index, International Monetary Fund, Jan. 1991 to Sept. 2013 (2005 = 100).

Source: Authors’ presentaiton based on the IMF Food Price Index downloaded from http://www.imf.org/external/np/res/commod/External_Data.xl.
Note: 2005=100.
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Those who argue that bioenergy production is the primary reason behind rising food prices see 
rising demand for agricultural goods as the primary force behind increasing prices. Specifically, 
they point out that production of bioenergy accounts for a large share of the increase in overall 
agricultural production and present this as evidence that demand for food grains outstrips 
supply (Wilkinson et al., 2013). However, the precise nature of the link between biofuel 
production and food prices remains unsettled. Many factors contributed to the increase in 
food prices over this period. The growing production of and the growing supply of bioenergy 
was not likely to have been a major contributor (Sexton et al., 2008; Trostle et al., 2011). Other 
considerations include the large-scale entry of financial investors into commodity futures 
markets, changes in the U.S. dollar exchange rate, and shocks to agricultural production from 
droughts and other extreme weather events (Baffes and Haniotis, 2010; Trostle et al., 2011; 
Wilkinson et al., 2013). 

During the period in which food prices soared, other commodity prices experienced similar 
increases. This includes commodities having little connection to bioenergy, such as metals. 
This suggests that a common factor that operates across diverse markets drove up prices - e.g. 
speculative investment in a range of commodity futures (Gilbert, 2010). Biofuels production 
does not fit this description. A study of commodity price increases over this period by World 
Bank researchers concludes that the expansion of bioenergy played a modest role in raising 
food prices, but other factors were more important (Baffes and Haniotis, 2010). This same 
report notes that “biofuels account for only about 1.5 percent of the agricultural area under 
grains/oilseeds cultivation” (p. 12). Other studies find little evidence of a connection between 
biofuel production and the increases in food prices over this period (Gilbert, 2010). The fact 
that food prices fell after the 2008 global financial crisis while biofuels production continued 
to increase further suggests that biofuels are not the dominant drivers of food prices (Trostle et 
al., 2011). To the extent that there is an emerging consensus, it appears to be that the expansion 
of biofuels had some impact on food prices, but that other factors were likely more important in 
explaining the kind of price increases experienced from 2004 to 2008.

Studies of the impact on future food commodity prices of policies to promote the production of 
biofuels reach similar conclusions. A 2012 report from the Institute for European Environmental 
Policy reviewed research that modeled the impact of biofuel mandates, both within the 
European Union and globally, on commodity prices (Kretschmer, Bowyer and Buckwell, 2012). 
With regard to global and multi-regional mandates, the report found that the prediction of price 
increases varied widely and depended on the modeling approach used, with food commodity 
prices increasing between 1 and 35 percent. Even considering the higher predicted food price 
increases, the review concludes “the price changes projected into the future found in the 
studies reviewed here are all positive, but not massive, especially in comparison to the recently 
experienced global commodity price spikes,” (p. 49). The promotion of bioenergy production 
in the future will likely have a positive impact on food prices. But again, this impact will likely 
be modest. 

It is also important to recognize that, up to this point in time, the growth of biofuels as a 
liquid energy source has largely been a response to high prices of gasoline, not to issues of 
sustainability and climate change (HLPE 2013). Increased biofuels production reduced the cost 
of gasoline (Sexton et al., 2008). Ironically, the growth in biofuels likely reinforced the use of 
fossil fuels by keeping gasoline prices low and thereby reducing incentives to develop cleaner 
alternatives. Higher gasoline prices make biofuels production more profitable, encouraging its 
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expansion. Some point to rising fuel prices as an important factor in the surge in food prices. 
This is because high fossil fuel prices encourage the production of biofuels, which, in turn, may 
impact food prices (Wilkinson et al., 2013).

New bioenergy technologies have the potential of both reducing the threat of climate change 
and addressing concerns over food security. For instance, clean bioenergy sources, as we have 
discussed above, would help improve food security through making a major contribution toward 
the reduction of CO2 emissions (Sexton et al., 2008). At the same time, as has been shown 
in this report, the development of viable clean biofuels will make a substantial contribution 
to reducing GHG emissions. What is needed is a new approach to bioenergy policy that 
jointly emphasizes environmental sustainability and food security. The more comprehensive 
approach would include land use policy, support for developing new technologies, research 
to raise agricultural yields, and strategies for confronting the primary threats to food security. 
By designing policies to encourage technological innovations, raising agricultural productivity, 
and promoting biofuels that have a smaller impact on food crops, the effects on food prices 
will be minimized. We discuss these policy issues further in Chapters 8 and 9, when we take 
up these issues specifically with respect to Brazil and Germany. Especially in Germany, major 
initiatives are already underway for developing an effective clean bioenergy sector. 

Furthermore, increases in commodity prices do not translate into a one-to-one increase in 
the food prices that consumers pay. Overall food prices depend on the food processing and 
distribution system in place. In high-income countries, such as the U.S., commodity prices only 
account for about 15 percent of the overall price of food. Therefore, a doubling of commodity 
prices may result in a much smaller increase in food prices. For developing countries, the 
relationship between commodity prices and food prices can be much more direct. The difference 
in price effects should be taken into account when thinking about global approaches to jointly 
addressing climate change, poverty, and hunger. Income support policies (e.g. cash transfer 
schemes and related strategies) can be important complementary policies to off-set the impact 
of higher food prices on the poor.

It is also essential to note that food price increases have been associated with extreme 
weather events and climate change has the potential to emerge as a significant contributor to 
food insecurity and rising food prices in the future (Carty, 2012; Commission on Sustainable 
Agriculture and Climate Change, 2012; Nelson and Olofinbiyi, 2012). Therefore, strategies, 
which aim to stabilize food prices and improve food security, must focus on reducing GHG 
emissions and directly address climate change. Switching to clean biofuel technologies is a 
central part of an overall strategy to reduce emissions and, because of this, a well-designed 
biofuels policy will enhance, not undermine, food security in the long run.

Overall, we can conclude from the full range of evidence presented in this chapter that, in 
all regions of the world, there will almost certainly be some combination of clean renewable 
sources that can produce significant energy supplies at cost parity relative to non-renewables, 
either at present or within the next five years. Of course, this conclusion will be greatly supported 
if effective carbon pricing policies are in all regions of the world. Moreover, the process of 
lowering costs for clean renewables will only accelerate as the utilization of these technologies 
expands. As we noted at the outset of this chapter, the high technological learning rates, 
especially for solar energy, will generate major cost reductions. With solar PV modules, costs 
have been declining by as much as 22 percent for every doubling of installed capacity.
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Despite these general trends, it is still also true that, to know which particular combination 
of clean renewable sources can be utilized efficiently in any given specific setting can be 
determined only within the context of that specific setting. Equally, establishing at what 
point clean renewables can effectively substitute at scale for non-renewables also requires an 
understanding of the specific resources available and broader economic circumstances within 
each region. As such, the on-the-ground decision makers within each region and country, such 
as the managers of grid systems, will have to examine all the relevant considerations as they 
move to expand renewable capacity and correspondingly reduce dependence on fossil fuels 
and nuclear power. 

The global investment patterns for clean renewables have been generally positive in recent 
years. Thus, the 2014 edition of Global Trends in Renewable Energy Investments (Frankfurt 
School-UNEP Collaborating Center, 2014) reports, among its other findings, that:

capacity added in all technologies in 2013 (the same figure as 2012), and raised its 
share of total generation worldwide to 8.5 percent from 7.8 percent.

below gross investment in fossil-fuel power, at $227 billion compared to $270 billion, 
it was roughly double the net figure for investment in fossil-fuel power excluding 
replacement plant.

As we explore further in later chapters, annual global clean renewable investments will need to 
rise well beyond $227 billion, which is equal to about 0.3 percent of 2013 global GDP. Rather, 
overall clean renewable investments will need to reach about 1 percent of global GDP, which 
would equal $870 billion for 2013 (with annual global energy efficiency investments rising to 
about 0.5 percent of global GDP). Still, investment levels within this range are rapidly becoming 
a realistic goal in virtually all country settings, in that clean renewable energy can be supplied 
at competitive costs and, as we will discuss below, the investments to build and operate the 
capacity will generally be a significant net new source of job opportunities. 

SECTION 1 :  PROSPECTS FOR ALTERNATIVE ENERGY SOURCES
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CHAPTER 4: PROSPECTS FOR 
ENERGY EFFICIENCY
Significantly raising energy efficiency levels for all countries, at all levels of development, is 
necessarily one of the two cornerstones of the global green growth project, along with clean 
renewable energy investments.

It is important to clarify the distinction between energy conservation and energy efficiency. 
Energy conservation entails reducing the amount of economic activity that requires the 
consumption of energy. Some examples of energy conservation are using machine-powered 
heating and cooling systems less in buildings, traveling fewer miles, and relying less on energy-
powered machinery in industrial processes. 

By contrast, energy efficiency entails using less energy to achieve the same, or even higher, 
levels of energy services from the adoption of improved technologies and practices. The IEA’s 
2013 Energy Efficiency Market Report describes the market for energy efficiency as follows:

The cost-effective supply of energy efficiency can be defined as the investment 
opportunities for which the sum of the benefits, stemming from avoided energy 
consumption, outweighs the investment costs….The energy that is not consumed 
as a result of energy efficiency measures, whether it is a barrel of oil, cubic metre of 
gas, tonne of coal or terawatt hour of electricity, is described in terms of the physical 
energy quantities avoided. This important notion of how energy efficiency can directly 
substitute, and be equated with, supply-side commodities is central to conceptualizing 
the supply of energy efficiency….Energy efficiency is a domestically produced energy 
resource, for which the market is often local. Like other energy markets, its equipment 
and infrastructure may be imported, but avoiding ongoing fuel requirements can provide 
greater control over domestic energy supply (IEA, 2013c, p. 29).

Energy conservation does have a role to play in reducing global CO2 emissions and fighting 
climate change, given that, in particular, businesses, public institutions and upper-income 
households in advanced economies could readily reduce their energy-consuming activities 
without significantly affecting their mode of operations or living standards. But for the vast 
majority of the world’s population, one of the central drivers of rising living standards will be 
to significantly enhance access to low-cost energy-based services, such as well-functioning 
modern buildings, convenient modes of transportation, and workplaces in which the use of 
energy-driven machinery raises productivity. This is why energy efficiency has to play a much 
more important role than energy conservation in the unified global project of controlling climate 
change while raising mass living standards.

SECTION 1 :  PROSPECTS FOR ALTERNATIVE ENERGY SOURCES
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What Are the Opportunities?
This central role for energy efficiency is widely understood. The World Bank researchers Ashok 
Sarkar and Jas Singh offer this overview:

Energy efficiency is rapidly becoming a critical policy tool around the world to help 
meet this substantial growth in energy demand. Evidence from the past 3-4 decades 
of experience around the world indicate that EE [energy efficiency] programs generally 
entail positive and multiple benefits for the government, energy consumers, and the 
environment. Such programs can: conserve natural resources; reduce the environmental 
pollution and carbon footprint of the energy sector; reduce a country’s dependence 
on fossil fuels, thus enhancing its energy security; ease infrastructure bottlenecks 
and impacts of temporary power shortfalls; and improve industrial and commercial 
competiveness through reducing operating costs. In terms of project economics, EE 
options are seen as “no regrets” policies, since their net financial cost can be negative, 
i.e. the measures are justified purely based on high financial returns….Amongst the 
menu of feasible technical options currently available to help reduce the rate of growth of 
greenhouse gas emissions produced by the energy sector, EE technologies stand apart 
as the most cost-effective ones, as shown in numerous analyzes by various stakeholders, 
ranging from the Intergovernmental Panel on Climate Change (IPCC) to private sector 
practitioners such as the analyses done by McKinsey (Sarkar and Singh, 2010, p.5561).

This perspective is also advanced in numerous other World Bank studies on climate change 
and building green economies in developing countries. For example, a 2008 analysis focusing 
on Brazil, China, and India by Taylor et al. argues as follows:

As a domestic measure that reduces reliance on imported energy, energy efficiency 
programs are typically a key part of national efforts to improve the security of future 
energy supply. Energy efficiency is favored in environmental improvement strategies 
because it reduces the need for energy development, transportation and distribution, 
onsite use, and all the associated environmental impacts. But perhaps the greatest 
attraction of many energy efficiency measures is their cost effectiveness. Cost vary 
among technologies and countries where energy efficiency measures are implemented, 
but often are only one-quarter to one-half the comparable costs of acquiring additional 
energy supply (Taylor et al., 2008, p. 28).

The 2011 Industrial Development Report by UNIDO, Industrial Energy Efficiency for Sustainable 
Wealth Creation, focuses specifically and in detail on prospects for efficiency investments in 
the industrial sectors of developing countries. UNIDO summarizes the perspective of this study 
as follows:

Industrial development…must become sustainable. Continued high resource 
consumption and carbon-intensive and polluting technologies will sap the potential 
for growth and development. Innovative solutions, national and global, are vital to 
making industrial activity more sustainable - to attuning it to environmental and 
social needs. The “green industry” approach can provide the blueprint for sustained 
industrial development. Increasing industrial energy efficiency is a key foundation for 
green industry worldwide. By building on past successes, countries can develop their 
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industries while tempering the impacts on resource depletion and climate change 
(UNIDO, 2011, p. 23). 

Among its research findings, this UNIDO study presents results of a survey of 357 industrial 
firms in developing countries, whose purpose was to better understand the decisions of these 
firms on investing in energy efficiency projects. The total level of efficiency investments for the 
surveyed firms was $614 million, with individual projects ranging from as low as $100 up to 
$73 million. The types of investments included direct equipment replacements; waste reuse; 
residual temperature reuse; pipes and insulation improvements; better use of infrastructure; 
and fuel optimization. 

The UNIDO researchers were able to assess the financial viability of these projects through 
their survey findings. They found that, in line with practice in developed countries, more than 
90 percent of surveyed firms in the sample used simple payback rules to assess the financial 
viability of their investments. The surveyed firms approved projects only if they had a simple 
payback of no more than 2-3 years. The actual mean payback period for 119 projects with data 
was 23 months. The UNIDO researchers were able to generate more systematic internal rate of 
return (IRR) estimates as well for these projects. They found that the estimated mean IRR was 
25 percent for projects with a three-year lifespan and no resale value. They also found that 
the mean IRR rose with each additional year of life, to 37 percent for four years, 43 percent for 
five years and 50 percent for 10 years. UNIDO concluded from these results that “these higher 
rates compare favorably with average returns in capital markets, which are typically lower over 
comparable timeframes,” (UNIDO, 2011, p. 78).27

Focusing now on the advanced economies, the overall prospects for these countries is that 
large-scale efficiency investments can produce significant reductions in their absolute levels of 
energy consumption. As with the developing countries, such gains in efficiency for advanced 
economies can be achieved without having to experience reduced GDP growth. This conclusion 
is expressed strongly, for example, in the major 2010 study by the U.S. National Academy of 
Sciences (NAS), Real Prospects for Energy Efficiency in the United States. Their overarching 
findings include the following observations:

Energy efficient technologies for residences and commercial buildings, transportation 
and industry exist today, are expected to be developed in the normal course of business, 
that could potentially save 30 percent of the energy used in the U.S. economy while 
also saving money. If energy prices are high enough to motivate investment in energy 
efficiency, or if public policies are put in place that have the same effect, U.S. energy use 
could be lower than business-as-usual projections by…17-20 percent in 2020 and 25-31 
percent in 2030….The full deployment of cost-effective energy-efficient technologies in 
buildings alone could eliminate the need to add to U.S. electricity generation capacity 
(NAS, 2010, p. 4-5).

To provide some details on the extent of energy savings available in the U.S. from specific 
investment areas, we show in Table 4.1 below the estimates of the National Academy of Sciences 
the NAS on the savings opportunities available just with electricity consumption in commercial 
U.S. buildings. As the table shows, the potential energy savings estimated by the NAS includes 
25 percent for lighting systems, 48 percent for space cooling, 45 percent for ventilation, 39 
27 More details on this survey are found in Alcorta et al. (2012).
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percent for space heating and between 25-60 percent for office equipment usage. Overall, 
the NAS finds that savings as of 2030 could reach nearly 2 Q-BTUs just with electricity use in 
the commercial building sector. This would represent a 35 percent savings relative to the U.S. 
Energy Department’s EIA's 2030 Business-as-Usual (BAU) assumptions - and, on its own, a 
fully 2 percent absolute reduction in overall U.S. energy consumption relative to current levels. 
Moreover, on average, the NAS estimates that the costs of achieving this level of savings would 
be 2.8 cents per kilowatt hour. As of 2013, average electricity costs for commercial buildings 
were 11 cents per kilowatt hour.

Table 4.1: Main sources of energy efficiency investments in U.S. commercial building 
electricity use

End use-electricity Savings in Q-BTUs, 
2030a

Savings relative to EIA 
reference case (percent)

Cost of conserved energy 
(cents per kWh in 2010 

dollars)b

Lighting 0.47 25% 5.4

Space cooling 0.39 48% 2.9

Office equipment - PCs 0.24 60% 4.1

Office equipment - non PCs 0.23 25% 3.3

Ventilation 0.2 45% 0.5

Refrigeration 0.12 38% 1.4

Space heating 0.1 39% 0.5

Other uses and thermal 
shell 0.65 35% 1.5

Other 0.02 14% 4

Total 2.4 Q-BTUs 35% 2.8 cents per kilowatt hour

Source: Adapted by authors from Table 2.10 in NAS (2010) “Real Prospects for Energy Efficiency in the United States”.
Notes: a) Calculated using AEO 2012 Reference case Table A4; b) Costs from Brown et al. (2008) were inflated using the GDP implicit price deflator 
(BEA 2012).

As noted by Sarkar and Singh above, the work by the business consulting firm McKinsey 
and Company are useful here. McKinsey estimates that, on a global scale, energy efficiency 
investments are the most cost-effective approach to reducing GHG emissions. McKinsey shows 
this most dramatically through their Global Greenhouse Gas Abatement Cost Curve, which we 
reproduce as Figure 4.1 below. As McKinsey’s figure shows, there are large numbers of specific 
investment activities that can reduce GHG at negative costs. Virtually all of these are various 
sorts of efficiency investments. They include investments in lighting, consumer appliances 
and electronics, heating and air-conditioning systems, building insulation, electrical motors, 
hybrid automobiles, and waste recycling.
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Figure 4.1: McKinsey Global Greenhouse Gas Abatement Cost Curve beyond BAU, 2030

Source: Exhibit from “Impact of the Financial Crisis on Carbon Economics: Version 2.1 of the Global Greenhouse Gas Abatement Cost Curve", 2010b, 
McKinsey & Company, www.mckinsey.com/. Reprinted by permission. 

In a 2010 study, McKinsey researchers further argue that while the benefits of efficiency 
investments can be captured in all regions of the world and all countries, the largest benefits 
per dollar of expenditure are available in developing countries. Specifically, McKinsey 
estimates that, using existing technologies only, developing countries could realistically slow 
the growth of energy demand through 2020 by more than half - from 3.4 to 1.4 percent per 
year - without having to reduce GDP growth at the same time. McKinsey estimates that gains 
in energy efficiency would generate about $600 billion per year in savings on energy costs 
throughout the developing world by 2020 (McKinsey and Company, 2010a). 

Of course, as we saw in Table 1.3 of Chapter 1, countries vary widely in their existing level of 
efficiency. Reviewing those figures from Table 1.3, the energy intensity ratio for the world as a 
whole is 7.1 Q-BTUs per $1 trillion GDP. Among the countries shown in the table, the intensity 
ratios range widely, from 4.1 for Germany to 14.6 per $1 trillion for South Africa - that is, the 
German economy is operating at a level of energy efficiency more than three times higher than 
that of South Africa. Brazil is the next most efficient in energy use, with an efficiency ratio at 
5.1 per $1 trillion, while China is the second least efficient, with its ratio at 12.1 per $1 trillion.

The Indonesian ratio, at 6.8 is close to the global average of 7.1. But this is with the Indonesian 
economy operating at a GDP per capita level of $3,600. Indonesia is aiming to raise per capita 
GDP at rapid rates over the next 20 years. The challenge will be for the Indonesian economy 
to maintain healthy GDP growth while also significantly incorporating energy efficiency 
investments into their growth process. That would enable the economy to consume energy 
within a system that, for example, more closely resembles that of Brazil than South Africa. 
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At the same time, it is important to note that even in the case of Germany, the most energy-
efficient large advanced economy in the world, there is a clear recognition that significant 
advances in efficiency are necessary and attainable at reasonable costs. Thus, the German 
federal government’s official 2010 Energy Concept document sets as a goal a 20 percent 
decline in absolute energy consumption by 2020 and a 50 percent reduction by 2050 (BMUB, 
2010). The Concept document places special emphasis on opportunities for energy savings 
in the economy’s stock of buildings. As with most advanced economies, the operations of 
buildings are responsible for about 40 percent of all energy consumption. The BMUB’s Energy 
Concept sets as the country’s goal to be able to operate its entire building stock at virtually zero 
net emissions by 2050. This will entail significant up front investments in energy-efficiency 
technologies for buildings, including the thermal shell, as well as heating and cooling and 
lighting systems. But these investments are more than self-financing within a reasonable time 
frame, given the energy savings achieved through the up-front investments.

Estimating Costs of Efficiency Gains
Estimates as to the investment costs for achieving energy efficiency gains vary widely. In Table 
4.2, we show summary estimates from three sets of studies. As we see, the 2008 World Bank 
study by Taylor et al. puts average costs at $1.9 billion per Q-BTU of energy savings, based on a 
study of 455 projects in both industrial and developing economies. The McKinsey study that we 
cited above estimates costs for a wide range of non-OECD economies at $11 billion per Q-BTU of 
energy savings. Focusing just on the U.S. economy, the U.S. National Academy of Sciences NAS 
estimated average costs for energy efficiency savings in the buildings and industrial sectors at 
about $29 billion per Q-BTU. 

Table 4.2: Estimates of investment costs for energy efficiency gains

   Regions/countries 
estimated

Estimated costs
(dollars per ton of oil 
equivalent savings)

Estimated costs 
(billion dollars per Q-BTU 

of savings)

World Bank (Taylor et al., 
2008, p. 29)

455 projects in 
11 industrial and 

developing countries

$76 per ton of oil 
equivalent (TOE)

$1.9 billion per Q-BTU
(conversion):  

1 Q-BTU =~25.2 million TOE

McKinsey and Co. (2010, 
p. 27)

Africa, India, Middle 
East, South East Asia, 
Eastern Europe, China

- $11 billion per  
Q-BTU

NAS (2010; as summarized  
in Pollin et al. 2014) U.S. - ~ $29 billion per Q-BTU for 

buildings, industry

It is not surprising that average costs to raise energy efficiency standards would be significantly 
higher in industrialized economies. As we will discuss further below, a high proportion of 
overall energy efficiency investments are labor costs, especially projects to retrofit buildings 
and industrial equipment. However, these wide differences in cost estimates are not simply 
resulting from variations in labor and other input costs by regions and levels of development. 
Thus, the World Bank estimate of $1.9 billion per Q-BTU includes both industrialized and 
developing countries, while the McKinsey $11 billion per Q-BTU estimate - nearly 6 times 
greater than the World Bank figure - is primarily coming from developing country projects. 
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These alternative studies do not provide sufficiently detailed methodological discussions 
that would enable us to identify the main factors generating these major differences in cost 
estimates. But it is at least reasonable to conclude from these figures that, with on the ground 
real-world projects, there are likely to be large variations in costs down to the project-by-project 
level. Thus, parallel to the situation with specific renewable energy projects that we discussed 
in Chapter 3, the costs for energy efficiency investments that will apply in any given situation 
will necessarily be specific to that situation, and must be always be analyzed on a case-by-case 
basis.28

At the same time, for the purposes of this report, we will need to proceed with some general 
rules-of-thumb for estimating the level of savings that are attainable through a typical set of 
efficiency projects in our five selected countries, as well as in other settings. A conservative 
approach will be to allow that, relative to the World Bank and U.S. National Academy of Sciences 
figures, the midrange cost estimate provided by McKinsey at $11 billion per Q-BTU of savings, 
is appropriate for low-and middle-income economies, including Brazil, Indonesia and South 
Africa. We will also assume that the cost figure for Germany will be equivalent to the National 
Academy of Sciences the estimate for the U.S., at around $30 billion per Q-BTU of savings. We 
then will also assume that the cost figure for the ROK is at an approximate midpoint between 
those two other figures, at around $20 billion per Q-BTU.29

In working with these cost figures, we should also emphasize again that, in all cases, the 
payback period for such energy efficiency investments are generally estimated to be relatively 
short - in most cases, less than three years for full payback.

Why Aren’t Energy Consumers Picking Up Free Money?
The question that is often posed in evaluating opportunities for successful energy efficiency 
investments is straightforward: if such large opportunities for cost savings exist - independent 
of environmental benefits - then why are governments, businesses, and households failing to 
embrace them? This issue is addressed frequently in the literature.30 

The first answer is that, to a considerable extent, efficiency investments have indeed been 
embraced over the past few decades. As a measure of this, Table 4.3 shows the change in 
aggregate energy efficiency from 1990-2011 for the world as a whole, for countries at different 
income levels, as well as for the U.S, China, and our five selected countries. As we see, for the 
world as a whole, energy efficiency improved by 31 percent between 1990 and 2011, an average 
annual rate of efficiency gains of 1.3 percent. The averages for low/middle- and high-income 
countries are both slightly higher than the world average. Among individual countries, China 
has achieved the largest efficiency gains, improving by 164.3 percent between 1990 and 2011. 
Among our selected countries, Germany has achieved the largest efficiency gains, improving 
by 54.2 percent between 1990 and 2011. Brazil and the ROK are the least successful performers 
here, showing little to no improvements in energy efficiency over this period. But in the case of 

28 The survey research by Alcorta et al. (2012) on individual industrial efficiency projects in developing country does provide useful details on cost 
variations on a project-by-project basis.
29 In our individual country analyses below, we will also provide more detailed evidence from individual country studies. In addition, a valuable 
resource for energy efficiency investment activity at the country-specific level is the IEA’s 2013 Energy Efficiency Market Report, on which we will also 
draw in later sectors.
30 These references include McKinsey & Company 2010a; Sakar and Singh (2010); World Bank (2006); World Energy Council (2013).
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Brazil, we do need to remember that, as of 2011, it is nevertheless operating at a high level of 
efficiency, requiring only 5.1 Q-BTUs of energy to produce $1 trillion of GDP.31 

Table 4.3: Change in energy efficiency levels, 1990–2011

Measured as GDP per dollar of energy consumption

  Change in efficiency over full 
period

Average annual change in 
efficiency

World 31.0% 1.3%

Low and middle income countries 39.4% 1.6%

High income countries 33.3% 1.4%

U.S. 42.9% 1.7%

China 164.3% 4.7%

Brazil -2.6% -0.1%

Germany 54.2% 2.1%

Indonesia 23.7% 1.0%

South Africa 12.9% 0.6%

ROK 1.9% 0.1%

Source: Authors’ calculations based on World Bank (2014), “World Bank Indicators,” Table 3.8: Energy dependency, efficiency, and carbon dioxide 
emissions.

Despite these steady and widespread gains in energy efficiency worldwide, it is nevertheless 
still the case, as we have reviewed above, that widespread opportunities for further large 
efficiency are still available. Why, then, are these equivalents of $50 bills lying on the sidewalk 
not being picked up? 

The basic problem, as widely recognized in the literature, is that the estimates of large benefits 
that are attainable through efficiency investments are based on engineering evidence, such 
as the figures we have referred to above in this chapter. However, typically, such engineering-
based evidence neglects other considerations that are significant, and can be decisive, in 
moving forward with energy efficiency investments. These other considerations include the 
following interrelated factors: 

Necessity to obtain investment financing. Even though energy efficiency investments 
have the potential to yield high returns and rapid paybacks, they still entail significant 
up-front financing commitments. If adequate financing structures are not available, the 
projects will not proceed.

Perceptions of high risk. The general engineering evidence on gains from efficiency 
investments applies to a large range of investment projects, but does not necessarily 
apply to any single project. For any given project to proceed, the decision-makers 
need to be convinced that they specifically will receive the benefits that are available 
generally. This entails investors assuming risks. The perceptions of risk are higher when 
experiences with efficiency investments are not widely known or understood.

31 See Zhang et al. (2011) for a discussion of total factor energy efficiency.
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High transaction costs. Precisely because financing structures for efficiency investments 
are not generally well-developed and perceptions of risk are higher than actual risk 
levels in most cases, the transaction costs involved in bringing an efficiency investment 
to fruition are relatively high.

Split incentives. This occurs when one entity would be responsible for making the 
energy efficiency investments but another entity pays the costs of consuming energy. 
This is most prevalent in non-owner occupied buildings, in which building owners are 
responsible for maintaining the buildings while tenants are responsible for paying for 
their own energy consumption.

Difficulties in structuring contracts. The other four factors - weak financing institutions; 
perceptions of high risks; high transaction costs; and split incentives - in turn create 
difficulties in establishing contractual terms that adequately reflect these concerns, but 
at the same time, provide adequate recognition of the large benefits that are attainable, 
as identified through engineering evidence.

These issues are highlighted, for example, in the 2008 World Bank study (Taylor et al., 2008) that 
focused on the cases of Brazil, China, India and other middle-income developing countries. This 
study notes that “the key impediments to effective energy efficiency investment through the market 
are the intertwined problems of current high transaction costs; perceived high risks driving up the 
implicit discount rates associated with projects; and difficulties in structuring workable contracts 
for preparing, financing, and implementing energy efficiency investments,” (p. 50-51). 

With respect to industrial efficiency specifically, these issues are examined in a chapter-length 
analysis “Barriers to Industrial Energy Efficiency,” in the 2011 UNIDO Industrial Development 
Report. The UNIDO researchers conclude that:

Aversion to investment seems to stem from a combination of failures in the markets for 
energy-efficient goods and services and departures from the rational behavior of orthodox 
economic theory. These forces overlap to create barriers to improving energy efficiency 
including: lack of awareness of efficiency opportunities; difficulty borrowing money 
for energy-efficiency investments; inadequate technical know-how; and disconnection 
between those responsible for investing and those operating the equipment (UNIDO, 
2011, p. 86).

The implication that follows from these observations is not that the engineering information 
regarding gains from efficiency investments is wrong, or irrelevant to assessing the viability 
of real-world projects. To the contrary, the point is rather that both public policy and private 
initiatives are needed to overcome these barriers to capturing the large-scale benefits from 
efficiency investments that the engineering research has identified.

There is already a large literature that attempts to address these obstacles to the successful 
expansion of efficiency investments in different country settings.32 We briefly review these 
issues in Chapter 6, in the context of examining industrial policies to advance the global clean 
energy investment project.

32 UNIDO (2011) provides a chapter-length analysis (pp. 100 – 124) on these policy matters as they apply to industrial energy efficiency. See also  
Spratt, Griffith-Jones and Ocampo (2013) for a good overview, including interviews with industry participants, along with the other works cited above. 
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Potential Rebound Effects
In advancing an ambitious agenda for energy efficiency in Brazil, Germany, Indonesia, South 
Africa, and the ROK, and more generally throughout the globe, it is critical to also examine 
what is termed the “rebound effect” and the related phenomenon of a “backfire” effect. The 
issue posed with the rebound effect is: if economic activities that entail the consumption of 
energy can be accomplished at lower costs due to the gains in energy efficiency, wouldn’t this 
fall in energy costs encourage, in turn, more energy-consuming activities? And to the extent 
that more energy-consuming economic activity powered specifically by fossil fuels does 
take place because of these efficiency gains, wouldn’t this reduce the benefits of efficiency 
investments for lowering CO2 emissions? It is even possible that, in some circumstances, the 
initial gains in energy efficiency would end up being lower than the subsequent increase in 
energy consumption. This outcome is what we mean by the “backfire effect.” When the backfire 
effect occurs specifically with respect to fossil fuels, the net result is that improvements in 
energy efficiency, anomalously, end up generating increases in emissions.

The possibility that rebound and backfire effects could occur was first proposed in the 
economics literature by William Stanley Jevons in his 1865 book, The Coal Question. Jevons 
wrote that the invention of a more efficient steam engine would ultimately lead to increased 
coal consumption by way of making the use of coal economically desirable for many uses. 
He claimed that overall coal consumption would increase even as the coal used for particular 
applications may decrease. Jevons wrote that “It is a confusion of ideas to suppose that the 
economical use of fuel is equivalent to diminished consumption. The very contrary is the 
truth.”33

Since Jevons’s era, further research on the rebound effect only became highly active in the 
1980s and 1990s, including the influential contributions by Khazzoom (1980), focused on 
the U.S. case, and Brookes (1990), focused on the UK. A large professional literature has 
subsequently emerged, which we briefly review below. But beyond even the findings of most of 
the recent literature, the prospects for rebound effects needs to be examined within a broader 
context of a given economy’s level of development and policy priorities. We also consider this 
factor below.

Direct and Indirect Rebound Effects
It is important initially to distinguish two broad categories of rebound effects, direct and 
indirect effects. 

Direct effects refer to a given activity, such as driving a car or heating a home. The rebound 
effect here measures how much more consumers engage in such activities due to rising energy 
efficiency in these activities, which in turn yields falling per unit energy costs. For example, how 
many more miles might people drive as a result of operating more energy-efficient automobiles, 
or how much more they may heat or cool buildings after efficiency investments bring the costs 
down.

33 This paragraph is paraphrased from Gavankar and Geyer (2010).
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Indirect effects take different forms. These include the following:

besides directly energy-consuming activities such as driving a car or heating a building. 
But the remaining goods and services - everything from education, health care, or 
consumer goods - also make use of energy. When demand for these products rises, that 
in turn will produce increased demand for energy.

equipment in their production processes.

require products that require energy inputs (e.g. supplies for building weatherization 
projects). 

accelerated overall economic growth rate would mean a higher overall level of energy 
demand.

There is no doubt that both direct and indirect rebound effects occur. But the first critical 
question is not whether they occur, but rather how large they are. A second, related, question 
is, to what extent do rebound effects vary, depending on the specific conditions in any given 
economy, as well as the economy’s relevant policy environment.

Measuring Rebound Effects
Major professional reviews of this literature include those by Greening, Greene and Difiglio 
(2000), Sorrell (2007), Sorrell, Dimitropoulos and Sommerville et al. (2009) and Gavankar and 
Geyer (2010).34 We draw on the main findings from these literature reviews in what follows. 

Direct Rebound Effects. Most research into the size of the direct rebound effect has been 
focused on the household sector in the U.S., that is, residential energy use and household 
transportation (Sorrell, Dimitropoulos and Sommerville et al., 2009). The effect is based on 
how consumers may change their behavior in response to changing prices. But there are 
several methodological issues and potential sources of bias in trying to measure the direct 
rebound effect for households.

To begin with, since direct rebound effects are tied to the idea of demand for energy services, 
the size and nature of the effect will depend on how “energy services” are defined. But such 
definitions are subject to substantial variation. For example, with the transportation sector, 
energy services are frequently defined in terms of number of miles traveled. However, 
this measure does not take into account choices about the types of vehicles driven. Would 
consumers want bigger cars if such vehicles became more efficient? A consistent measure of 
“energy services” would have to control for this factor, but does not always do so. 

34 Nadel (2012) is a less formal but still quite useful recent discussion of the topic. Gillingham et al. (2013) provides a brief updated assessment of 
what they term “a vast academic literature” on this issue. The main conclusion reached by Gillingham is fully consistent with the more lengthy survey 
studies.
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Another concern is that many studies assume that changes in demand in response to increases 
in energy efficiency are equivalent to changes in demand associated with comparable changes 
in prices. But this may not be the case. This is because changes in energy efficiency may 
not translate directly into reductions in prices if the efficiency improvements require new 
investments with additional capital costs. If the demand effect is calculated without taking 
account of such capital costs, the rebound effect is likely to be overstated.

A third important concern is being able to accurately identify causality. Most studies on the 
rebound effect assume that when energy efficiency increases, this efficiency increase is the 
driving factor causing a subsequent rise in energy demand. However, higher demand for energy 
emerging from independent factors could also cause consumers to respond by investing in 
energy efficiency - that is, the causality between an increase in energy demand and energy 
efficiency would be the reverse of the relationship that the rebound effect presupposes. 

Table 4.4 shows estimates of the direct rebound effects by category of energy services, as drawn 
from the literature reviews by Greening, Greene and Difiglio (2000) and Sorrell, Dimitropoulos, 
and Sommerville (2009). The evidence reported in these surveys is primarily drawn from U.S. 
economy-based studies, but includes evidence from other OECD economies as well.35 As the 
table shows, these estimates range widely in both studies. Nevertheless, though these two 
surveys were published nine years apart from one another, they summarize similar sets of 
conclusions as to the likely range of household rebound effects. Thus, these articles find that 
for automobiles, heating and cooling systems, the rebound effect is likely to lie in the range of 
10-30 percent relative to the total amount of energy saved. For home appliances and lighting, 
the rebound effect is lower, and may be close to zero. A zero rebound effect reflects the level 
of consumer saturation - for example, utilizing more energy-efficient clothes or dishwashing 
machines will likely have little to no impact on the demand for people to wash their clothes 
or dishes more frequently. For such activities, when demand for energy services is near its 
saturation point, efficiency gains will translate proportionally into reduced energy consumption.

Table 4.4: Estimates of direct rebound effects from two recent survey papers

  Estimated range from Greening, 
Green and Difiglio survey (2000)

Estimated likely range from Sorrell, 
Dimitropoulos and Sommerville survey 

(2009)

Personal vehicles 10–30% 10-30%

Space heating 10-30% 10-30%

Space cooling 0–50% 1–26%

Home appliances 0% < 20%

Lighting 5–12% < 20%

Sources: Adapted from Table 3 in Greening, Green and Difiglio (2000) and Table 1 in Sorrell, Dimitropoulos, and Sommerville (2009).
Note: The Sorrell et al. survey includes a category “other energy services.” The estimates for this category are used for home appliances and lighting 
in this table. The term “likely range” in describing the Sorrell et al. figures is the assessment of these authors probable range for the direct rebound 
effects, based on their literature review.

35 The precise definition of the rebound effect is the elasticity of demand for energy services with respect to energy efficiency.
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Indirect Rebound Effects. Research on the magnitude of indirect, or economy-wide, rebound 
effects are even more limited than those for direct effects. Various methodologies have been 
utilized in the literature, including consumer expenditure surveys, macro-econometric models, 
and theoretical general equilibrium models. They have produced a wide range of estimates 
of the indirect effect, but the results are highly sensitive to the methodology used and the 
underlying assumptions within the method used. Sorrell concludes regarding these studies 
that “while a number of methodological approaches are available to estimate these effects, 
the limited number of studies to date provides an insufficient basis to draw any general 
conclusions,” (2007, p. 57).

Broader Context for Considering Rebound Effects
As these survey papers all recognize, the size of any rebound effects will depend on the level of 
development of an economy, the purposes for which energy is being consumed in the economy, 
and the economic policies being pursued at a given time.

For example, in the historical period in Britain described by Jevons, the use of steam engines 
was growing rapidly as a crucial component of the 19th century industrial revolution. The very 
purpose of producing more efficient steam engines at that time was to facilitate an accelerated 
rate of industrialization, powered by coal-powered machinery. The Jevons case has relevant 
parallels with developing countries today, including especially Indonesia and South Africa 
among our five selected countries. These are expanding economies in which per capita energy 
consumption is rising. In these cases, we would expect that increased energy efficiency, 
that produces lower costs for consuming a unit of energy, will encourage, for example, more 
intensive use of automobile travel or household appliances. Conditions will be different with 
economies that are already at high GDP levels, such as the U.S. or Germany. In these cases, the 
per-capita consumption of energy-intensive activities is far closer to a saturation point than is 
true in Indonesia or South Africa. 

But the more critical issue here is the historical and policy environment in which efficiency 
investments are occurring. If we consider the case of Britain in the Jevons era, the purpose of 
improving energy efficiency was precisely to support the greater use of coal-fired power. But in 
all regions of the global economy in the current era, the overarching purpose of raising energy 
efficiency is quite distinct. The proximate purpose is to maintain or enhance the benefits of 
energy-driven machines, while lowering the need for energy inputs to power these machines. 
The fundamental purpose is, quite simply, to play a major role in fighting climate change. 

Thus, for all countries at all levels of development, it is critical that the effort to increase 
energy efficiency would be accompanied by complementary policies that, in combination, can 
succeed in dramatically reducing CO2 emissions. As one major obvious set of complementary 
measures, policies to promote affordable clean renewable energy investments would allow for 
higher levels of energy consumption - including through some limited rebound effects - without 
leading to increases in CO2 emissions. Another major complementary policy to promoting 
energy efficiency investments would be to set a price on carbon emissions through either a 
carbon cap or carbon tax. As such, a policy environment that complements energy efficiency 
investments with strong support for renewable energy and putting a price on carbon emissions 
will purposefully create a much smaller rebound effect than a situation - such as that in Jevons’ 
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England - when the drive for energy efficiency was undergirding early industrialization, free of 
environmental constraints. 

The evidence we presented in Table 1.3 on energy intensity levels for different countries is also 
pertinent here. As we saw there, Germany presently operates at an efficiency level roughly 50 
percent higher than the U.S., with the respective intensity ratios at 4.1 versus 6.2 Q-BTUs per $1 
trillion in GDP. Brazil is at more than twice the efficiency level of the ROK, and nearly three times 
that of South Africa (5.1 versus 9.8 and 14.6 Q-BTUs per $1 trillion in GDP respectively). There 
is no evidence that large rebound effects have been emerging as a result of the high efficiency 
standards achieved by Germany and Brazil relative to those of the U.S., the ROK or South 
Africa. Equivalently, there should be no presumption that rebound effects would be necessarily 
stronger in the U.S., the ROK, or South Africa once they began to significantly improve their 
efficiency performances. The basic variable here will be the overall policy environment. 
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CHAPTER 5: DOMESTIC 
PRODUCTIVE CAPACITY, IMPORTS, 
AND INDUSTRIAL POLICY FOR 
EMPLOYMENT GENERATION
 
The project of building a global clean energy economy will require highly ambitious policy 
initiatives in all regions, including advanced, middle-income, and developing economies. For 
the global economy to reduce CO2 emissions from 33,600 to 20,000 mmt within 20 years - i.e. 
an absolute decline in emissions of 40 percent relative to 2010 levels, even while global GDP 
expands at a reasonable rate - will require countries to invest heavily in both clean renewable 
energy sources and energy efficiency. As we have discussed briefly at the outset and will 
examine further below, the necessary level of investment will need to be about 1.5 percent of 
GDP in most countries, including Brazil, Germany, Indonesia, South Africa and the ROK. How 
exactly each of these major economies allocates this level of investment expenditures will 
depend on the specific resources and capacities they have available, including the particulars 
of their climate; their existing energy resources and supply systems; and their capacity to 
mobilize physical and financial resources. We discuss some of these specific country-by-
country considerations later in this report. 

Our primary focus here is to examine how much any country, and our five selected countries 
in particular, is likely to expand its investments in clean energy sectors on the basis of its own 
domestic resources. To the extent that a country runs up against domestic productive capacity 
constraints while expanding its investments in energy efficiency and clean renewable energy 
sources, it then faces two alternatives: either scale back the clean energy investment project 
or rely increasingly on imports to maintain the ambitious investment agenda. We assume 
for purposes of this discussion that countries will want to follow through in advancing the  
ambitious clean energy investment project. We therefore need to consider the extent to which 
the impact of these clean energy investment projects will vary, depending on whether a country 
can rely on its domestic resources at least in its existing proportions of productive inputs, or 
whether it will need to rely on imports to supply an increasing share of inputs in building a 
clean energy economy.

Of course, whether a country needs to increase its reliance on imports as it expands its 
investments in clean energy will in turn affect the country’s trade and current account balances. 
We discuss this issue of trade balances below, but do not provide a formal empirical analysis 
on this question. Our main focus, rather, is on employment affects. That is, within the context 
of a clean energy investment project at the level of about 1.5 percent of a country’s GDP, what 
is the extent to which changes in the domestic content of the country’s output in the relevant 
sectors will affect the overall job-generating prospects of its clean energy investments? This 
includes the sectors directly engaged in energy production as well as suppliers to those energy-
producing sectors.
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Specifically, we consider two alternative scenarios. In the first scenario, we allow that a country 
is able to maintain its existing level of domestic production in the clean energy sectors as it 
expands its clean energy activities by 1.5 percent of GDP. In the second scenario, we assume that 
the economy cannot expand production fast enough to maintain the current level of domestic 
content in its clean energy activities, but rather needs to raise its import share in the relevant 
sectors. As we discuss further below, we assume import content will need to rise in sectors in 
which imports already constitute more than 10 percent of total inputs. For those activities, we 
assume that import content rises by 20 percent over existing levels. The estimates we generate 
here will enable us to assess in Chapter 6 the extent to which overall employment creation from 
a clean energy investment project is likely to be affected by whether a country can expand its 
domestic productive capacities in proportion to its rising level of clean energy investments.

In addition to developing and reporting on the effects of these two scenarios regarding domestic 
content, we consider here two factors that will significantly influence the extent to which a 
country will be capable of expanding its supply of domestic inputs. These two factors are: 1) 
the role that can be played by a country’s industrial policies to expand domestic productive 
capacity in the relevant sectors of the economy; and 2) the extent to which countries currently 
rely on fossil fuels to meet their energy consumption needs. We begin with our review on 
industrial policies, then present our quantitative analysis on domestic content ratios. We 
conclude by assessing the role of fossil fuel production for exports and consumption in our 
selected countries. 

Industrial Policies for Clean Energy Transformations 
Whether or not countries are able to advance a major clean energy investment agenda without 
significantly altering the economy’s demand for imports will depend on the extent to which 
they can implement industrial policies capable of expanding their productive capacity in the 
economy’s relevant sectors. It will be useful here to briefly examine some of the main issues 
and country-level experiences on this question. 

What is Industrial Policy?

The term “industrial policy” is commonly used to refer to two distinct types of government 
interventions. In one usage, industrial policy refers to the regulation of competition, e.g. 
policies on monopolies, mergers and market restrictive practices. In the other usage, industrial 
policy has a broader meaning, associated closely with the concept of a “developmental state” 
- that is, a state that plays an active role in building effective institutions and frameworks that 
can successfully guide the development trajectory of a country’s economy.36 

In this discussion, we are focused on the second meaning of industrial policy - with industrial 
policies as one important element of a developmental state. But with industrial policy as a tool 
of a developmental state, a range of institutions, policy instruments and targets are put into play, 
which also need to be explicitly recognized. These could include R&D subsidies for government, 
university or private business research centers. It could also include preferential tax treatment, 

36 Pitelis (2001) provides a succinct survey these alternative meanings to the term “industrial policy.” See also Pollin (2012) for an overview of 
industrial policies, especially as applied in the U.S. and with respect to clean energy investments.
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credit opportunities, or direct subsidies for specific sectors of the economy, including of course, 
renewable energy and energy efficiency investments. Some types of business regulations could 
also be seen as industrial policy interventions. Raising automobile efficiency standards is an 
example of a regulation that will be crucial for building a clean energy economy, especially in 
countries, such as the U.S., where public transportation systems are weak. 

Rodrik captures well the meaning of the term “industrial policy” in this broader sense when 
he writes, “I will use the term to denote policies that stimulate specific economic activities 
and promote structural change. As such, industrial policy is not about industry per se. 
Policies targeted at non-traditional agriculture or services qualify as much as incentives on 
manufacturing,” (2009, p. 3). Rodrik further notes that a main purpose of industrial policies is 
not the application of any specific policy measures but rather about building institutions that 
foster effective interrelationships between the public and private sectors to achieve important 
policy goals. He writes:

The task of industrial policy is as much about eliciting information from the private sector on 
significant externalities and their remedies as it is about implementing appropriate policies. 
The right model for industrial policy is not that of an autonomous government applying 
Pigovian taxes or subsidies, but of strategic collaboration between the private sector and the 
government with the aim of uncovering where the most significant obstacles to restructuring 
lie and what type of interventions are most likely to remove them. Correspondingly, the 
analysis needs to focus not on the policy outcomes - which are inherently unknowable ex 
ante - but on getting the policy process right (Rodrik, 2004, p. 3).

Advancing Effective Industrial Policies 

From a free market perspective, there are virtually no viable arguments on behalf of industrial 
policies. The central point is straightforward: governments should not be in the business of 
subsidizing one technology, industry, or location, much less one business firm over others. This 
amounts to governments “picking winners,” which they are incapable of accomplishing effectively. 
On top of this, industrial policies of this sort force taxpayers to finance government policymakers’ 
inept efforts at picking winners. In fact, the job of picking winners in the economy is more effective 
when private businesses compete in a free market to satisfy the demands of consumers. Some 
of the businesses’ decisions will be good, and others will be bad. The point is that this will be 
sorted out through competitive markets, at no expense to taxpayers. More generally, free market 
proponents hold that economic outcomes established through market competition, in the absence 
of government interference, will always produce the most efficient allocation of an economy’s 
productive resources and the highest level of overall economic welfare.

However, these free market perspectives do not accord with the actual trajectories of virtually 
all countries, in all historical epochs, that have experienced successful industrial development. 
As one critical case in point, we can see this clearly in the specific case of technological 
development in the U.S. As Ruttan (e.g. 2006) has made clear, nearly all major technical 
innovations within the U.S. economy have entailed huge expenses over long gestation periods. 
Individual business firms are unable to sustain expenses at this level on their own. This is 
especially the case because there is never a guarantee that those investors who assumed the 
initial burden of long time horizon, high-risk ventures will end up as the prime beneficiaries 
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from such endeavors. Ruttan summarized the matter as follows: 

Can the private sector be relied on as a source of major new general purpose technologies? 
The quick response is that it cannot. When new technologies are radically different from 
existing technologies and the gains from advances in technology are so diffuse that they 
are difficult to capture by the firm conducting the research, private firms have only weak 
incentives to invest in scientific research or technology development (Ruttan, 2006, p. 
177; emphasis in original).

Of course, we do not expect that all countries will need or want to attempt to advance the 
frontier in the development of clean energy technologies. But a second consideration as regards 
industrial policies is more broadly relevant for all countries pursuing a clean energy investment 
agenda. This is the project of adapting new technologies within a country’s production processes 
and industrial systems, or what Mazzucato (2014) terms “innovation-led growth.” Mazzucato 
explains how innovation-led growth is always the result of effective interactions between the private 
sector and what she terms “the entrepreneurial state.” She writes:

In seeking to promote innovation-led growth, it is fundamental to understand the important 
roles that both the public and private sector can play. This requires not only understanding 
the importance of the innovation ‘ecosystem’ but especially what it is that each actor brings 
to that system. The assumption that the public sector can at best incentivize private sector-
led innovation (through subsidies, tax reductions, carbon pricing, technical standards and 
so on)…fails to account for the many examples in which the leading entrepreneurial force 
came from the State rather than from the private sector….To understand the fundamental 
role of the State in taking on the risks present in modern capitalism, it is important to 
recognize the ‘collective’ character of innovation. Different types of firms (large and small), 
different types of finance and different types of State policies, institutions and departments 
interact sometimes in unpredictable ways - but surely in ways that can help shape to meet 
the desired ends (Mazzucato, 2013, p. 193).

In developing her concepts of the entrepreneurial state and innovation-led growth, Mazzucato 
concentrates in detail on how such policies can be advanced most effectively in promoting the 
“green industrial revolution.” She argues that:

Getting to the much-needed green revolution presents a serious problem: given the risk 
aversion of businesses, governments need to sustain funding for the search for radical 
ideas that push a green industrial revolution along. Governments have a leading role to 
play in supporting the development of clean technologies past their prototypical states 
through to their commercial viability. Reaching technological ‘maturing’ requires more 
support directed to prepare, organize, and stabilize a healthy ‘market,’ where investment 
is reasonably low risk and profits can be made (Mazzucato, 2013, p. 136). 

Of course, the specific details of industrial policies need to designed, targeted, and implemented 
well. There are many cases when industrial policies have been executed successfully. As has 
been carefully documented, among others, in the classic works by Johnson (1982), Amsden 
(1989, 2001), Wade (1990), and Chang (1994), the dramatic rise of Japan, then the ROK, 
and the other “Asian Tiger” economies - Taiwan Province of China, Thailand, Singapore, and 
Malaysia - were built on a foundation of successful industrial policies, especially the ability 



103

to build successful export industries through adapting existing technologies in manufacturing 
production. The Chinese experience follows roughly in this same framework, while also 
incorporating uniquely Chinese features.37 At the same time, we do need to recognize that even 
within the East Asian model, there have also been serious failures. For example, in the 1950s, 
the Japanese government famously instructed Honda to stick to manufacturing motorcycles, 
refusing to support Honda’s plan to begin producing automobiles. The Japanese also tried and 
failed to build a commercial airline in the 1970s. 

Considering more recent and directly relevant examples, Mazzucato (2013) documents both 
successes and failures with green industrial policies - in which she observes successes to 
date having mainly occurred in Western Europe and China, while, in her view, the U.S. and 
the United Kingdom have been less successful. The primary distinction between more or less 
successful experiences has been the willingness of governments to commit major resources 
over the long-term, as opposed to the more sporadic levels of commitments coming from the 
U.S. and the United Kingdom.

While Mazzucato’s research on green industrial polices focuses primarily on countries operating 
at or near the technological frontier, UNIDO’s 2013 Industrial Development Report considers green 
manufacturing industrial policies for all regions in the globe. The UNIDO study thus provides 
perspectives that are especially useful for less developed economies aiming to successfully 
advance a clean energy transition. The UNIDO study summarizes its analysis as follows:

The paradigm of continually increasing demand of finite resources must be shifted 
as the past abundance of relatively inexpensive natural resources, such as energy…
is coming to an end. Approaches toward this “green structural change” will include 
adapting industries more technologically advanced and with higher labour and capital 
productivity. The key thus lies in decoupling natural resources use and environmental 
impacts from economic activity (UNIDO, 2013, p. 81). 

In all cases, one critical feature of a successful industrial policy is the establishment of viable 
development banks and, more broadly, of credit allocation systems that can support the 
investments in new areas. This point becomes clear in Amsden’s illuminating discussion of 
development banking in The Rise of “The Rest” (2001). Amsden begins her discussion of this 
topic with the observation that:

The state’s agent for financing investment was the development bank. From the 
viewpoint of long-term capital supply for public and private investment, development 
banks throughout “the rest” were of overwhelming importance (Amsden, 2010, p. 127, 
emphasis in original).

Amsden goes on to document this in the cases of Mexico, Chile, as well as in three of our 
five selected countries - i.e. the ROK, Brazil and Indonesia. But she also points out that “the 
government’s role in long-term credit allocation was substantial in parts of ‘the rest’ where 
development banks were of relatively minor importance,” (p. 129). These cases include 
Malaysia, Thailand, Taiwan Province of China and Turkey. She writes of these cases, “where 

37 The classic works on industrial policies and development in Japan, the ROK and the other Asian tigers includes Johnson (1982), Amsden (1989, 
2001), Wade (1989) and Chang (2002), On China, an excellent relatively recent study is Li (2002). Valuable recent studies include Natsuda and Thoburn 
(2013) on the development of the auto industry in Thailand and Ado (2013) on adoption of local content rules as applied to resource-rich developing 
countries. UNIDO (2013) examines the issue of industrial policies specifically in the area of green manufacturing sectors in all regions of the globe.
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necessary, the whole banking sector in these countries was mobilized to steer long-term credit 
to targeted industries, acting as a surrogate development bank.”

The central importance of financial policies to support clean energy investments in developing 
countries has been explored in detail in several recent studies. One important example is 
the 2008 World Bank book Financing Energy Efficiency: Lessons from Brazil, China, India and 
Beyond (Taylor et al., 2008). This book includes 10 case studies of alternative energy efficiency 
financing structures. These include:

in 2003;

subsidized loans for both renewable and energy efficiency investments; and

utility net revenues are utilized for public-benefit investments. Initially, renewables 
received 75 percent of these funds, but as of 2010, the funds were divided evenly 
between renewables and efficiency investments. 

A more recent study by Spratt, Griffith-Jones and Ocampo (2013), Mobilizing Investment for 
Inclusive Green Growth in Low-Income Countries, examines the conditions under which 
the necessary large-scale investments in renewable energy and energy efficiency can be 
successfully advanced in low-income countries. The authors are particularly concerned that 
such investments be “inclusive,” in the sense that the benefits of these investments be shared 
at least equally by the society’s least advantaged groups. This would include expanding access 
to electricity, and providing clean energy, for electricity and other needs, at affordable prices. 
Two of the major findings of this study are as follows:

1. The importance of looking at “how best to structure investment vehicles that combine 
the detailed local knowledge required to overcome information asymmetries, with the 
scale required to minimize transaction costs and achieve diversification benefits;” and

2. The need to reduce the expectations of high returns on these investments from 
institutional investors. The authors write: “Achieving growth that is both green and 
inclusive is inherently difficult. Doing so using private investment, which requires very 
high returns may be impossible. Unless investors can be persuaded to adopt more 
reasonable expectations, alternative sources of finance may been needed if the goal of 
generating inclusive green growth in low-income countries is to be achieved” (p. 6).

It is also important to consider here the case of Germany, the most successful large advanced 
economy in the world in terms achieving high energy efficiency standards. It is clear that 
government development financing policies have been critical to Germany’s success to date 
in implementing high efficiency standards. The overview of the IEA’s 2013 Energy Efficiency 
Market Report focuses precisely on this point, as follows:

Germany is a world leader in energy efficiency. Germanys’ state-owned development 
bank, KfW, plays a crucial role by providing loans and subsidies for investment in energy 
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efficiency measures in buildings and industry, which have leveraged significant private 
funds (IEA, 2013c, p. 149).

In Chapter 9, we discuss in more detail Germany’s overall policy approach to advancing both 
energy efficiency and renewable energy investments.

Labor Market Issues within Industrial Policies
As we review in depth in Chapter  7, the demand for labor that will be generated through expanding 
clean energy investments will be widely disbursed in each of our five selected countries. It is 
important to recognize that the majority of jobs created by clean energy investments will be 
in the same areas of employment in which people already work. For example, constructing 
wind farms creates jobs for sheet metal workers, machinists and truck drivers, among others. 
Increasing the energy efficiency of buildings through retrofitting relies, among others, on 
roofers, insulators, and building inspectors. Expanding public transportation systems employs 
civil engineers, electricians, and dispatchers. Increasing demand for bioenergy will mean a 
significant increase in employment in standard agricultural activities. With respect to these 
types of employment opportunities within a national clean energy investment project, it will 
not be necessary for governments to introduce a distinct new set of job training programs that 
differ significantly from those that most countries already practice.

As we will also review in Chapter 7, the general level of educational attainment for workers in 
the clean energy sectors is not, for the most part, significantly different than those for workers 
presently employed in the oil, coal and natural gas sectors. Thus, as these fossil fuel activities 
contract, this will create an increased supply of workers available to operate within the clean 
energy sectors with appropriate levels of general educational credentials.

At the same time, some of these new employment activities will entail new activities and skills. 
For example, installing solar panels on roofs and wiring these panels so they supply electricity 
are distinct tasks relative to the jobs that are traditionally performed by either roofers or 
electricians. Similarly, refining agricultural wastes into biofuels is different than refining 
corn into ethanol or, for that matter, refining petroleum into gasoline. Countries advancing 
clean energy investment projects will need to make provisions for these and similar areas 
that demand new types of training and skill acquisition. The major 2008 global survey study 
Green Jobs commissioned by the United Nations Environmental Program and others (Renner, 
Sweeney and Kubit, 2008) addresses this issue of skills gaps and the needs for expanded 
training programs in various areas as follows:

A transition to a green economy will create demand for workers, many of them in 
skilled trades or professions, and filling these positions will require adequate training 
programs. At the cutting edge of technological development for wind turbine or solar PV 
design, for instance, specialization has progressed to the point where universities need 
to consider offering entirely new study fields and majors. Several countries have reported 
that a “skills gap” already exists between available workers and the needs of green 
industries. A 2007 survey of Germany’s renewable industry concludes that companies 
in this field are suffering from a shortage of qualified employees, and especially those 
needed in knowledge-intensive positions. The Confederation of British Industry has 
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expressed concern that sectors going green are struggling to find technical specialists, 
designers, engineers, and electricians. In the United States, the National Renewable 
Energy Laboratory has identified a shortage of skills and training as a leading barrier 
to renewable energy and energy-efficiency growth. In addition, Australia, Brazil, and 
China also report shortages of skilled workers. To remedy such shortages requires not 
only adaptations in training new workers, but also retraining efforts for those workers 
who transition from older, polluting industries to new ones. Along with the skills gap 
can be placed the “management challenge,” which will consist in the development of 
new perspectives, awareness and managerial capacities. Managers must be willing and 
able to learn new skills, and to make use of the skills their subordinates have obtained 
(Renner, Sweeney and Kubit, 2008, pp. 25-26).

Another major and more detailed study on skill requirements per se generated by clean energy 
investments is a 2011 publication by the International Labour Office, Skills for Green Jobs: A 
Global View (Strietska-Ilina et al., 2011).38 The study also examines the skills issues tied to other 
green economy activities, such as afforestation, reforestation, waste management, and water 
management. This study surveys skill requirements tied to specific green economy occupations 
in 21 countries, including all five of our selected countries.39 This study is especially useful in 
that it both identifies specific skills gaps as well as describes a range of formal training and 
other skill-acquisition measures for closing these gaps. Critically, authors of the study are clear 
in their assessment that most clean energy and other green-economy occupations will require 
updating skills as opposed to training workers for entirely new occupations. For example, the 
authors observe that:

The number of existing occupations that will change and update their skills content by 
far exceeds the number of new occupations that will emerge and will affect more jobs 
than the latter. This finding corresponds to the results of other studies. The greening 
of established occupations implies incremental changes in qualifications. New skills 
are needed because specific competencies are currently lacking, some existing skills 
relating to job tasks that become obsolete cease to be used, some tasks require global or 
interdisciplinary approaches, and sustainable development constraints are increasingly 
taken into account. This may lead to the diversification of existing occupations (for 
example, in management, with increased environmental management responsibilities) 
or to increased specialization of occupations (Strietska-Ilina et al., 2011, p. 100).

Given the magnitude of the clean energy investment project that needs to be undertaken 
in most countries, including Brazil, Germany, Indonesia, South Africa, and the ROK, it is 
inevitable that skill bottlenecks will emerge at various points in the transition path. Still, these 
bottlenecks will be less severe than they might be otherwise, given that, as we have discussed: 
1) most jobs and skill requirements in the clean energy economy are not significantly different 
than those already required of most people currently working in other sectors; and 2) the 
general educational attainment levels for most jobs within the clean energy sectors will be 
roughly comparable to those within the fossil fuel sectors that will be facing retrenchments. 
This then produces an increase in the labor supply that can move into the clean energy sectors. 
In addition, as we will discuss in detail later in this chapter, countries facing skill bottlenecks in 
38 A companion study from the ILO is the 2013 report Sustainable Development, Decent Work and Green Jobs.
39 The other 16 countries in the ILO survey are Australia, Bangladesh, China, Costa Rica, Denmark, Egypt, Estonia, France, India, Mali, Philippines, 
Spain, Thailand, Uganda, the United Kingdom and the U.S. Two studies that focus on the details of clean energy employment issues for the U.S. case 
are Pollin and Wicks-Lim (2008) and Pollin, Garrett-Peltier and Wicks-Lim (2009).
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transitioning to a clean energy economy can increase their demand for imports in specific areas 
to at least partly cover gaps within their domestic workforce resources. 

At the same time, skill gaps and bottlenecks will continue to emerge in building clean energy 
economies. This conclusion emerges clearly from both the 2008 UNEP and the 2011 ILO studies. 
We do anticipate such obstacles in projecting the 20-year clean energy investment project for 
Brazil, Germany, Indonesia, South Africa and the ROK that we describe in Chapters 8-12. Thus, 
in the country-specific modeling exercises we present in Chapters 8-12, the time frame we 
develop is a 20-year clean-energy investment period. However, we assume no progress in the 
first three years of the 20-year period in expanding capacity in energy efficiency and renewable 
energy capacity. We assume a significant feature of the initial three years of startup activity 
will entail policymakers and businesses recognizing where skill shortages exist and making 
adjustments in business operations and training programs to address these skill shortages. 

In addition to these issues of skill shortages, there is the equally critical workforce issue of 
providing adequate transitional support for communities and workers that are presently 
dependent on the fossil fuel industries as their source of livelihoods. These workers and 
communities obviously face retrenchments over time as clean energy sources increasingly 
substitute for fossil fuels. The 2008 UNEP issue addresses this matter, presenting the concept 
of a “Fair and Just Transition,” which they describe as follows:

The shift to a low carbon and sustainable society must be as equitable as possible. A 
“Just Transition” framework is being assembled as a result of the work of the work of 
the trade unions, the ILO, national and local governments, and sustainability-conscious 
business and community-based organizations. The framework is built around the idea 
that the coming transition will have a huge effect on workers and communities. Many 
will benefit but others may face hardships as certain industries and occupations decline. 
From the point of view of social solidarity, and in order to mobilize the political and 
workplace-based support for the changes that are needed, it is imperative that policies 
be put in place to ensure that those who are likely to be negatively affected are protected 
through income support, retraining opportunities, relocation assistance and the like 
(Renner, Sweeney and Kubit, 2008, p. 27).

The UNEP study acknowledges that the Just Transition approach is not yet adequately developed 
in any country.40 Pollin et al. (2014) sketch an approach for the U.S. clean energy transition, 
building from the concept developed by the late U.S. labor and environmental leader Tony 
Mazzocchi of a “superfund for workers” who will face hardships due to necessary environmental 
transitions.41 They estimate that a decent level of support for the affected fossil fuel workers 
within the U.S. context would be in the range of $40,000 per year for two years to cover wage 
subsidies, health insurance, counseling and retraining, relocation and job search costs. 

This “superfund for workers” approach is consistent with the broader concept of “flexicurity” 
for workers described by UNEP, which entails a shift from the notion of job security to one of 

40 Renner, Sweeney and Kubit et al., (2008) et al observe, for example that “examples of Just Transition are still few and far between,” (2008, p. 27).
41 Mazzocchi explained his idea as early as 1993 as follows, “Paying people to make the transition from one kind of economy - from one kind of job - to 
another is not welfare. Those who work with toxic materials on a daily basis…in order to provide the world with the energy and the materials it needs 
deserve a helping hand to make a new start in life. …There is a Superfund for dirt. There ought to be one for workers,” (Mazzocchi ,1993, p.41). Indeed, 
as described by Leopold (2007) the concept of “just transition” itself came from Mazzocchi, as a revised version of the “superfund for workers” theme 
(Leopold, 2007, p. 417).
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employment security. As described in the UNEP Green Jobs study, the core elements of the 
flexicurity model are:

change, unemployment spells, reintegration and transition to new jobs;

and employability of all workers, and to enable firms to keep up productivity levels; and 

labor market mobility. (Renner, Sweeney and Kubit, 2008, p. 291).

Again, the UNEP authors recognize that flexicurity-based labor market policies are functioning 
to date in only a few advanced European economies. What is nevertheless clear is the need 
to develop something resembling this policy framework in order for clean energy transitions 
to advance successfully - i.e. with the least possible level of opposition - in all countries and 
regions of the globe.

The Role for Alternative Ownership Forms 
This last issue raised by Spratt, Griffith-Jones and Ocampo (2013) as to the difficulties of meeting 
the high profit requirements of private-sector clean energy investors raises the question: to 
what degree might alternative ownership forms play a constructive role in advancing the clean 
energy investment agenda? 

In fact, the energy sector, on a worldwide scale, has long operated under a variety of ownership 
structures, including public/municipal ownership, and various forms of private cooperative 
ownership in addition to private corporate entities. The alternative ownership forms operate in 
all areas of the energy industry, including with both the conventional fossil fuel energy sources 
and within the renewable sectors. The European industry, in particular, operates with a high 
proportion of cooperative ownership forms, and the relative performance of these non-corporate 
business enterprises has generally been quite favorable relative to the traditional corporate 
firms. Two areas where we can observe this clearly are with research and development across 
the electricity sector and in the emergence of various sorts of community-based wind farms.

Research and Development in Electricity. Of course, the project of building a clean energy economy 
will entail large-scale commitments for R&D, and innovative approaches to commercialization of 
new technologies. With this in mind, the 2010 study by Sterlacchini is significant for examining 
the relationship between spending on R&D in the advanced industrialized economies the field 
of energy/electricity between from 1990 to 2004 and changes in the predominant ownership 
structures in the industry. In particular, Sterlacchini finds that

Within the most developed areas of the world, R&D investment in the field of energy/
electricity has declined dramatically over the last decades. Although even public research 
has been reduced, the key area of concern rests on the behavior of the electricity supply 
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industry. Investment in energy R&D by US utilities fell by 72 percent between 1990 and 
2004. Over the same period, the electric companies of the EU reduced R&D expenditures 
by 62 percent (Sterlacchini, 2010, p. 2).

Further, Sterlacchini concludes that this drastic decline in R&D spending resulted primarily 
from the widespread movement to privatize the electricity market, beginning in the 1990s. 
According to Sterlacchini, privatization in electricity has “increased competitive pressures 
to cut costs and those concerned with R&D have been particularly vulnerable. In particular, 
electric utilities have abandoned the long-term research projects concerned with fundamental 
and general-purpose technologies,” (p. 2).

Community-owned wind farms. Bolinger (2001, 2005) has conducted comparative studies of 
“community ownership forms” in the wind energy industry specifically, in both Europe and the 
U.S. Bolinger defines “community wind” as “locally owned, utility-scale wind development that is 
interconnected to the grid on either the customer or utility side of the meter.”42 Bolinger reports 
that, at the end of the year 2000, roughly 80 percent of all wind power capacity in four northern 
European countries - Germany, Denmark, Sweden and the United Kingdom - could be considered 
community-owned. Moreover, because these four countries accounted for roughly half of the 
world’s installed wind power capacity at that time, this means that community-owned projects 
accounted for roughly 40 percent of world wind power development at the end of 2000.43 

Bolinger describes four important advantages to community ownership structures in the wind 
industry relative to traditional corporate ownership forms. These include:

1. Lower costs of capital. Community-based wind projects in Europe have been able to rely 
on a wide array of relatively smaller-scale local investors. In the U.S., community wind 
projects could have access to the capital market for “socially responsible” investing, 
which Bolinger estimates as being in the range of $2 trillion overall. Moreover, a study by 
Wiser and Pickle (1997) estimated that the costs of wind power could fall by 22 percent if 
the investors’ required rate of return could fall from, say, 18 to 12 percent.

2. Increased public support. Direct community ownership of wind projects has raised 
public awareness in Europe and increased the number of local people who have direct 
financial stakes in such projects. Among other things, this has reduced community 
resistance to projects at the planning and permitting stages.44

3. Potential for distributed generation benefits. The relatively smaller size of community-
owned projects creates the potential to site projects closer to where the turbines are 
sited and the energy is generated. This creates the possibility for significant reductions 
in the costs of transmitting energy over the grid. In Europe, clusters of wind turbines are 

42 He further defines “locally owned” to mean that one or more members of the local community have a direct financial stake in the project, and that 
“utility scale” refers to new projects consisting of one or more turbines of 600 kW or greater in nameplate capacity, or older projects in excess of 50 kW.
43 The level of government support for community-owned wind and solar farms has, in fact, risen more recently in the United Kingdom. In January 2014, 
the Energy and Climate Change Secretary Ed Davey announced the government’s aim to require large onshore renewable energy developers to offer “a 
meaningful share” of the ownership in the projects in their communities (Shankleman, 2014). In the U.S. by contrast, the development of community 
ownership in the wind industry has been negligible to date. Virtually all wind-energy projects have been large-scale corporate owned wind farms. At 
the same time, there is some evidence that community wind projects are advancing, especially in Minnesota, Wisconsin, Iowa and Massachusetts, 
where both the physical and legal environments are relatively supportive (see also Finzel and Kildegaard, 2009). 
44 This is not to suggest that community-owned projects are free of controversy. One important issue that is frequently raised in Denmark, for example, 
concerns the noise levels created by some wind turbine systems the noise created by wind turbines (see, e.g. Johansson, 2013). These complaints 
have, in turn, generated efforts to control these noise levels through various methods (e.g. Cummings, 2102).
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often connected into the grid without requiring any additional grid reinforcements. Such 
benefits are more likely to be available when community wind projects are established in 
more densely populated areas. For example, in Copenhagen as of 2005, two community-
owned wind projects were operating within the city limits. 

4. Electricity price stability. Community-owned wind projects operate at arms-length 
from the two forces that are most responsible for creating instability in energy prices 
generally and electricity prices specifically - that is, the global market for oil and the 
speculative commodities futures market for energy, including electricity. Because, by 
their basic ownership structure, community-based wind projects will continue to operate 
independent of the global price of oil as well as the commodities futures markets, this 
should create long-term conditions supportive of electricity price stability.

Against these built-in advantages of community-based wind projects, Bolinger notes 
disadvantages as well. The most significant is the greater difficulty with such projects in 
capturing economies of scale. Community-owned projects will tend to be smaller in scale than 
corporate-owned wind farms, though they do not necessarily have to operate on a small scale. 
This is precisely because they are tied to specific communities and local financing sources. 
Large-scale corporate wind farms are thus better equipped to spread the fixed costs of any 
given project, including permitting and legal costs and the full range of construction and 
transmission costs.

As Bolinger emphasizes, there will be conditions under which the benefits of economies of scale 
outweigh those of community-owned projects. But the reverse will also certainly be the case 
in many instances. The experiences in Germany, Denmark, Sweden, and the United Kingdom 
make clear that community-based ownership structures can succeed in the wind industry. It is 
also true that the incentive structure and regulatory environment in Europe are more supportive 
of a community-based model. The most important factor here is the prevalence of “feed-in” 
laws in Europe. The feed-in laws guarantee access to the grid for small-scale producers and 
also establish a guaranteed price at which utilities must purchase electricity from wind and 
other renewable energy producers. 

100 Percent Community-Owned Renewable Supply in Rural Germany

In addition to the broad perspective on community-owned wind farms provided by Bolinger 
(2001 and 2005), a 2013 article by Li et al. describes an important case study of Freimant, a 
rural community of 4,200 residents in Germany’s Black Forest region. As of 2008, Freimant had 
achieved 100 percent electric power supply through community-owned renewable sources. 
Wind energy is Freimant’s main power source, but they also generate smaller amounts of 
energy from solar PV, biogas, and small-scale hydro plants.

On the basis of having surveyed the residents of Freimant, Li et al. emphasize that the project 
would not have advanced successfully on the basis of the residents environmental goals alone, 
even while such environmental concerns were foremost for policy-making bodies outside the 
community who supported the project. Li et al. summarize the sources of the success of the 
project as follows:
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The residents’ motivations for undertaking the project were strongly connected to 
community-interest as opposed to awareness of climate change, which is generally 
far more distantly connected with their daily life. The residents and local government 
were more concerned about their own benefit from the project and its influences on 
their local surroundings. Residents expect a financial benefit from community energy 
projects; a self-ownership of renewable energy plants increases motivation and local 
acceptance….Community energy projects contributing to climate protection by reducing 
the community’s CO2 emissions. They [also] create new income streams, have positive 
effects on the community’s image and are a way to strengthen rural areas by establishing 
a regional value added chain…Especially for rural areas, energy projects are a chance 
to foster regional development, to secure agricultural holdings and to conserve cultural 
landscapes that have been shaped by agriculture over centuries. This case study has 
shown that there are people willing to act and that it is possible to achieve a 100% power 
supply from renewable sources (Li et al., 2013, p. 227).

Overall, what emerges from this brief survey on industrial policies is that such policies, in some 
combination of appropriate specific initiatives, will be necessary in all cases for advancing a 
successful large-scale clean energy investment project - i.e. a project on the order of 1.5 percent 
of each country’s GDP. It is well beyond the scope of this report to attempt to argue what will 
be the most effective specific combination of industrial policies in any given country setting. 
We do note that, as of this writing, we find no evidence of significant community-based clean 
energy projects operating in any of our five selected countries other than Germany. However, 
the fact that such projects have been successful in Germany and elsewhere in Western Europe 
— including communities such as Freimant that are not especially well endowed with either 
financial resources or the appropriate natural resources - suggests that such projects can, with 
time, be made successful elsewhere as well, including in Brazil, Indonesia, South Africa and 
the ROK .45 

For our specific purposes of estimating the employment effects of a clean energy investment 
project, we will proceed under the simple assumptions that: 

1. Countries that are able to mount successful industrial policies will be able to advance 
a large-scale clean energy investment project while still maintaining their current 
proportion of domestically-produced inputs in the economy’s relevant sectors; and 

2. Countries that do not mount successful industrial policies in behalf of the clean-energy 
investment project will see the import content in their economy’s relevant sectors rise 
by 20 percent relative to current import proportions. We explain below how we derive 
this 20 percent adjustment figure.

Estimating Domestic Productive Resource  
for Clean Energy Investments 
In Tables 5.1-5.5, we show for all five selected countries the percentage of overall activity in each 
of the energy-producing sectors that is produced with domestic resources. For example, in the 

45 A useful resource for considering the practicalities for developing community-based renewable energy projects, focused on North America, is by 
the Commission for Environmental Cooperation (2010).
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case of Brazil, we estimate that, as of the data provided in its most recent 2005 I-O table, domestic 
content was as follows for these energy sectors: 97 percent for bioenergy; 91 percent for wind; 96 
percent for hydro, and so forth. For South Africa, the domestic content percentages are: 94 percent 
for bioenergy; 90 percent for hydro; 75 percent for wind, 83 percent for solar; 93 percent for coal, 
and 62 percent for oil and gas, among others. In Appendix 2, we describe the full calculations 
within each country’s I-O tables through which we generated the results in Tables 5.1-5.5.

Within the framework of these existing domestic content ratios, we then pose the question: how 
much are these ratios likely to change as our selected countries undertake major new investment 
projects in renewable energy and energy efficiency and sustain these investment projects over 
a 20-year timespan? Of course, we cannot know the answer to this question in advance in our 
five distinct country settings, especially given that each country will also incorporate other 
transitional forces along its long-run growth trajectory. Therefore, as described briefly above, 
we focus here on considering two simple alternative scenarios in addressing this question. 
In the first scenario, we assume that the countries undertake effective industrial policies to 
support their clean energy investment projects. As a result of these effective policies, we then 
assume that the domestic content ratio within all energy-linked activities remains at their 
current levels.

In the second scenario, we assume that the countries’ industrial policies are not as effective. 
As a result, domestic content in all tradable activities linked to each energy sector declines 
by 20 percent relative to their current levels. We consider two main issues in addressing this 
approach as our second scenario. The first is, how are we defining “tradable” activities within 
each country’s I-O tables? The second is, why do we assume that the fall in domestic content 
should be 20 percent, as opposed to some other percentage?

Our definition of a “tradable” activity follows from the literature on this question. The most 
recent brief survey of which we are aware is Lombardo and Ravenna (2012). They define a 
“tradable” activity as one in which less than 90 percent of this activity’s inputs come from 
domestic sources.46 They write:

We define as tradable all goods from sectors where the tradability measure is above a 
fixed number. To provide comparability with results in the literature, we adopt a 10 percent 
threshold, as in De Gregorio et al. (1994) and Betts and Kehoe (2001). (Lombardo and 
Ravenna, 2012, p. 559).

For activities, which are defined as tradable by this measure, why do we assume that domestic 
content will fall by 20 percent in our second scenario, i.e. when industrial policies to support 
clean energy investments are less successful? Here we work from the results presented in Bems 
(2008) on “Aggregate Investment Expenditures on Tradable and Nontradable Goods.” For our 
purposes, the key findings in Bems are as follows:

1. Aggregate investment expenditure shares on tradable and nontradable goods are very 
similar in rich and poor countries, as well as in different regions of the world.

2. The expenditure shares on tradables and nontradables have been stable over time. 

46 They write, “We define as tradable all goods from sectors where the tradability measure is above a fixed number. To provide comparability with 
results in the literature, we adopt a 10 percent threshold, as in De Gregorio et al. (1994) and Betts and Kehoe (2001),” (2012, p. 559).
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Average expenditure shares on nontradables have varied between 54-62 percent over 
the period he studies, 1960-2004.

Working from these results by Bems, if we assume that the variation on non-tradables ranges 
between 54-62 percent, this means the decline from the high end of the range, at 62 percent, to 
the low end, at 54 percent, is about 13 percent (8 percentage points decline from a 62 percent 
base). Because, if anything, we do not want to underestimate the potential proportionate 
decline in domestic content that could result from greatly expanding investments in clean 
energy activities, we chose to increase the percent decline in domestic content from the 13 
percent figure that we extract from the Bems’ research to 20 percent.

Based on these assumptions, the figures we report in the second columns of Tables 5.1-5.5, all 
show domestic content as declining by 20 percent in all tradable activities (i.e. those activities 
in which domestic content is currently below 90 percent) associated with the clean energy 
investment project. Thus, again looking at the case of Brazil in Table 5.1, the impact of this 
adjustment procedure does not affect the domestic content of the bioenergy sector, which 
remains at 97 percent domestic content or building retrofits, which remains at 100 percent. 
However, wind power declines from 91 to 88 percent domestic content. Grid upgrades decline 
from 77 to 67 percent domestic content and industrial energy efficiency falls from 87 to 80 
percent domestic content. For the case of South Africa, as reported in Table 5.4, wind falls from 
75 to 68 percent domestic content, grid upgrades falls from 64 to 56 percent, and industrial 
energy efficiency falls from 71 to 67 percent.

Table 5.1: Brazil. Domestic content of alternative energy sectors: Levels in 2005 I-O tables 
compared to a 20 percent domestic content decline for tradable activities

  Stable domestic content Domestic content after 20 percent 
decline for tradable activities

Renewables    

Bioenergy 97% 97%

Hydro 96% 95%

Wind 91% 88%

Solar 85% 79%

Geothermal 94% 90%

Energy efficiency    

Building retrofits 100% 100%

Industrial efficiency 87% 80%

Grid upgrades 77% 67%

Fossil fuels    

Coal 78% NA

Oil/natural gas 78% NA

Source: Data sources as noted in Appendix 2.
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Table 5.2: Germany. Domestic content of alternative energy sectors: Levels in 2007 I-O tables 
compared to a 20 percent domestic content decline for tradable activities

  Stable domestic content Domestic content after 20 percent 
decline for tradable activities

Renewables    

Bioenergy 78% 67%

Hydro 65% 55%

Wind 75% 65%

Solar 70% 62%

Geothermal 56% 54%

Energy efficiency    

Building retrofits 96% 96%

Industrial efficiency 54% 47%

Grid upgrades 69% 60%

Fossil fuels    

Coal 70% NA

Oil/natural gas 40% NA

Source: Data sources as noted in Appendix 2.

Table 5.3: Indonesia. Domestic content of alternative energy sectors: Levels in 2008 I-O 
tables compared to a 20 percent domestic content decline for tradable activities

  Stable domestic content Domestic content after 20 percent 
decline for tradable activities

Renewables    

Bioenergy 96% 94%

Hydro 89% 83%

Wind 83% 75%

Solar 85% 77%

Geothermal 91% 87%

Energy efficiency    

Building retrofits 100% 100%

Industrial efficiency 75% 65%

Grid upgrades 82% 76%

Fossil fuels    

Coal 82% NA

Oil/natural gas 76% NA

Source: Data sources as noted in Appendix 2.
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Table 5.4: South Africa. Domestic content of alternative energy sectors: Levels in 2005 I-O 
tables compared to a 20 percent domestic content decline for tradable activities

  Stable domestic content Domestic content after 20 percent 
decline for tradable activities

Renewables    

Bioenergy 94% 92%

Hydro 90% 87%

Wind 75% 68%

Solar 83% 74%

Geothermal 92% 88%

Energy efficiency    

Building retrofits 100% 100%

Industrial efficiency 71% 67%

Grid upgrades 64% 56%

Fossil fuels    

Coal 93% NA

Oil/natural gas 63% NA

Source: Data sources as noted in Appendix 2.

Table 5.5: Republic of Korea. Domestic content of alternative energy sectors: Levels in 2008 
I-O tables compared to a 20 percent domestic content decline for tradable activities

  Stable domestic content Domestic content after 20 percent 
decline for tradable activities

Renewables    

Bioenergy 79% 68%

Hydro 91% 82%

Wind 86% 76%

Solar 83% 71%

Geothermal 79% 72%

Energy efficiency    

Building retrofits 100% 100%

Industrial efficiency 83% 70%

Grid upgrades 83% 73%

Fossil fuels    

Coal 42% NA

Oil/natural gas 46% NA

Source: Data sources as noted in Appendix 2.
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In the next chapter, we show how these alternative assumptions as regards domestic content 
proportions play out in our estimates of the employment effects of the clean energy investment 
project.

Fossil Fuel Consumption and Imports/Exports 
One factor in enabling the expansion of domestic production in sectors of economies linked to 
clean energy will be the fact that the fossil fuel sectors in all countries will be correspondingly 
contracting. The freeing up of economic resources out of the activities tied to the fossil fuel 
sector will be substantial in all cases. These activities include extracting, transporting, refining, 
and the retail distribution of fossil fuel energy, along with all of the sectors that provide supplies 
to support these activities.

The data in Table 5.6 provide a sense of the magnitudes involved. The first column of the 
table shows the extent to which each of our five selected economies relies on fossil fuels 
to meet its overall energy consumption levels. As we see, fossil fuels supply more than half 
of each country’s total energy consumption. Brazil has the lowest proportion of fossil fuel 
consumption, at 53.5 percent of total energy consumption, because of its uniquely high levels 
of both hydro and biofuel production. Indonesia is next lowest, at 66.1 percent reliance on 
fossil fuels. But this figure includes Indonesia’s still heavy reliance on burning peat as a high-
emissions renewable energy source. Exclusive of peat, coal, oil and natural gas provide roughly 
90 percent of Indonesia’s remaining energy supply. Germany, the ROK and South Africa all rely 
on fossil fuels for between 78-88 percent of their overall energy supply. These figures show 
that, as these economies undergo transitions to clean energy sources, major shares of their 
economies’ overall resources will be released from the current demands generated by their 
fossil fuel sectors. 

Table 5.6: Reliance on fossil fuels and imports as energy sources in selected countries, 2011

  Fossil fuels as a share of total energy 
consumption

Imports as a share of total energy 
consumptiona

Brazil 53.5% 8.0%

Germany 78.2% 60.0%

Indonesia 66.1% -89.0%

South Africa 87.7% -15.0%

ROK 82.9% 82.0%

Source: World Bank (2014), “World Development Indicators,” Table 3.6: Energy production and use and Table 3.8: Energy dependency, efficiency, and 
carbon dioxide emissions. 
Notes: a) Negative figures indicate net export proportion.

 
We obtain additional perspective as to how such scenarios might play out through the figures 
shown in column 2 of Table 5.6. Here we show the import shares as a proportion of total energy 
consumption for our five selected economies as of 2010. As we see, Indonesia and South Africa 
were energy exporters - Indonesia with oil and South Africa with coal. However, since 2010, 
Indonesia has become an oil importer. Indeed, in the absence of a successful clean energy 
investment strategy. Indonesia is projected to become a major oil importer over the next five 
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years (Azwar, 2013). With Brazil, as the table shows, imports constituted a relatively modest 8 
percent of its overall energy supply as of 2010, while Germany and the ROK were major energy 
importers, at 60 and 82 percent of their overall energy supply. These proportions have held 
steady since 2010.

Of course, the energy-importing countries, Brazil, Germany, and the ROK, are presently utilizing 
a smaller share of their total domestic resources in the fossil fuel sector. Their share of total 
economic resources devoted to energy-linked activities could rise as a result of increasing 
investments in energy efficiency and renewable energy. However, as we saw in Tables 5.1, 5.2 
and 5.5, the share of total domestic resources devoted to supplying oil, coal and natural gas 
are not negligible. In Germany, the shares are 70 percent for the coal sector and 40 percent 
for oil and gas, as shown in Table 5.2. In the ROK, as we see in Table 5.5, the proportions are 
42 percent for coal and 46 percent for oil and gas. Thus, even with Germany and the ROK, as 
major energy importers, the move out of fossil fuels and into clean energy will entail releasing 
domestic resources that can be repurposed for the clean energy transition.

South Africa, unlike the case of Indonesia transitioning from oil exporter to importer, is projected 
to remain as a coal exporter in a global Reference Case scenario over the next 20 years.47 South 
Africa would therefore see its market for coal exports contract as the reliance on clean energy 
sources expand, including in countries currently importing South African coal. This will create 
problems for their balance of payments as well as the incomes and job opportunities for people 
attached to the coal sector. But this then also means that for South Africa, as with all other 
fossil fuel exporting economies, resources will become increasingly available for repurposing 
in support of a clean energy investment project. 

The Impact of Declining Fossil Fuel Export Markets

The contraction of South Africa’s coal export market that would result through the clean energy 
transition does then raise a broader question concerning all five selected countries. That is, 
considering all fossil fuel sectors in each of the five countries, what is likely to be the effect 
of the global contraction in fossil fuel trade that will result through a global clean energy 
transition?

We can obtain some perspective on this question by considering the net trade balance with 
respect to fossil fuels for our five selected economies. In Table 5.7, we provide figures on net 
fossil fuel exports as a share of GDP over the decade 2001-2010. As the table shows, four of 
the five economies, including South Africa, were, on average, net importers of fossil fuels over 
this decade. In the cases of Brazil, Germany, and the ROK, the share of net fossil fuel imports 
relative to GDP was also generally stable, since, as the table shows, the decade-long average 
(mean) figures are all significantly greater than their standard deviations. 

47 See, for example, the EIA’s 2030 Reference Case in the International Energy Outlook 2013.
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Table 5.7: Net fossil fuel trade balance as share of GDP, 2001–2010

Positive figures = net fossil fuel trade share surpluses; 
Negative figures = net fossil fuel trade share deficits

  Mean fossil fuel trade balance/GDP Standard deviations

Brazil -0.6 0.3

Germany -2.3 0.5

Indonesia 4.3 1.1

South Africa -0.9 1.2

ROK -6.4 1.8

Sources: Authors’ calculations based on U.S. Energy Information Agency (EIA), International Energy Statistics [for fossil fuel trade]; IMF, International 
Financial Statistics [for GDP].

South Africa is also a net fossil fuel importer over the full 2001-2010 decade, but, for two 
reasons, its situation is different than those for Brazil, Germany and the ROK. The first factor 
is that its ratio of net fossil fuel imports relative to GDP is not stable over the decade, with the 
mean value of - 0.9 being less than the standard deviation of 1.2. The second factor is that 
South Africa has been a net fossil fuel importer overall even though it is also a major exporter 
of coal. This is because South Africa is an even larger importer of crude oil than it is an exporter 
of coal. On balance, therefore, South Africa’s trade position should improve as it experiences 
concurrent reductions in both oil imports as well as coal exports. In addition, the share of fossil 
fuels in the country’s trade accounts will contract as both oil imports and coal exports decline. 
The fossil fuel trade will constitute a smaller share of the economy’s overall GDP. This will 
therefore mean that the impact of fossil fuel imports and exports will have a diminished impact 
on the economy’s overall stability. As discussed above, South Africa’s coal sector will of course 
still experience a substantial retrenchment as the clean energy investment project proceeds. 
The country will need to implement effective transitional assistance measures for coal miners 
and the communities dependent on the industry, as one component of the country’s overall 
clean energy industrial policy agenda.

Indonesia is the only economy in our group that is a net exporter of fossil fuels over the 2001-
2010 decade, as Table 5.7 shows. A global clean energy investment project will therefore entail 
a loss of net exports for Indonesia. How significant is this likely to be for the country’s overall 
economic growth and employment trajectory? 

One consideration, as we also mentioned above, is that Indonesia had been a major oil exporter 
but has been losing that position since the mid-2000s. It was a net oil importer as of 2010. The 
fact that Indonesia is still a net exporter of fossil fuels overall is because of its ongoing high 
level of coal exports. Coal exports constituted 4.5 percent of Indonesia’s GDP as of 2010. How 
significant would be the impact of losing a major share of its coal export revenues as well 
as, perhaps, its net export position with fossil fuels overall? As with South Africa, Indonesia’s 
coal sector itself would of course experience a sharp retrenchment. The country will need 
to implement effective adjustment assistance policies for the impacted communities and 
workers. But what about the broader impact on the economy’s overall growth and employment 
trajectory? 
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We can obtain a reasonable sense of how Indonesia’s overall economic performance will be 
affected by the decline of its net fossil fuel export position through its experience over the 
2001-2010 decade with respect to its fossil fuel net exports relative to its overall economic 
growth. In Figure 5.1, we show the pattern of net fossil fuel exports in relationship to the 
economy’s annual real GDP growth rate. As is clear from the figure, there is no consistent 
relationship between Indonesia’s fossil fuel export share and its overall GDP growth rate. For 
example, between 2001-2002, the export/GDP share declined from 5.8 to 4.0 percent of GDP, 
while real GDP growth rose from 3.6 to 4.5 percent. Again, between 2004-2005, the fossil fuel 
export share declined from 4.6 to 3.5 percent of GDP, while real GDP growth increased from 5.0 
to 5.7 percent. For the decade as a whole, as we report in Figure 5.1, the correlation coefficient 
between the fossil fuel export share and GDP growth is -0.19. That is, over 2001-2010, there 
was a weak negative correlation between Indonesia’s overall fossil fuel export position and the 
country’s average annual real GDP growth rate.

Figure 5.1: Indonesia. Fossil fuel sector net exports as share of GDP and real GDP growth 
rate, 2001-2010

Sources: Authors’ calculations based on U.S. Energy Information Agency (EIA), International Energy Statistics [for fossil fuel trade]; IMF, International 
Financial Statistics [for GDP].
Notes: Correlation coefficient between fossil fuel net exports/GDP and real GDP growth is -0.19.

 
All else equal, the Indonesian economy would likely benefit through being able to sustain a net 
export position in the fossil fuel sector. But the fact that the decline in Indonesia’s net fossil 
fuel export position does not positively correlate with its economic growth performance means 
that Indonesia has already demonstrated its capacity to adjust to the decline in its fossil fuel 
export revenues - the decline in oil exports, in particular. Put another way, Indonesia has not 
been operating in an “all else equal” environment over the decade 2001-2010 as regards the 
impact of its fossil fuel export revenues on GDP growth. Indonesia has rather demonstrated 
over this period its capacity for adaptation to the changing patterns of trade flows in its fossil 
fuel sector. For the country to transition onto a clean energy investment project will require still 
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further adaptations. But the evidence suggests that the decline of its net fossil fuel export will 
not itself create a major barrier to the success of Indonesia’s clean energy transition.

Oil Curse and Stranded Assets

Two additional sets of issues are relevant within this discussion. The first concerns the long-
term economic development prospects of countries with large fossil fuel endowments to 
operate as net exporters. The relevant literature has not reached a consensus as to whether, 
in fact, being an oil exporter ends up promoting economic growth at all. Rather, the overall 
evidence is decidedly mixed. Sachs and Warner (1997, 2001) initiated a line of research on what 
they termed “the curse of natural resources.” They found that economies with a high ratio of 
oil exports to GDP in 1970 tended to grow relatively slowly in the subsequent 20 years. Other 
early studies, including Leite and Weidmann (1999) focused on the relationship between oil 
abundance and the quality of institutions in a given country - finding that ineffective institutional 
environments engendered by oil abundance in turn acts as a hindrance to economic growth. 
By contrast, other researchers such as Salai-i-Martin and Subramanian (2003) have found that 
there is no clear relationship, either positive or negative, between abundant natural resources 
and growth. Still others, including Alexeev and Conrad (2009) observe a positive association 
between oil wealth and economic performance.48 

It is beyond the scope of this report to attempt to adjudicate the results of these various 
researchers. For our purposes, the central conclusion to take from this literature is that 
operating as an oil exporter can be supportive of growth under some circumstances, but it is 
never necessarily beneficial to growth. Rather, there is clearly a wide range of factors at play in 
determining whether being an oil exporter will be supportive of growth. This, correspondingly, 
also means that countries that are not oil exporters, or that experience a decline in their oil-
exporting sector, can nevertheless consistently find other channels for promoting economic 
growth. We of course see this with our own group of five selected countries. Germany and the 
ROK, the two countries with the highest levels of GDP per capita, are also the two countries 
with the highest ratios of fossil fuel imports as a share of GDP over 2001-2010 - Germany at 2.3 
percent of GDP and the ROK at fully 6.4 percent of GDP. It is also evidently true that the ROK’s 
outstanding growth performance over the past 50 years has coincided with many oil exporting 
countries, including, for example, Mexico, Libya and Ecuador, experiencing mediocre growth 
or stagnation.49

A second important consideration here is that, as we emphasized at the outset of this report, 
it is simply not possible to control climate change if the global economy continues to burn 
fossil fuels at anything close to the rate that it has experienced over the past generation. This 
means that, over the next generation and further into the future, all owners of fossil fuel assets, 
including public sector entities as well as private oil, coal and natural gas corporations, will, 
by necessity, experience a major decline in the value of these fossil fuel holdings. Thus, a 
2013 study authored jointly by Carbon Tracker and the Grantham Research Institute on Climate 
Change and the Environment at the London School of Economics examined the current 
holdings of the largest 200 fossil fuel companies in the world. This study estimated that “60-80 
48 An excellent survey of this literature and especially a critical replication of the Alexeev and Conrad econometric findings is an unpublished study by 
Alnusf (2011). Ross (2012) provides a broader perspective on the political as well as the economic issues associated with the oil curse.
49 Perhaps the leading example of a country that has avoided the resource curse is Norway. Holden (2013) provides a useful discussion as to how 
Norway achieved this, in contrast with, among other countries The Netherlands - from which the term “The Dutch Disease” originates.
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percent of coal, oil and gas reserves of listed firms are unburnable (2013, p. 4).” The study then 
considered the implications of this finding for the long-term valuations for these companies. 
They conclude that “The 200 fossil fuel companies analyzed here have a market value of $4 
trillion and debt of $1.5 trillion….Equity valuations could be reduced by 40-60 percent in a low 
emissions scenario. In parallel, the bonds of fossil fuel companies could also be vulnerable to 
ratings downgrades,” (2013, p.5).

In the context of such findings, what is clear is that even if countries, such as Indonesia, are 
holding net fossil fuel export positions and these positions are presently making net positive 
contributions to economic growth, these fossil fuel exporters will still need to undertake major 
adjustments in recognition of the forthcoming devaluation of their fossil fuel assets. 
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CHAPTER 6: METHODOLOGICAL 
ISSUES IN EMPLOYMENT 
ESTIMATES
 

Building from National Input-Output Models
Our employment estimates are figures generated directly from data from national surveys of 
public and private economic enterprises within Brazil, Germany, Indonesia, South Africa and 
the ROK, and organized systematically within each country’s national I-O model. The “inputs” 
within this model are all the employees, materials, land, energy and other products that are 
utilized in economic activities of public and private enterprises within the five countries to 
create goods and services. The “outputs” are the goods and services themselves that result 
from these activities that are then made available to households, private businesses and 
governments as consumers within both domestic and global markets. Within the given structure 
of each national economy, these figures available within the I-O model provide the most 
accurate evidence available as to what happens within private and public enterprises when 
they produce the economies’ goods and services. In particular, these data enable researchers 
to observe how many workers were hired to produce a given set of products or services, and 
what kinds of materials were purchased in the process. 

Here is one specific example of how our methodology works. If we invest an additional $1 
million on energy efficiency retrofits of an existing building (or its equivalent within each 
country’s national currency) how will the business undertaking this retrofit project utilize that 
$1 million to actually complete the project? How much of the $1 million will they spend on 
hiring workers, how much will they spend on non-labor inputs, including materials, energy 
costs, and renting office space, and how much will be left over for business profits? Moreover, 
when businesses spend on non-labor inputs, what are the employment effects through giving 
orders to suppliers, such as lumber and glass producers or trucking companies? 

We also ask this same set of questions for investment projects in renewable energy as well as 
spending on operations within the non-renewable energy sectors. For example, to provide $1 
million worth of petroleum that can be sold to consumers at retail stations as a refined product, 
how many workers will need to be employed, and how much money will need to be spent 
on non-labor inputs?50 Through this approach, we have been able to make observations as to 
the potential job effects of alternative energy investment and spending strategies at a level of 
detail that is not available through any alternative available approach. 

There are certainly limitations with our use of the I-O model. We examine these issues below. But 
as we also discuss below, these limitations in the I-O model approach need to be considered in 
the context of alternative approaches, including computable general equilibrium models, which, 
in our view, contain even more serious deficiencies. In short, we hold that for our particular 
50 More technically, what we are defining here is the final demand for petroleum to all consumers.
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purposes at hand of estimating employment effects of alternative energy spending activities in 
comparable ways within the national economies of Brazil, Germany, Indonesia, South Africa and 
the ROK, the I-O approach is the most reliable methodology available. The following discussion 
provides a broad overview of our methodology for estimating employment effects of clean 
energy investments in Brazil, Germany, Indonesia, South Africa, and the ROK. We also provide 
more detailed technical discussions, and full sets of references in Appendices 2-4.

In addition to issues resulting directly from our use of the use of I-O models, we also need 
to consider here some broader methodological and measurement questions with respect to 
the employment effects of clean energy investments. A first critical question is whether it is 
necessarily a favorable development when clean energy investments generate, per dollar of 
expenditure, a higher level of employment than spending within the fossil fuel sectors. This 
higher level of employment for clean energy investments could simply reflect a decline in 
labor productivity. A second set of issues concerns the time dimension of employment. That 
is, can we accurately observe the extent to which jobs that are created through clean energy 
investments will last for either short or long periods of time? How, also, should we interpret the 
relative benefits of the jobs that are created when they last, for example, for one year versus 
10 years? A third, related set of questions concerns job quality. An expansion in the overall 
availability of jobs can, alternatively, produce more lower- or higher-quality jobs. The relative 
proportions of bad versus good jobs resulting through clean energy investments will obviously 
matter for assessing the overall welfare effects of these investments. 

We address this broader set of questions after first setting out our basic estimating framework. 
We then discuss the more technical set of concerns emerging from our use of the I-O model.

Aggregate Employment Creation:  
Direct, Indirect, and Induced Jobs51

 
Spending money in any area of an economy - including regional and national economies as 
well as the global economy - will create jobs, since people are needed to produce any good or 
service that the economy supplies. This is true regardless of whether the spending is done by 
private businesses, households, or a government entity. At the same time, for a given amount 
of spending within the economy, for example, $1 million, there are differences in the relative 
levels of job creation through spending that $1 million in different ways. Again, this is true 
regardless of whether the spending is done by households, private businesses or public sector 
enterprises. 

There are three sources of job creation associated with any expansion of spending - direct, 
indirect, and induced effects. For purposes of illustration, consider these categories in terms of 
investments in home retrofitting or building wind turbines:

1. Direct effects - the jobs created, for example, by retrofitting buildings to make them 
more energy efficient or to construct wind turbines; 

51 Appendix 3 describes in detail our methodology for estimating aggregate employment creation in clean energy and fossil fuel investments in Brazil, 
Germany, Indonesia, South Africa and the ROK.
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2. Indirect effects - the jobs associated with industries that supply intermediate goods for 
the building retrofits or wind turbines, such as lumber, steel, and transportation; 

3. Induced effects - the expansion of employment that results when people who are paid in 
the construction or steel industries spend the money they have earned on other products 
in the economy. These are the multiplier effects within a standard macro model.

In this report, we focus on direct and indirect effects. Estimating induced effects - i.e. multiplier 
effects - within I-O models is much less reliable than the direct and indirect effects. In addition, 
induced effects derived from alternative areas of spending within a national economy are likely 
to be comparable to one another. We therefore do not lose a significant amount of information 
in terms of relative employment effects between spending on renewable energy and energy 
efficiency versus fossil fuels when we exclude induced effects from our estimations.

Within the categories of direct plus indirect job creation, how is it that spending a given amount 
of money in one set of activities in the economy could generate more employment than other 
activities? As a matter of simple arithmetic, there are only three possibilities, i.e. differences 
in: 1) compensation per worker; 2) domestic content; and 3) labor intensity. We can illustrate 
these three possibilities through comparing investment projects in clean energy versus non-
renewable sectors. 

Compensation per worker. If there is a total of $1 million to be spent within a given year within 
any given energy sector activity, and one employee earns $1 million per year while employed at 
this activity, then that obviously means that only one job will be created through spending the 
$1 million. However, if, at some alternative enterprise, the average pay per worker is $10,000 
per year, then the same $1 million will generate 100 jobs at $10,000. 

Domestic content. We have reviewed in detail in Chapter 5 issues around differences in domestic 
content in the alternative national settings. These differences will of course impact the extent 
of job creation within any given domestic economy for a given level of spending. The degree to 
which variation in domestic content affects overall job creation will depend on the specifics as 
to which clean energy sectors are expanding in any given country. 

Labor Intensity. When proportionally more money of a given overall amount of funds is spent 
on hiring people, as opposed to spending on machinery, buildings, energy, land, and other 
inputs, then spending this given amount of overall funds will create more jobs. As we will see, 
relative to spending within the non-renewable energy sectors within most national economy 
settings, investments in clean energy - including the direct spending on specific projects plus 
the indirect spending on purchasing supplies - entails spending more of its overall budget on 
hiring people, and relatively less on acquiring machines, supplies, land (either on- or offshore) 
and energy itself. 

It is important to note here that differences in labor intensity are not identical to differences 
in labor productivity. As one important example, with a given level of labor productivity, 
differences in labor intensity can result through variation in spending on ground rent. This 
specific factor can be especially relevant in considering the fossil fuel sector, in which ground 
rent expenditures can be substantial. For the purposes of our discussion, we also need to 
provide more clarity around issues of labor productivity itself. We turn now to this topic.
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Clean Energy, Productivity, and Employment 
The most basic purpose of utilizing energy in economic activity is to raise productivity - i.e. with 
the use of efficient machinery powered by energy, to be able to produce more goods and services 
at lower costs than would be possible through using human effort alone or through combining 
human effort with less efficient machinery. Within this context, it is therefore critical to consider 
whether a clean energy investment project could produce an expansion in employment 
opportunities simply through lowering productivity, and, correspondingly, whether any such 
productivity decline also entails a reduction in overall welfare. In addressing such questions, it 
is first critical that we be clear about what we mean in referring to “productivity,” including the 
separate categories of energy productivity and labor productivity.

Energy Productivity. In Chapter 1, we presented evidence within different country settings on 
their energy intensity ratios, which we defined as Q-BTUs/GDP. Energy intensity is definitionally 
the inverse of energy productivity. Investing in energy efficiency measures is, correspondingly, 
the means through which economies raise energy productivity and lower their energy intensity 
ratio.

Labor Productivity. By a standard definition, labor productivity simply measures total output 
per worker, assuming contributions from all other productive inputs remains equal. By this 
standard definition, if we assume all additional productive input contributions are equal, if 
we increase labor intensity through clean-energy investments, that also means we will have 
reduced labor productivity in the energy sector through shifting spending toward clean energy. 
Within this framework, the project of building a clean-energy economy would therefore entail 
lowering labor productivity, as defined conventionally, even while we would also be raising 
energy productivity through efficiency investments.

However, the idea of inverse trajectories for energy and labor productivity within a clean 
energy investment project does not adequately capture the full story on the movement of labor 
productivity within this framework. This is because it neglects two crucial considerations. First, 
through raising overall employment, clean-energy investments can provide new opportunities to 
previously unemployed workers. This raises the productivity level for the formerly unemployed 
workers from zero to a positive number. Any economy-wide measure of labour productivity has 
to take account of this effect. Similarly, clean-energy investments can create new opportunities 
for underemployed workers, thereby also raising their productivity. 

Second, within the context of the global climate crisis, we need to begin consistently 
incorporating environmental effects in the measurement of output and productivity. That is, 
spending on fossil fuels creates the output ‘good’ of energy to power machinery. But it also 
creates the output ‘bad’ of CO2 emissions. Thus, with every unit of energy generated by clean-
energy investments as opposed to fossil fuels, the net increase in output is greater to the extent 
that we are not producing the ‘bad’ of pollution and GHG emissions. This point has long been 
recognised in discussions of the environmental costs of economic growth, and is included in 
virtually every introductory economics textbook. 

Clean-energy investments therefore have the capacity to raise economy-wide labor productivity 
- defined appropriately - through two channels: 1) By expanding total employment per dollar of 
expenditure in the economy, it provides new opportunities for unemployed or underemployed 
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workers to become productive; and 2) by generating energy from clean sources, it increases the 
level of ‘goods’ we produce and correspondingly reduces our production of ‘bads’. 

Overall then, properly considered on a macro scale, the productivity effects of a clean energy 
investment project - including both energy productivity as well as labor productivity - are likely 
to be strongly favorable. 

Time Dimension in Measuring Job Creation
Any type of spending activity creates employment over a given amount of time. To understand 
the impact on jobs of a given spending activity, one must therefore incorporate a time dimension 
into the measurement of employment creation. For example, a project that creates 100 jobs 
that last for one year only needs to be distinguished from a another project that creates 100 
jobs that continue for 10 years each. It is important to keep this time dimension in mind in any 
assessment of the impact of on job creation of any clean energy investment activity. 

There are two straightforward ways in which one can express such distinctions. One is through 
measuring “job years.” This measures cumulative job creation over the total number of years 
that jobs have been created. Thus, an activity that generates 100 jobs for 1 year would create 
100 job years. By contrast, the activity that produces 100 jobs for 10 years would generate 
1,000 job years. 

The other way to report the same figures would be in terms of jobs-per-year. Through this 
measure, we are able to provide detail on the year-to-year breakdown of the overall level of 
job creation. Thus, with the 10-year project we are using in our example, we could express its 
effects as creating 100 jobs per year for 10 years. This is the basic framework we will utilize 
when we report on job creation figures within the context of clean energy investment projects 
on the order of 1.5 percent of GDP per year. This is because, when we present employment 
impacts in terms of jobs-per-year, we can observe these impacts within the standard units of 
total employment levels, labor force participation and unemployment rates over the course of 
a year. Within this framework, we can of course also estimate the number of years in which a 
given jobs-per-year impact will be sustained. In the case of the clean energy investment project 
we are developing, what we are proposing should be sustained at the level 1.5 percent of GDP 
for of at least 20 years. The overall employment impacts, measured on a jobs-per-year basis, 
should therefore be sustained at least over the course of these 20 years. Their impact would 
also continue beyond the last year of the 20-year project cycle to the extent that investment 
projects require more than one year to complete spending cycle, as would be typical. Ongoing 
operations, maintenance and manufacturing activities would also continue after the period of 
capital investments has ended.

One specific area where it is important to proceed clearly on this issue is in consideration 
of construction industry job creation through clean energy investments. Construction sector 
jobs created by clean energy investments are frequently regarded as being short-term, while 
manufacturing jobs are seen as inherently longer term. However, especially in evaluating the 
impact of alternative areas of spending within an overall clean energy investment agenda, the 
distinctions are not so straightforward. Of course, any single construction project is limited by 
the amount of time required to complete that project, while manufacturing activity in a single 
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plant can continue indefinitely, as long as the manufacturer is able to sell the goods being 
produced at a profit. But if we consider any large-scale green construction project, total job 
creation over time can vary widely, depending precisely on the annual level of expenditure that 
is laid out to complete the project. 

Consider, for example, a project to retrofit the entire publicly-owned building stock within 
Brazil, in which we assume the entire budget devoted to labor in the project is $50 billion, and 
each worker on the project receives $5,000 per year in total compensation. This means that, in 
total, the project will generate 10 million job years, no matter how these job years are divided 
up over time. If the annual budget for the project is $2.5 billion over 20 years, that means the 
project will generate 500,000 jobs per year over 20 years, making it a long-term source of job 
creation. However, if the annual budget could rise to the $5 billion that means the project 
would generate 1 million job per year over 10 years. In this case, the project is a more intensive 
source of new job creation, but operating now only over a 10-year horizon rather than 20 years.
 

Self-Employment, Informal Sector, and Job Quality
In addition to this issue of being clear on how to count job-years, there is also the more familiar 
question in the time dimension of employment as to whether the jobs are full- or part-time. 
As purely a matter of measurement, one can of course convert part-time jobs into full-time 
equivalents. But in terms of assessing the welfare effects of clean energy investments and 
policy initiatives, one would want to distinguish the creation of full-time from part-time jobs, 
especially since full-time jobs are generally more stable and of higher quality. While we do not 
have data on the breakdown of jobs according to hours worked, we do provide an extensive 
discussion on job quality issues associated with clean energy activities. This includes a 
consideration of evidence on gender composition of various types of employment; wage versus 
self-employment; the size of enterprises in which people are employed; and educational 
attainment levels of workers. The main analytic issues are as follows52:

Treatment of self-employment. Countries which include the self-employed along with wage 
earners tend to have higher employment multipliers, particularly in the agricultural sector.53 
We will show evidence below as to the proportions of self-employed jobs that are generated 
through the various specific clean energy and fossil fuel sectors.

Informal Labor. Related to the issue of self-employment is that of informal labor, which has a very 
large presence in developing countries, such as Indonesia, but will also be significant in middle- 
and upper-middle income countries such as South Africa and Brazil. Informal employment 
refers to jobs that do not include regular payment of wages and benefits, and that do not fall 
under a country’s system of labor laws and standards. Informal places of employment are more 
generally unregistered with government authorities and lie outside the formal regulatory and 
tax structure. Informal workers are frequently agricultural day laborers, urban street vendors, 
52 Appendix 4 describes our methodology for estimating these various detailed employment effects from clean energy and fossil fuel investments in 
Brazil, Germany, Indonesia, South Africa, and the ROK.
53 Even while this statement is accurate, we do also have to recognize a further set of important considerations here. That is, if spending were to 
increase by $1 billion, then employers will hire more workers to meet this demand in a wage-employment economy (we assume that prices and 
wages remain fixed in the I-O model). But if self-employment dominates, then it is unclear that the number of employed would increase. Earnings 
may increase instead while employment remains fixed. More precisely, a boost in final demand will, for certain, raise total earnings. But this increase 
in total earnings could result through: 1) increasing the number of self-employed jobs at the prevailing earnings level; 2) increasing earnings while 
keeping the level of employment constant, or 3) some combination of the first two possibilities. Working with the national I-O models, we cannot tell 
how the increase in final demand will play out among the self-employed.
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or home-based textile workers. In many countries, women are disproportionately represented 
in such jobs, which pay poverty-level wages or worse. 

For the purposes of our discussion, it would be important to measure the extent to which, for 
example, investments in building a clean-energy economy create opportunities not just for 
employment per se for those now in informal jobs, but for higher-quality jobs. This would mean 
better pay, better conditions, and more stability than informal workers experience at present. 
We are not able to measure this directly through the data available to us, but we will be able to 
draw some general inferences. 

When there is a large informal labor market, this also means that the measured unemployment 
rate in a country will be low. Typically, a slack labor market in this situation will not entail a high 
rate of measured unemployment per se, but rather a larger informal labor market. As such, if 
we show that clean energy investments are capable of generating net new employment, that 
net new employment will not be moving people from “unemployed” to “employed,” typically. 
It will rather, for the most part, move people from informal to formal employment. We will need 
to analyze the impact of this in judging the overall impact of clean energy investments on well-
being.

Construction of Clean Energy Industrial Categories
To date, the grouping of industries in national I-O tables do not explicitly include “Renewable 
Energy” or “Energy Efficiency.” They also do not include more specific industries, such as wind, 
solar, hydro, bioenergy, building retrofits, industrial efficiency or electrical grid upgrades. 
By contrast, the I-O tables do specifically identify fossil fuel industries, including oil and gas 
extraction, coal mining, support services for these extraction activities, power generation and 
distribution, and various petroleum- and coal-based manufacturing activities.

One can nevertheless work with the existing I-O tables to construct synthetic versions of the 
renewable energy and energy efficiency sectors. The procedure for doing this is to identify the 
various specific activities that produce inputs for a given renewable energy or energy efficiency 
industry, and to combine those activities in a way that reflects their actual use in producing 
renewable energy or energy efficiency outputs. For example, producing solar panels will require 
electrical equipment and supplies, glass and metal products, research and development, and 
construction. Producing bioenergy will require, cropping, forestry, refining, construction and 
R&D. Retrofitting buildings, by contrast, will entail 100 percent construction-industry activity.

Of course, in creating these synthetic renewable energy and energy efficiency industries 
within the I-O tables, one cannot simply identify the relevant set of activities. We also need 
to assign relative weights to each of these activities as components of the overall energy-
producing process. For example, for building solar panels, what proportions should we assign 
to producing the electrical equipment, glass and metal products, construction and R&D? Here 
we have to exercise judgment, based on evidence outside the I-O tables that we can develop 
on each of the renewable energy and energy efficiency industries. Again, taking the case of the 
solar industry, we have assigned the following weights to the relevant activities in the specific 
case of the ROK: 51 percent for electrical equipment and supplies; 5 percent for glass products; 
13 percent for various metal products; 16 percent for construction and 15 percent for R&D. 
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We follow this same procedure for all of the renewable energy and energy efficiency categories 
for each of our five selected countries. In doing so, we proceed from the methodology developed 
in Miller and Blair (2009).54 We provide the details of our methodology, weighting schemes, 
and data sources underlying these calculations in Appendix 3.

Scaling Job-Creating Activities
The main scalar that we use for reporting employment creation levels through renewable energy 
and energy efficiency spending is jobs created per $1 million in expenditure. We derive the job-
creation figures through calculations performed in using the respective national I-O tables for 
Brazil, Germany, Indonesia, South Africa, and the ROK. In each of these national I-O tables, the 
activity reported in the tables is expressed in national currencies. We converted the figures in 
national currencies into dollar equivalents on the basis of the average market exchange rate 
between national currencies and dollars in the year that each I-O table is reported. 

We used this approach to measuring job creation for all five of the selected countries so as 
to be able to work with a uniform metric throughout this report. Beyond this, the jobs per $1 
million is fully adequate for allowing us to make the most important observation we wish to 
make with these calculations, which is the relative level of job creation for the various clean 
energy activities in comparison with spending within the fossil fuel and nuclear energy sectors. 

At the same time, to be able to compare the total number of jobs created between countries 
from spending within each of the various energy sectors, it is also useful to scale the jobs 
within the framework of each country’s national wage scale. That is, of course, $1 million 
can purchase far more labor in, say, Indonesia than Germany. It would therefore be useful to 
scale our dollar employment estimates relative to the wage scale that operates in each of the 
selected economies. We have developed an approach to scaling the employment figures in this 
way, which we describe in Appendix 5. This discussion includes a separate set of employment 
estimates derived from this alternative scalar. 

Assessing Relative Strengths and Weaknesses of I-O Models
Basic I-O models include a number of simplifying assumptions. This enables the models to be 
relatively transparent and tractable. But these simplifying assumptions also create limitations 
in the reliability of I-O models. 

Linear Model. A basic I-O model is a linear model. That is, the basic I-O models assume that a 
given amount of spending will have a proportionate effect on employment no matter how much 
the level of spending changes, either up or down. For example, the impact of spending $1 
billion on an energy efficiency project will be exactly 1,000 times greater than spending only $1 
million on the exact same project. This will be approximately accurate in many situations, but 

54 We have employed this methodology in several previous studies (see, e.g. Pollin et al., 2009) and in consulting work with the U.S. Department 
of Energy. The estimating technique we developed for the U.S. Energy Department have been corroborated through survey work as well as through 
data collected by the Energy Department as part of the energy provisions of the 2009 American Recovery and Reinvestment Act. At the same time, we 
recognize that there are other valid methods for defining and measuring job creation through clean energy economic activity. As we note in Chapter 
11, Kang et al. (2011) present a useful alternative approach for measuring “green jobs” within the ROK economy. Wei, Patadia, and Kammen (2010) 
provide a survey of alternative approaches and findings for estimating the job impacts of operating renewable energy and energy efficiency sectors 
within the U.S. economy.
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may not be in other situations. In using the I-O model for our estimation, we are assuming that 
it is reasonable to work with the assumption of linearity for our purposes.

Absence of supply constraints. The most significant consequence of the linearity assumption is 
that the I-O model takes no account of potential supply constraints in moving from a $1 million 
project to a $1 billion project. Under some circumstances, this could be a serious deficiency 
in the model. However, under the current conditions in the global economy - with widespread 
slack and slow growth continuing in the aftermath of the Great Recession - it is reasonable to 
assume that supply constraints are less binding than demand constraints. In the longer-term, 
these same conditions are not likely to persist. The employment estimations will therefore 
need to adjust to reflect this reality. 

Relative prices fixed. Another result of the assumption of linearity that a basic I-O model assumes 
that prices remain fixed, regardless of changes in demand. A more fully specified model would 
take account of such factors. For example, if the prevailing slack economic conditions lead to 
reduced demand for solar panels, then prices of the panels will fall. This price decline could 
then perhaps mitigate the decline in demand. 

Fixed industrial structures. Basic I-O models also assume that productive relationships remain 
stable over the period of analysis. But it is certainly the case that industrial structures evolve 
over time. This issue would seem especially relevant in considering employment conditions 
within the clean-energy economy, since economies will certainly undergo significant structural 
changes in the course of a clean energy transformation. How does structural change affect the 
reliability of employment forecasts? 

In fact, the use of workers in clean energy industries and services will not change at an 
equivalently rapid pace over time, even though clean energy technologies will be advancing 
substantially. For example, a high proportion of energy-efficiency investments - such as for 
building retrofits, public transportation, and smart grid electrical transmission systems - will 
rely heavily on the construction industry. Some aspects of the work involved in retrofitting a 
building will change as retrofitting methods develop. But other aspects can be expected to 
remain stable (i.e. the technologies are relatively mature and are not expected to change 
quickly). Depending on the activity in question, the overall level of demand for workers to 
conduct retrofits may remain fairly stable, at least in the short- to medium-term. 

A similar situation is likely to hold with the production of renewable energy in the short-run, 
regardless of whether the solar panels, wind turbines, or biofuel refining plants are more or 
less efficient with technologies that convert their raw materials into useful energy. That is, 
the need to employ workers to manufacture, transport, and install these newly developed 
renewable energy products is likely to remain fairly stable as a proportion of overall activity in 
the industry in the short- to medium-term. Therefore, the use of an I-O model should provide 
an effective analytic framework for research scenarios in which technology and productive 
relationships can be assumed to be fairly stable. Beyond this, the I-O model can, under many 
circumstances, also serve effectively as the foundation for estimating employment impacts 
even when technology and productive relationships are subject to change over time. This is 
an important consideration that we explore in some detail in the last section of this chapter.

Treatment of time dimension. The I-O model generates estimates as though everything is 
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happening at one fixed point in time. A more realistic picture of the economy would of course 
have to recognize that the effects of public- and private-sector spending will take place in 
sequences over time, and that these timing effects are important. Adding a time dimension 
would make the model dynamic. If these considerations are of concern, a dynamic I-O model 
could be used which allow for changes over time.

Overall Assessment of I-O Models
Recognizing all of the above simplifying assumptions of the I-O model, we nevertheless 
conclude that it is the most effective available tool for estimating the employment effects of a 
large-scale clean energy investment project in national economies throughout the world. 

The model is most reliable when we can reasonably assume that supply-side constraints are 
relatively insignificant. That is, the clean energy industry is able to expand without assuming 
that that expansion will be strongly impacted by supply shortages, which in turn could cause 
major changes in relative prices. We believe that such supply constraints on the expansion 
of clean energy activities will be relatively insignificant in the foreseeable future. This is 
especially the case since the expansion of the clean energy sector will occur in conjunction 
with retrenchments in the non-renewable energy sectors. These retrenchments in the non-
renewable energy sectors will free up resources throughout the economy. 

I-O vs. Computable General Equilibrium Models  
The strengths of the relatively simple and transparent I-O structure can be seen more clearly by 
comparing this approach with a more complex approach, represented by Computable General 
Equilibrium (CGE).

In fact, CGE models are simply I-O models with price dynamics, supply-side constraints, and 
assumptions about technological change incorporated into the basic I-O structure. As such, 
CGE models typically place a much stronger emphasis on the role that prices play in influencing 
behavior and determining economic outcomes. 

The core of a CGE model is typically an I-O model, showing the various relationships between 
industrial sectors and final demand. The I-O framework is then typically supplemented by a 
variety of elasticities, which describe how demand reacts to changes in prices. CGE models 
also incorporate some kind of equilibrium condition, such as market clearing (prices adjust so 
that supply must equal demand) or full-employment. This allows for the existence of a unique 
solution to the system of equations. 

CGE models are costly to develop. Moreover, given the high fixed cost of creating the models, 
CGE models are often proprietary. This means that access to the model is restricted to the 
organization or researchers that developed the model. This can raise concerns regarding 
transparency and independent verification of the accuracy of the model’s assumptions. The 
complex and proprietary nature of most CGE models makes it difficult to perform a careful 
analysis of the assumptions used in different applications and to determine if the assumptions 
are reasonable for answering any specific research question. This is because detailed 
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descriptions of the models (including the equations which constitute the model) are often not 
available. The individual assumptions are often difficult, if not impossible, to identify from the 
general description of such models and the implications of specific assumptions are hard to 
trace. The reliability of such models therefore depends first and foremost on an assessment 
of the model’s assumptions. That is, are the assumptions realistic? Are they helping us to 
understand important issues about the likely growth trajectory of the clean energy economy? 
To give one important case in point, CGE models often assume the economy operates at full 
employment at all times. Working with this assumption, it will of course be difficult to trace out 
any possible impacts of clean energy investments as net source of new job creation. 

Given these challenges in working with a CGE model, for our purposes of estimating employment 
effects of clean energy investments, we have, again, concluded that the I-O model is our 
preferred methodology.

Incorporating Labor Productivity Growth  
and Variable Coefficients in Employment Estimates

Methodological Issues with I-O Models

Even while recognizing the relative strengths of the I-O approach in estimating the employment 
effects of clean energy investments, it is also important to consider possible approaches 
through which we can take account of changing production methods over time. As we have 
noted above, production technologies do certainly shift over time, so that a different mixture of 
inputs may be used to produce a given output. New technologies emerge while others become 
obsolete. Certain inputs may become scarcer, and, as result, firms may substitute other goods 
and services. The production process could simply become more efficient, so that fewer inputs 
are needed to produce a given amount of output. Energy efficiency investments do themselves 
produce a change in production processes - i.e. a reduction in the use of energy inputs to 
generate a given level of output. In short, we recognize that the I-O relationships in any given 
economy - including its employment effects of clean energy investments - are likely to look 
different twenty years from now compared to the results we are presenting in this report. 

This raises the question of how we might take into account these kinds of changes in production 
technologies. Specifically, how would the employment estimates be affected if we were to take 
into account productivity changes over time?

In principle, a basic approach would be to track changes in the underlying survey data within 
an I-O model over time, and then use these patterns to forecast future I-O relationships. But the 
first problem here is that the amount of information needed to construct reasonable I-O tables 
is very large. This is why survey-based national I-O models are typically generated not more 
frequently than once every 3-5 years. For some countries, the models are updated only once 
every decade. In the absence of such detailed data, various forecasting techniques have been 
used to try to forecast what future I-O models might look like. However, as surveyed in Miller 
and Blair’s standard I-O textbook (2009), these methods for forecasting future I-O relationships 
have been shown to be unreliable. This discussion draws on Miller and Blair and the underlying 
literature they survey.
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One approach that has been used to predict future I-O coefficients is simple extrapolation. Two, 
or possibly more, I-O tables, which have been derived from survey data, are compared and the 
change in the coefficients is calculated. These changes are then extrapolated to some point in 
the future, assuming the trends observed continue. A first problem with this approach is that 
it is uncertain that the comparison of I-O coefficients for a limited number of points in time 
- sometimes as few as two points - truly reflects long-run trends. Various shocks, statistical 
variation, or survey-related issues could cause coefficients to vary in ways that have nothing 
to do with the underlying productive relationships. Such errors are then likely to be amplified 
into the future as these trends are extrapolated. Studies have therefore found that the most 
recent survey-based I-O models outperform models based on extrapolation techniques, even 
allowing that the survey model is out-of-date.

An alternative to extrapolation is to use marginal I-O coefficients to predict changes in 
production over time, given a particular level of final demand. A marginal I-O model is 
constructed by subtracting the coefficient in time t-i from the coefficient in time t, where i is 
the number of years between the two survey-based models. The resulting marginal I-O model 
is then used to predict changes in the output produced for a given level of final demand for 
goods and services. However, again, marginal I-O models do not appear to perform better than 
simply using the most recent survey-based model as a basis for estimating future production 
relationships.

Hybrid approaches have been developed for updating I-O models when some additional 
information is known, but the full set of survey data needed to construct a new model is 
not yet available. These techniques are often used to generate interim I-O models between 
“benchmark” years - that is, years in which the full set of survey data needed to produce a 
comprehensive I-O model is available. An example of this methodology is the bi-proportional 
technique (the “RAS procedure”) used to update I-O models. This technique requires that the 
researcher know only the total output of each sector, the total inter-industry sales by sector, 
and total inter-industry purchases of each sector in order to update the I-O model for the year 
in which these three pieces of data are available. Using an iterative method, new coefficients 
are estimated based on the older survey-based I-O tables, but incorporating these new pieces 
of information. These partial-survey techniques require detailed information, by sector, of 
output, sales, and purchases. If this information is not available, the technique cannot be used 
and the most recent I-O tabulations are most likely the most reliable for describing productive 
relationships between sectors.

For the purposes of this report of estimating employment effects of a given level of expenditure, 
a simpler approach that may be workable would be to vary only the employment-output ratios 
in each sector, as opposed to the full set of relationships, or even the more limited set required 
for interim bi-proportional estimation. The employment-output ratio is simply the inverse of 
labor productivity, with labor productivity being defined as the amount of output produced per 
unit of labor. An increase in labor productivity will therefore reduce the employment-output 
ratio. This in turn would lower the employment multipliers estimated from the I-O model.

In principle, trends in labor productivity could therefore be useful for updating the employment 
estimates generated through I-O models. The employment-output ratios would then be 
adjusted to take into account the long-run rate of change in labor productivity. Detailed time 
series on labor productivity for each of the industrial sectors in a given I-O model may not 
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be available. However, trends in labor productivity for broad sectoral divisions - agriculture, 
industrial production and services - will normally be available. These trends could then be used 
to estimate employment levels in an economy experiencing rising labor productivity over time.
 

Applications of Alternative Methodologies 

To consider the impact of variable coefficients and rising labor productivity for our employment 
estimates, we first examine two different sources of data on I-O relationships and labor 
productivity. These are 1) output multipliers over time for alternative energy sectors based 
on figures from annual I-O tables; and 2) data on labor productivity growth by energy sector 
that we have derived on the basis of average productivity growth rates within agricultural, 
industry and services. In Appendix 3, we present details on our methods of estimating both 
output multipliers and labor productivity growth for alternative energy sectors. Following an 
examination of data from these alternative sources, we then consider a broader set of issues 
on the relationship between output, labor productivity and employment, in our five selected 
economies as well as more generally. 

Evidence from Output Multipliers 

The World Input-Output Database (WIOD), a project of the European Commission, produces 
annual I-O tables on a country-by-country basis.55 To date, they have produced tables for 40 
countries over the years 1995-2011. The 40 countries include four of our five selected countries, 
Brazil, Germany, Indonesia, and the ROK. These I-O tables enable us to generate output 
multipliers for each the relevant energy sectors in each of these four economies. But they do 
not contain sufficient information through which we can produce employment/output ratios.

We have used the information available to provide comparative output multipliers for the years 
1995, the first year of the available WIOD tables, and 2007. We are using the 2007 I-O tables as 
the end point in our time series, rather than 2011, the last year of available data, because we 
want to avoid having the patterns we observe be influenced by the impact of the global 2008-
2009 financial crisis and Great Recession. Our focus here is longer-term developments in each 
economy’s productive structures, not on cyclical effects. 

We present the results of this exercise in Table 6.1, which reports the average annual change 
in sectoral output multipliers over our 1995-2007 time period. As we can see, for three of our 
four selected countries, Brazil, Germany and the ROK, the changes in the output multipliers 
over 1995-2007 are negligible. The median average annual change in the clean energy sector 
output multipliers are 0.1 percent for Brazil, -0.2 percent for Germany, and 0.3 percent for the 
ROK. Assuming these figures are accurate, we can conclude that production relationships 
between the domestic sectors in the I-O tables did not change significantly over the 12-year 
period between 1995 and 2007. If we were to extrapolate this pattern into the future, we would 
therefore be on reasonably safe grounds in assuming that output multipliers would change 
only at a modest pace over the 20 years covering the clean energy investment project we are 
advancing.

55 The full set of WIOD data can be found at: http://www.wiod.org/new_site/home.htm. An extensive discussion of the contents, sources and 
methods used with WIOD is Timmer (2012).
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Table 6.1: Change in energy-sector output multipliers, 1995-2007

Figures are average annual percentage increases

  Brazil Germany Indonesia The ROK

Renewables        

Bioenergy 0.3 -0.2 4 0.6

Hydro 0.1 -0.1 5.2 0.4

Wind 0.1 -0.2 5.3 0.3

Solar -0.1 -0.3 5.1 0.3

Geothermal -0.1 -0.1 4.5 0.4

Energy efficiency        

Building retrofits -0.2 -0.2 4.1 0.3

Grid upgrades 0 -0.4 5.1 0.3

Industrial efficiency 0.1 -0.3 5.2 0.4

Fossil fuels        

Oil and gas -0.2 0 4.2 0.5

Coal -0.2 -0.8 3.5 0.2

Range of estimates for clean 
energy sectors -0.2 - 0.3 -0.4  -  -0.1 4.0-5.3 0.3-0.6

Median estimates for clean 
energy sectors 0.1 -0.2 5.1 0.3

Sources: Authors’ calculations using Timmer (2012) further described in Appendix 3.

 
The data for Indonesia show a different pattern. As we see in Table 6.1, Indonesia’s output 
multipliers in its energy sectors increased at a very rapid rate across the board. The range 
in the average annual increase for the clean energy sectors was between 4-5.3 percent, and 
the median annual rate of increase was 5.1 percent per year. Assuming the data are accurate, 
such gains in Indonesia’s output multipliers between 1995-2007 could reflect two underlying 
patterns: 1) stronger linkages between domestic sectors as a result of economic development; 
or 2) major increases in domestic content for the relevant sectors of Indonesia’s economy.

In fact, Indonesia did achieve major gains between 1995-2007 in both its overall net export 
position as well as its net exports for the sectors that serve as inputs to Indonesia’s clean 
energy sectors. We can observe this through the data we present in Table 6.2. As we see there, 
Indonesia’s net export position in total merchandise trade rose from 2.4 to 5.8 percent of GDP 
between 1995 and 2007. This is a net gain of $15 billion, in 2007 dollars. Further, the biggest 
single area of gain was in the machinery and transportation sector, which would be a major 
supplier of components as Indonesia begins to build its clean energy sectors. As Table 6.2 
shows, in 1995, Indonesia was a net importer of machinery and transportation equipment at 
the level of 6.2 percent of GDP. As of 2007, this trade deficit position closed to 0.9 percent of 
GDP. This is a $23 billion improvement in Indonesia’s net trade position, a major achievement 
over only a 12-year period.
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Table 6.2: Indonesia’s trade balance, 1995 and 2007

Net exports or imports as percentage of GDP
Positive numbers = net exports; Negative numbers = net imports

  1995 2007

Total merchandise: 2.4 5.8

Manufacturing -3.3 -2.1

Agriculture 1.0 3.1

Fuels and mining 3.3 1.0

Within manufacturing:    

Machinery and transport -6.2 -0.9

Chemicals -2.3 -0.8

Iron and steel -1.0 -0.7

Sources: Authors calculations using World Trade Organization Statistics Database for trade figures:  
http://stat.wto.org/Home/WSDBHome.aspx?Language=, World Bank Databank for GDP figures: http://databank.worldbank.org/data/home.aspx.

 
Nevertheless, even with Indonesia’s major gain in the domestic content share in its machinery 
and transportation sector, it remains the case that, as of 2007, Indonesia’s energy sector output 
multipliers had reached rough parity levels, but had not significantly exceeded, those for Brazil, 
Germany, and the ROK. We can see this from the figures we present in Table 6.3, showing the 
median levels of the output multipliers in the clean energy and fossil fuel sectors for Brazil, 
Germany, Indonesia, and the ROK. As Table 6.3 shows, the Indonesian 2007 median clean 
energy output multiplier, at 2.2, is modestly higher than that for the ROK, at 2, and somewhat 
higher still than those for Brazil, at 1.8 and Germany, at 1.6. Indonesia’s median fossil fuel 
output multiplier for 2007 is nearly identical to those of the other three countries. Thus, even 
with Indonesia achieving major increases in its energy-sector multipliers between 1995-2007, it 
would still be unlikely that this kind of pattern would continue in subsequent decades.

Table 6.3: Median energy-sector output multiplier levels, 2007

  Clean energy Fossil fuels

Brazil 1.8 1.9

Germany 1.6 1.7

Indonesia 2.2 1.8

ROK 2.0 1.5

Source: Authors’ calculations using Timmer (2012), further described in Appendix 3.
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Evidence from Sectoral Labor Productivity Growth Estimates
In Table 6.4, we present figures on sectoral labor productivity growth rates for our alternative 
energy sectors in each country. We calculated these figures based on the labor productivity 
growth rates for agriculture, industry and services in each of the countries. That is, in each of the 
energy sectors, we estimated the relative proportions of industry, agriculture and services that 
contribute as inputs to each of the sectors, then use these proportions as weights in assigning 
overall productivity rates for each sector. The figures are derived from the World Bank’s World 
Development Indicators. 

Table 6.4: Estimated energy sector labour productivity growth rates

Figures are weighted averages derived from annual growth in per capita value added in 
agriculture, industry and services

 
 

Brazil Germany Indonesia South Africa ROK

1995-2007 1995-2007 1995-2007 2001-2010 1995-2007

(percentages)

Renewables          

Bioenergy 2.1 3.0 1.1 5.0 4.9

Hydro -0.4 1.8 1.1 1.6 4.4

Wind -0.4 1.2 0.5 0.7 3.0

Solar -0.7 2.3 1.0 1.4 5.8

Geothermal -0.6 2.0 1.0 1.5 5.1

Energy efficiency          

Building retrofits -0.9 2.5 0.9 1.2 6.8

Grid upgrades -0.9 2.5 0.9 1.2 6.8

Fossil fuels          

Oil and gas -0.9 2.5 1.2 1.2 6.8

Coal -0.6 2.0 1.5 1.5 5.1

Range of estimates 
for clean energy 
sectors 

-0.9-2.1 1.2-3.0 0.5-1.1 0.7-5.0 3.0-6.8

Median estimates for 
clean energy sectors -0.7 2.3 1.0 1.2 5.1

Sources: See Appendix 3.
 
In reviewing Table 6.4, the first pattern to note is that the labor productivity growth figures 
for Indonesia are not especially high, unlike the pattern with Indonesia’s output multipliers. 
For the clean energy sectors, we estimate that average annual labor productivity growth 
ranges between 0.5-1.1 percent. The median clean energy sectoral productivity growth rate is 
1.0 percent. These patterns underscore the fact that, for achieving major improvements in a 
country’s output multipliers, labor productivity growth does not need to be especially strong as 
long as 1) the country’s domestic content is rising sharply; or 2) linkages between a country’s 
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domestic industrial sectors become stronger and denser as a result of economic development 
and diversification.

However, we do now see a second major outlier pattern with the labor productivity data, in 
this case with the ROK. Our average annual labor productivity growth estimates between 1995-
2007 for the ROK’s clean energy sectors are very high, ranging between 3 and 6.8 percent, with 
a median annual productivity growth figure of 5.1 percent. This contrasts with the slow rate of 
increase in the ROK’s clean energy sector’s output multiplier, where, as we saw in Table 6.1, 
the median clean energy output multiplier rate of increase was 0.3 percent. In the case of the 
ROK, assuming the data are roughly accurate, this could be explained by the fact that major 
structural changes in the ROK economy occurred prior to 1995, during the country’s period of 
rapid industrialization. After 1995, the pace of structural change slowed and this is reflected in 
the minimal change in the output multipliers. By contrast, the ROK’s rapid increases in sectoral 
labor productivity conveys a pattern of rapid gains in labor-saving production processes as 
opposed to structural changes that alter the relationship between the country’s industrial 
sectors. 

Overall, in assessing the figures we have estimated for output multipliers and labor productivity 
growth, we can still reach some basic conclusions for our purposes, even after allowing for the 
prospect of inaccuracies in some of the estimates. That is, it is reasonable to conclude that, 
under most circumstances over the next 20 years, we are likely to see gains in labor productivity 
growth in the clean energy sectors for Brazil, Germany, Indonesia, South Africa and the ROK that 
are within the range of 1-2.5 percent per year. We are confident, in other words, that Brazil’s 
clean energy sectors will not likely continue to experience zero, or even slightly negative, 
productivity growth over the next 20 years, or that the ROK is likely to sustain a productivity 
growth rate in the range of 5 percent per year in its clean energy sectors (assuming that this 
range is accurate for 1995-2007). 

There will still almost certainly be situations in which labor productivity growth will outside the 
range of between 1 and 2.5 percent per year. For example, labor productivity in Brazil’s existing 
large bioenergy sector will certainly be rising in the coming years through mechanization (De 
Almeda et al., 2007). Mechanization, and thus productivity gains will be encouraged through 
recent legislation in Brazil that prohibits direct burning of sugar cane on fields. Nevertheless, 
on balance, assuming that long-run sectoral labor productivity growth will range between 1 and 
2.5 percent is a reasonable framework for generating broad macroeconomic trends.

It is similarly unlikely that there will be further dramatic shifts in the extent of domestic 
content in the clean energy sectors for our five selected countries comparable to what we have 
observed in the Indonesian case over 1995-2007. In Chapter 5, we have reviewed at some 
length the prospects for shifts in domestic content as the clean energy project proceeds. As 
we saw there, after allowing for declines in domestic tradable activities on the order of 20 
percent as a result of expanded activity in the clean energy sectors, the range of potential shifts 
in domestic content would be modest for all five countries. This, in turn, means that changes 
in each country’s employment/output multipliers resulting from shifts in domestic content 
would be correspondingly modest. Similarly, we do not expect the countries considered 
here to undergo widespread structural changes that would raise their output or employment 
multipliers significantly.
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Overall again, the most likely scenario for all five countries would be for labor productivity to 
increase in their clean energy sectors at an average rate of between 1 and 2.5 percent per year. 
Because domestic content is unlikely to change dramatically over this period, the consequent 
employment/output ratios in each country would also most likely decrease at a rate of growth 
that reflects the sectors’ rate of productivity growth - at a rate within the range of 1-2.5 percent. 
As such, the next question to consider, to which we now turn, is what the impact is likely to 
be on employment creation through the clean energy investment project when average labor 
productivity growth does generally increase at rates between 1-2.5 percent per year. 

Broader Issues with Productivity Growth and Employment
Working from the evidence we have presented on output multipliers and productivity growth, 
there is a basic reason to conclude that, certainly as a first approximation, employment gains 
through clean energy investments will likely grow over a 20-year time trend, even after taking 
account of productivity effects on employment levels. This is true because, in addition to each 
of our five economies experiencing productivity growth over time in their clean energy sectors, 
most likely in the range of 1-2.5 percent per year, they will also be experiencing output growth 
in their clean energy sectors, and GDP growth for their overall economies. 

As we mentioned in Chapter 1, in the country-by-country estimation models that we present in 
Chapter 8-12, we assume that, in each of our five selected countries, clean energy investments 
will be maintained every year at 1.5 percent of GDP over the full 20-year project period. Moreover, 
in generating both our output and employment estimates in Chapters 8-12, and as we discuss 
further in these later chapters, we make assumptions as to the average annual rate of GDP 
growth for each of the five countries over the 20-year period. These average annual GDP growth 
projections are, respectively: 3.7 percent for Brazil; 2.0 percent for Germany; 5.0 percent for 
Indonesia; 4.0 percent for South Africa; and 3.3 percent for the ROK.56 We present these growth 
projections in Table 6.5, along with actual GDP growth figures for each of these countries from 
1995 to 2007; and from 2001 to 2010. Table 6.5 also presents the median figures for growth 
in labor productivity and output multipliers for the various countries’ clean energy sectors, as 
already presented in Tables 6.1 and 6.4. 

56 As we discuss for each specific country case in Chapters 8-12, the 20-year GDP growth projections presented in Table 6.5 are conservative estimates 
either taken directly from, or derived from various official sources. These sources include the International Energy Agency for Brazil, the IMF and OECD 
for Germany and South African, the EIA for the ROK and the Indonesian government’s own growth projections. Such long-term GDP growth projections 
can of course end up being inaccurate as actual economic activity proceeds over time. Nevertheless, these projections are useful for our purposes, in 
that they provide reasonable broad parameters within which to assess each country’s 20-year clean energy investment prospects.
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Table 6.5: Growth rates of national GDP and clean energy sector labor productivity and 
output multipliers

 
 

 

GDP growth rates
Clean energy sector growth  
of median labor productivity  

and output multipliers

Projected  
20-year rates

Actual  
1995 – 2007

Actual  
2001 - 2010

1995-2007, except for South Africa, 
which is 2001-2010

     
Labor 

productivity 
growth

Output 
multiplier 

growth

Brazil 3.7% 2.8% 3.5% -0.7% 0.1%

Germany 2.0% 1.6% 2.0% 2.3% -0.2%

Indonesia 5.0% 3.2% 5.0% 1.0% 5.1%

South Africa 4.0% 4.6% 4.0% 1.2% NA

ROK 3.3% 3.7% 3.3% 5.1% 0.3%

Sources: Sources for projected GDP growth presented in Chapters 8-12. Actual GDP growth rates from IMF International Financial Statistics. See Tables 
6.1 and 6.4 for output multipliers and productivity growth.

 
Because we are assuming that clean energy investments will be sustained at 1.5 percent of GDP 
throughout the full period, it follows that we are also assuming that clean energy investments 
will be growing annually at exactly the same rate as each country’s annual GDP growth rate. That 
is, we assume that, over a 20-year investment cycle, clean energy investments will increase at 
average annual rates of 3.7 percent in Brazil; 2.0 percent in Germany; 5.0 percent in Indonesia; 
4.0 percent in South Africa; and 3.3 percent in the ROK.

What therefore is likely to be the combined effects of GDP growth and labor productivity growth 
on the employment effects of clean energy investments? The answer is that it depends on the 
relative rates of output and labor productivity growth. The data we have presented in Table 6.5 
will therefore be valuable for addressing this question. But, even before considering these data 
further, it will be useful to consider three broad sets of possibilities for both GDP and labor 
productivity growth trajectories over time: that both GDP and productivity grow, alternatively, 
at low, medium and high rates. As we present in Table 6.6, these three sets of possibilities 
then produce nine alternative possibilities for employment growth, based on the alternative 
trajectories for both GDP and labor productivity growth. 
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Table 6.6: Possible impacts on employment from varying rates of GDP and labor productivity 
growth

 
Ra

te
 o

f G
DP

 g
ro

w
th

 

Rate of labor productivity growth

  Low Medium High

Low No employment impact Small employment 
decline

Large employment 
decline

Medium Small employment 
increase No employment impact Small employment 

decline

High Large employment 
increase

Small employment 
increase No employment impact

Source: Authors’ own presentation.

 
As Table 6.6 shows, if output and labor productivity are both growing at the same rate - that is, 
if both are growing at either low, medium, or high rates - there will be no change in employment 
over the 20-year investment period relative to the effects that we estimate for year one. Each 
additional unit of GDP will have been produced as a result of an exactly equal increase in 
productivity. 

However, as Table 6.6 also shows, in all cases in which output growth exceeds labor 
productivity growth, the net effect will be that employment will expand over time relative to 
the effects that we estimate in year one. For example, assume that Indonesia’s GDP growth is 
indeed maintained at 5 percent per year over the 20-year investment period. Let us then also 
assume that its rate of labor productivity growth in the clean energy sectors is maintained at 
a rate equal to its median sectoral rate over 1995-2007, of 1.0 percent. This then means that 
employment growth in Indonesia’s clean energy sector will grow by 4.0 percent per year over 
the 20-year investment cycle.

As we show in Table 6.6, the only way in which employment from clean energy investments 
will decline significantly over the 20-year investment period is when labor productivity growth 
exceeds output growth by a significant amount. Consider the case of the ROK, which we 
project as maintaining a 20-year average GDP growth rate of 3.3 percent per year. Then let us 
also assume that labor productivity growth in the clean energy sectors is maintained at the 
median annual rate of 5.1 percent that we estimated for 1995-2007. This would then mean that 
employment growth for clean energy investments will be declining over time by 1.8 percent per 
year. 

However, the broader set of evidence suggests that the ROK will not sustain labor productivity 
growth in its clean energy sectors in the 5 percent range that we estimated for 1995-2007. 
Indeed, when we consider as a whole the labor productivity growth patterns presented in 
Table 6.5 on the respective growth rates of GDP along with those for productivity and output 
multipliers in the clean energy sectors, what emerges as the typical situation is that GDP growth 
rises faster than labor productivity growth.

More generally, the literature on the relationship between labor productivity and output growth 
shows that these two growth rates do generally move together, with output growth typically 
increasing at a faster rate than productivity growth. This is for the simple reason that, as an 
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arithmetic identity, output can increase through both a rise in the number of people working 
and the number of hours people are employed at jobs, as well as through raising workers’ 
productivity levels during their time on the job. As such, when demand for a product increases, 
this will lead to increases in the production of that product, and hence, more people employed 
more hours to produce the product. An expansion in the demand for clean energy will therefore 
produce an expansion in output and employment in these sectors that should exceed increases 
in labor productivity generated within these sectors.

The issue of the general relationship between output and labor productivity growth is generally 
referred to in the literature as the Kaldor-Verdoorn effect. Overall, the empirical results from 
this literature are robust in finding that increases in labor productivity growth are between 
30-60 percent as large as any given increase in output growth. This would mean, for example, 
if output grows by 4 percent over a given period of time, productivity should then typically 
increase over this same period by between 1.2 and 2.4 percent.57 In the Indonesia case as we 
discussed above, if output were to grow over our 20-year clean energy investment period by 5 
percent per year, then we would typically expect labor productivity to increase at between 1.5 
and 3 percent per year over this same period. 

Overall then, if we operate broadly within the analytic framework of the Kaldor-Verdoorn law, 
which is generally supported by the output and labor productivity growth figures we have 
reviewed here, it is reasonable for us to conclude that the levels of employment that we 
estimate in terms of the 2012 I-O relationships will be typically increasing over the 20-year 
investment period. We should finally also add that the rate of increase in employment will 
also likely be faster than the growth in each country’s population. As such, if anything, the 
employment estimates that we generate from our estimates with the 2012 data will grow both 
in absolute terms and relative to each country’s population beyond 2012, over the full 20-year 
clean energy investment period.

We will return to these issues in Chapters 8-12, when we review our country-by-country 
estimates for employment gains through each country’s 20-year clean energy investment 
project. In these discussions, we provide projections of employment creation for clean energy 
investments both for Year 1 and Year 20 in our 20-year investment cycle. Our Year1 estimates 
are generated directly from each country’s recent I-O tables. For our Year 20 projections, we 
assume two separate rates for average annual labor productivity growth in each country’s clean 
energy sectors, 1 percent and 2.5 percent per year. We derive this 1-2.5 percent range from the 
actual labor productivity data over 1995-2007 that we have reviewed above. From this range 
of assumptions on average labor productivity growth, in combination with our assumption for 
average GDP growth in each country over the 20-year cycle, we are then able to generate a 
range of estimates as to how much employment will be created after 20 years in each country 

57 Storm and Naastepad (2012) review the empirical research on the Kaldor-Verdoorn effect from the original work of Verdooorn through studies 
published in 2010. Observing primarily studies focused on OECD economies, they report that the relationship “has been confirmed in the overwhelming 
majority of these studies, irrespective of the differences in econometric methods and data employed. The effect is found statistically significant for 
cross-section estimations across countries or regions and for specific industries, but also for time series econometric studies for single countries or 
regions (2012, p. 82). The evidence for developing countries also generally supports this result (Timmer and Szirmani, 2000). However, even where 
the results for developing countries appear to be more mixed (e.g. Mamgain, 1999), the issue is that labor productivity growth may not consistently 
accelerate along with output growth, not that productivity growth is consistently exceeding output growth. Recognizing this robust general pattern 
between aggregate output and productivity growth does not imply that the relationship should hold constantly over all industries and all time periods. 
For example, Baily and Bosworth (2014) show that with the U.S. manufacturing sector over 1987-2011, a sharp disparity emerged between the very 
rapid rates of productivity growth in the computer and electronics industry, and the non-computer manufacturing industries, in which productivity 
growth was below the economy-wide average. Similarly, Haraguchi and Rezonja (2013) document how the relationship between the growth rates 
of productivity, employment, output in manufacturing vary at different stages in a country’s development and according to whether the economy’s 
growth trajectory is either profit-led or wage led.
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through its clean energy investment project. As we will review in Chapters 8-12, we find that 
employment creation through clean energy investments will increase over time under almost all 
the scenarios we consider. This is precisely because, under most of the scenarios we consider 
- including when we assume labor productivity growth at its high-end figure of 2.5 percent per 
year - GDP is still increasing, by our assumptions, at a faster pace. 
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CHAPTER 7: EMPLOYMENT 
CREATION THROUGH CLEAN 
ENERGY INVESTMENTS 
In this chapter, we present the results of our estimates on employment creation through 
spending on renewable energy and energy efficiency within Brazil, Germany, Indonesia, South 
Africa, and the ROK. The specific renewable energy and energy efficiency sectors that we have 
modeled within each country’s national I-O model are bioenergy, hydro, wind, solar, and 
geothermal power among the renewable sectors; and building retrofits, industrial efficiency 
and electrical grid upgrades within energy efficiency. In Appendix 3, we show the specific 
weighting of inputs through which we define each of these sectors within the national I-O 
models. We then also report employment figures on coal and oil/gas production in each of the 
five countries. Finally, to provide broader reference points for our discussion, we also show 
employment generation figures through spending within each country’s overall economy. 

We report two sets of estimates for each of the five selected countries. The first set is comprised 
of estimates of overall job creation generated by spending within the respective energy-
producing sectors. This includes both direct and indirect employment. We present these overall 
job creation estimates within two scenarios. Under the first, we assume domestic content is 
stable as renewable energy and energy efficiency investments expand significantly. Under 
the second, we assume that a country will need to increase its proportion of imported inputs 
to meet the demands within the rapidly expanding renewable energy and energy efficiency 
sectors. In Chapter 5, we described in detail our methodology for estimating these alternative 
scenarios with respect to domestic content and imports. Our basic calculation is to assume 
that, with all tradable activities linked to each of our renewable energy and energy efficiency 
sectors, import content rises by 20 percent relative to its current level. This is in response to the 
expansion of demand in that sector and our assumption, with this second set of calculations, 
that domestic resources will not be adequate for meeting the increased demand. 

We first present our full set of results in terms of jobs created per $1 million spent. To facilitate 
comparisons on job creation levels across sectors, we then present summary tables, focusing 
on weighted averages of the employment creation figures for renewables, energy efficiency and 
fossil fuels under the stable domestic content assumption. 

We have used the following weighting scheme in aggregating the specific sectors within each 
energy-producing industry: With renewable energy, all sectors - bioenergy, hydro, wind, solar, 
and geothermal - are weighted equally. With energy efficiency, we have assigned a 50 percent 
weight to building retrofits, to reflect the centrality of this area of energy efficiency. We then 
weighted the other two energy efficiency sectors, industrial efficiency and electrical grid 
upgrades, at 25 percent each. With fossil fuels, we have weighted coal and oil/gas equally. We 
recognize that, in any given country setting, the actual size of any given sector in all energy-
producing areas, will depend on the specific conditions in each country. But we have assigned 
this one basic weighting scheme in the interests of simplicity and clarity across all of our 
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selected countries here.58

In the second set of employment estimates, we then decompose the overall job creation figures 
- including, again, both direct and indirect jobs - in order to provide some specificity as to the 
features of employment in each sector and the quality of jobs. 

Data on wages and other income indicators were not uniformly reliable across our five countries. 
As such, we utilized four alternative indicators for describing the types of jobs linked to each 
energy sector. These four indicators are: 1) the proportions of female employment; 2) the levels 
of educational attainment; and the proportions 3) in self-employment and 4) working in micro-
enterprises. The educational attainment levels associated with each energy sector provide a 
measure of the quality of jobs available in each sector. The proportions of workers linked to 
each energy-producing sector that are self-employed as opposed to earning wages; and that 
work in micro-enterprises, as opposed to larger-scale operations, provide measures of the 
extent of informal employment as a share of total employment. Details of the methodology 
we used to generate these disaggregated employment estimates are presented in Appendix 4.

In Appendix 4, we also provide additional evidence on the occupational characteristics within 
the various industries that are engaged in both clean energy and the fossil fuel sectors. That is, 
we show within, for example, the agricultural, construction and machinery industries in all five 
countries the proportions of self-employment, microenterprise employment and educational 
attainment relative to economy-wide averages for these sectors. We also report in Appendix 
4 figures on economy-wide average earning levels in each of the five countries, and what we 
estimate the approximate range of earnings is likely to be in the relevant clean-energy and 
fossil-fuel sectors relative to these economy-wide averages. 

The figures we report in this chapter are based fully on the methodologies we describe in 
Chapter 6 concerning the I-O tables, and our discussion in Appendix 4 for decomposing the 
total job creation into categories. We do not attempt to incorporate into this discussion broader 
considerations, such as skill needs for workers in each country as clean energy investments 
expand. We also do not consider here issues of how to most equitably handle the transitional 
issues facing workers who are currently dependent on the fossil fuel sectors, as these sectors 
contract. We rather have taken up these more qualitative matters in our Chapter 5 discussion 
on labor market issues within industrial policies.

58 At the same time, in Appendix 6, we examine the impact on our employment multiplier estimates from varying the relative weights within the 
renewable energy sectors. We also shift the relative weights between renewables and energy efficiency to equal proportions. As we show in Appendix 
6, for the most part, these shifts in the weighting schemes do not exert a significant influence on our overall findings with respect to employment levels 
generated by clean energy investments.
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Brazil
Overall Employment Creation

In Table 7.1, we show our full set of estimates in terms of employment per $1 million. Considering 
initially our estimates on renewables, it is first of all clear that by far, the most labor-intensive 
sector is bioenergy, in which direct jobs for producing bioenergy is at 73.1 per $1 million. This 
contrasts with a range of about 14-19 for hydro, wind, solar, and geothermal. Of course, the 
difference here is that, with bioenergy, the basic input is agricultural products. Producing 
these in Brazil - and as we will see, in most other countries as well - is significantly more labor 
intensive than, for example, the manufacturing, transportation and construction activities that 
are major inputs in the other renewable areas. As we will discuss more below, the quality of 
jobs in bioenergy also tends to be poor, due to low wages and bad working conditions for 
most agricultural workers in Brazil. But as we also discuss below, working conditions in Brazil’s 
bioenergy sector are likely to improve over time as the sector becomes more mechanized. This 
will also mean that the employment levels per dollar of expenditure will decline.

Table 7.1: Brazil. Employment creation through spending in alternative energy sectors, 2005

Jobs per $1 million

 
 

Domestic content stable Domestic content declines

Direct jobs Indirect jobs Direct +
indirect jobs  Direct jobs Indirect jobs Direct +

indirect jobs

Renewables            

Bioenergy 73.1 8.7 81.8 73.1 8.5 81.6

Hydro 13.9 11.7 25.5 13.7 11.5 25.2

Wind 18.9 10.3 29.2 18.5 10.1 28.6

Solar 14 11.7 25.7 13.5 11.6 25.1

Geothermal 17.7 11.1 28.7 17.5 10.9 28.4

Weighted average 
for renewables 27.5 10.7 38.2 27.3 10.5 37.8

Energy efficiency            

Building retrofits 34.2 12 46.2 34.2 11.9 46.0

Industrial efficiency 13.6 11.6 25.1 12.0 11.8 23.9

Grid upgrades 13.0 13.2 26.2 12.1 13.0 25.1

Weighted average 
for efficiency 23.7 12.2 35.9 23.1 12.1 35.2

Fossil fuels            

Coal 10.0 12.3 22.4 NA NA NA

Oil/natural gas 10.6 9.3 20 NA NA NA

Weighted average 
for fossil fuels 10.3 10.8 21.2 NA NA NA

Overall economy 20.1 16.0 36.1 NA NA NA
Source: See Appendix 3.
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In terms of indirect jobs - those jobs generated through the supply chains associated with 
renewable energy production - we see that the range is narrow across all renewable sectors, at 
about 9-12 jobs per $1 million. 

We average the overall employment effects within renewable energy based on our simple 
weighting scheme in which each of the five renewable sectors each account equally for 20 
percent of the total amount of employment generation. Based on this weighting approach, we 
then generate the result that spending $1 million in Brazil on renewable energy generates about 
38 jobs, including 27 direct and 11 indirect jobs. When we recalculate these figures assuming 
that domestic content declines in these sectors according to our criteria that domestic inputs 
decline by 20 percent in all tradable activities, the impact is modest - i.e. the overall job creation 
figure falls only from 38.2 to 37.8 jobs per $1 million.

Our estimates for energy efficiency spending in Brazil are not dramatically different than those 
for renewable energy. Considering our three energy efficiency categories, spending on building 
retrofits is significantly more labor intensive than electrical grid upgrades. Retrofits require 
about 46 jobs per $1 million, while grid upgrades and industrial efficiency entail, respectively, 
only 26 jobs and 23 jobs per $1 million. But in aggregating an “energy efficiency” sector, 
because we assume that building retrofits accounts for 50 percent of our total energy efficiency 
category, with industrial efficiency and grid upgrades each accounting for 25 percent, overall 
job creation through energy efficiency is about 36 jobs per $1 million in spending. In this case 
as well, we see that allowing for a decline in domestic content in these activities according to 
our criteria has only a minor impact on overall job creation through energy efficiency spending 
activities.

With respect to fossil fuels, in the case of Brazil as well as the other four economies, we can work 
with data that comes directly out of the national I-O model. In generating overall employment 
figures for the fossil fuel sector, we assume that spending levels for coal and oil/gas are equal, 
so that they receive equal weights in our calculations. The result of these calculations is that 
overall spending on both coal and oil/gas range between about 20-22 jobs per $1 million.

In the last row of Table 7.1, we show our estimated employment multipliers for the overall 
Brazilian economy. As we see, that figure is 36.1 jobs per $1 million, only slightly less than the 
weighted average figures for Brazil’s renewables and efficiency sectors.

Table 7.2 provides summary figures on these job estimates for Brazil. As the table shows, first 
the aggregated clean energy sector generates, on average about 37 jobs per $1 million, while 
the fossil fuel sector produces about 21 jobs per $1 million. The basic story then is, for Brazil, 
spending on the clean energy economy will produce about twice as many jobs per dollar of 
expenditure than an equal amount of spending on fossil fuels. A clean energy investment 
strategy will not increase or decrease job creation significantly relative to overall spending 
within the Brazilian economy. As such, the major benefits for Brazil through advancing a 
clean energy investment strategy are focused within the energy system itself and the related 
environmental impacts. Clean energy investments will produce both major reductions in CO2 
emissions and increase job opportunities relative to maintaining the country’s existing fossil 
fuel based energy systems.
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Table 7.2: Brazil. Summary employment figures, 2005

Direct + indirect employment with stable domestic content

  Jobs per $1 million 

Renewable energy 38.2

Energy efficiency 35.9

Clean energy total
(with equal renewables and efficiency weights) 37.1

Fossil fuels 21.2

Clean energy relative to fossil fuels
(percentage) 75.2%

Overall economy 36.1

Clean energy relative to overall economy
(percentage) 2.8%

Source: Generated from Table 7.1. Underlying calculations from Appendix 3.

Composition of Employment

We present our results on the composition of employment in Brazil’s clean energy and fossil fuel 
sectors in Tables 7.3 and 7.4, including our four measures of employment composition: female 
share of employment; percentages in self-employment and working in micro-enterprises; and 
educational attainment levels.
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Table 7.3: Brazil. Composition of employment generated through alternative energy sector 
spending, 2005

Gender composition of workforce
Wage vs. self-employment
Micro vs. non-micro enterprises

 Educational attainment levels (separate table below)

 
Total employment Female 

employment Self-employment Micro enterprise 
employment

(Jobs per  
$1 million) (Percentage)

Renewables        

Bioenergy 81.8 34% 66% 41%

Hydro 25.5 21% 31% 41%

Wind 29.2 19% 32% 42%

Solar 25.7 20% 36% 47%

Geothermal 28.7 15% 40% 53%

Energy efficiency        

Building retrofits 46.2 10% 45% 60%

Industrial efficiency 25.1 19% 32% 41%

Grid upgrades 26.2 21% 33% 43%

Fossil fuels        

Coal 22.4 21% 33% 37%

Oil/natural gas 20.0  23% 30% 38%

Source: See Appendix 4.
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Table 7.4: Brazil. Educational profile of employment generated through alternative energy 
sector spending, 2005

 
 

No education or 
less than primary 

level
Primary level Secondary level Tertiary level 

(Percentage)

Renewables        

Bioenergy 13% 62% 19% 6%

Hydro 4% 56% 35% 5%

Wind 4% 56% 35% 4%

Solar 4% 56% 35% 5%

Geothermal 5% 61% 30% 4%

Energy efficiency        

Building retrofits 6% 66% 26% 3%

Industrial efficiency 4% 54% 37% 5%

Grid upgrades 4% 54% 37% 5%

Fossil fuels        

Coal 7% 56% 32% 5%

Oil/natural gas 3% 51% 40% 6%

Source: See Appendix 4.

 
Gender Balance. As a first indicator of the composition of jobs in Brazil’s various energy 
sectors, we see in Table 7.3 that all sectors disproportionately employ males over females. 
With renewables, the highest proportion of female employment is in bioenergy, at 34 percent of 
total employment. This relatively large figure reflects the high representation of female workers 
employed in domestic agricultural production. With all other renewable energy sectors, female 
employment ranges between only about 15-20 percent.

The female representation is lower still in building retrofits, with only 10 percent female 
employment. This is due to the construction industry being dominated by males, in Brazil 
and elsewhere. With industrial efficiency and grid upgrades, the female share is, as with most 
renewables, in the range of 20 percent of total employment. We also see that this same roughly 
20 percent female share holds in both of our fossil fuel sectors, coal and oil/gas.

Broadly speaking, it is clear that job opportunities in all areas of Brazil’s energy economy 
are weighted heavily towards males. Bioenergy is the only exception. But here the higher 
proportion of jobs for females are in agriculture, where incomes, opportunities and security 
are relatively low.

This point is worth highlighting more here, since Brazil operates with a major bioenergy sector. 
A 2007 joint study sponsored by the OECD and the International Transit Forum describes 
conditions in Brazil’s biofuels industry as follows:

SECTION 2 :  ESTIMATING EMPLOYMENT EFFECTS



GLOBAL GREEN GROWTH

152

The majority of jobs created are for sugarcane plantation and harvesting activities, which 
are low quality jobs, since they involve insalubrious activities (manual harvesting). 
Another problem of the sugarcane plantation is the seasonality of the production 
process. Therefore, a large part of the workers dedicated to sugarcane harvesting 
work only 7 months per year. The Ministry of Labor has strengthened the regulation on 
working conditions. Although working conditions have improved considerably in the last 
decades, it is still a controversial subject. The mechanization of harvesting is expected 
to improve working conditions. Harvesting machines will replace unskilled temporary 
workers. The average productivity and salary tend to rise. However, the labor intensity 
of ethanol production will decrease with a substantial impact on the unemployment rate 
(De Almeida, Bomtempo and De Souza E Silva, 2007, p. 7).59

Self-Employment and Micro Enterprises. In terms, first, of self-employment, we see that only 
in bioenergy are the majority of workers - in fact, 66 percent - self-employed. Building retrofits 
are next highest, at 45 percent self-employment. Otherwise, with respect to other clean energy 
sectors as well as fossil fuels, self-employment constitutes about 30-40 percent of total 
employment. 

In both building retrofits and geothermal energy, the majority of workers are employed in 
micro-enterprises. Otherwise, the proportion in the remaining clean energy and fossil-fuel 
sectors that work in micro-enterprises is mostly about 30-40 percent again - a minority, but a 
significant minority nonetheless. 

Educational attainment. As we see in Table 7.4, educational attainment levels are also mostly 
comparable across both the clean and fossil fuel energy sectors in Brazil. Here again, the one 
exception is bioenergy, in which 13 percent of workers have had either no education or less 
than a primary education level. In the other clean energy sectors, those with less than primary 
level range between 3 and 7 percent, with no strong differences between any of the individual 
energy sectors. Primary education attainment ranges between about 50 and 60 percent across 
both clean energy and fossil fuel sectors, and secondary is mainly in the range of between 
30 and 40 percent. Workers having tertiary educational attainment levels are also basically 
comparable across energy sectors, at between 4 and 6 percent. Building retrofits is lower at 3 
percent and industrial efficiency is somewhat higher at 10 percent.

As an overall assessment on employment issues for Brazil’s clean energy sectors, six general 
points seem most salient here:

1. Building a clean energy economy will be a major source of new job creation in Brazil 
relative to expanding or maintaining the existing level of operations in the fossil fuel 
sectors. It will have no discernable impact on job opportunities relative to spending 
overall within the Brazilian economy.

2. Expanding the clean energy sector in Brazil will greatly favor male over female 
workers, unless areas such as construction and manufacturing open up employment 
opportunities to women to a significant extent. A major expansion in clean energy 
investments could be seen as an opportunity to break down gender-based employment 
patterns if appropriate complementary policies are advanced concurrently.

59 See also the study by Barros (2010) for the U.S. Department of Agriculture.
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3. The share of informal employment in clean energy appears to be high, though, for the 
most part, the majority of workers are employed in non-micro enterprises, and are paid 
in wages. Nevertheless, the expansion of the clean energy economy could be seen here 
as well as an opportunity to formalize the very high percentage of workplaces that are 
still informal.

4. Educational attainment levels are not especially high in the clean energy sectors. Given 
this current distribution of education levels among the relevant working pool, there 
should not be significant supply constraints in building a clean energy economy in 
terms of facing shortages of higher-credentialed workers.

5. The profile of workers and workplaces employed in the renewable energy and energy 
efficiency sectors is not substantially different than those for coal and oil/gas. As such, 
undertaking a large-scale transition from fossil fuel energy sources to clean energy 
should not create major supply bottlenecks in terms of the availability of workers at the 
various levels of credentials and experience. In particular, the proportion of workers 
with tertiary educational levels is roughly the same in clean energy and the fossil fuel 
sectors. It should therefore not place special demands on Brazil’s higher educational 
system when the clean energy economy grows amid the contraction of the fossil fuel 
sector.

6. Bioenergy is clearly the outlier among both clean energy and fossil fuel energy sources. 
The level of employment per $1 million in expenditures is much higher than other 
sectors, as are the shares of both female workers and those with lower educational 
attainment levels. Expanding the biofuel sector could be seen as an opportunity to raise 
productivity in agriculture, and thereby to create more opportunities for women, and 
those with fewer educational credentials. At the same time, the expected significant rise 
in agricultural productivity will of course mean fewer jobs per level of production. But 
employment levels should still be maintained at a high level as the level of production 
of bioenergy rises.

Germany
Overall Employment Creation

We present the full set of figures on employment multipliers for Germany in Tables 7.5 and 7.6. 
As with Brazil, the differences in employment generation between the cases of a stable level of 
domestic content and the case when domestic content declines as clean energy investments 
expand are not dramatic. With renewable energy the overall difference is about 1 job per $1 
million in spending, from 9.3 to 8.4 jobs. With energy efficiency, the difference is more modest, 
from 10.0 to 9.5 jobs. Relying increasingly on imports within Germany’s tradable sectors should 
not therefore have major effects on the employment opportunities generated through the 
German clean energy investment project.
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Table 7.5: Germany. Employment creation through spending in alternative energy sectors, 2007

Jobs per $1 million

 
 
 

Domestic content stable Domestic content declines

Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs

(Jobs per $1 million)

Renewables            

Bioenergy 8.3 2.7 11.0 7.0 2.5 9.5

Hydro 5.3 3.5 8.8 4.5 3.3 7.8

Wind 5.5 2.9 8.4 4.9 2.6 7.5

Solar 5.7 3.1 8.8 5.1 2.9 7.9

Geothermal 6.3 3.4 9.7 5.8 3.1 8.9

Weighted average 
for renewables 6.2 3.1 9.3 5.5 2.9 8.4

Energy efficiency            

Building retrofits 8.7 3.1 11.8 8.7 2.8 11.5

Industrial 
efficiency 5.5 3.2 8.6 4.0 3.7 7.7

Grid upgrades 5.3 2.8 8.1 4.7 2.6 7.3

Weighted average 
for efficiency 7.0 3.1 10.1 6.5 3.0 9.5

Fossil fuels            

Coal 6.1 3.8 10 NA NA NA

Oil/natural gas 2.8 2.5 5.3 NA NA NA

Weighted average 
for fossil fuels 4.5 3.2 7.6 NA NA NA

Overall economy 6.2  2.7 8.9 NA NA NA

Source: See Appendix 3.

 
In terms of individual clean energy sectors, the overall differences in employment creation 
between the sectors are relatively modest. With renewable energy, bioenergy is again more 
labor intensive, but in this case only modestly more than the other renewable sectors. In the 
stable domestic content case, bioenergy generates 11 direct and indirect jobs per $1 million, 
while the other renewable sectors generate between 8.4 and 9.7 jobs. With energy efficiency, 
building retrofits is again more labor intensive, as these are all construction sector-linked jobs. 
We estimate that industrial efficiency and grid upgrades generate about 8-9 jobs per $1 million 
in spending.

With fossil fuels, coal is still relatively labor intensive in Germany, at 10.0 jobs per $1 million. 
This figure is nearly twice as high as that for oil and gas, which generate 5.3 jobs per $1 million. 
The weighted average for both fossil fuel sectors is therefore 7.6 jobs per $1 million.
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In the last row of Table 7.5, we show our estimated employment multipliers for the overall 
German economy. As we see, that figure is 8.9 jobs per $1 million, which is about 9 percent less 
than the 9.7 figure weighted average figure for Germany’s renewables and efficiency sectors. 

Table 7.6 provides a summary comparison between clean energy and fossil fuel employment in 
Germany. As we see, overall, clean energy generates about 27 percent more jobs per $1 million. 
This differential is far less than that for Brazil. Nevertheless, it is clear from these figures that, 
overall, employment levels in the energy sector will not fall, and almost certainly will rise by 
a significant amount as Germany continues its ongoing aggressive transition toward a clean 
energy economy. A clean energy investment project will increase job creation only modestly 
relative to overall spending within the German economy. As such, the major benefits for 
Germany through advancing a clean energy investment project are focused within the energy 
system itself and the related environmental impacts. Clean energy investments will produce 
both major reductions in CO2 emissions and increase job opportunities relative to maintaining 
the country’s existing fossil-fuel based energy systems.

Table 7.6: Germany. Summary employment figures, 2007

Direct + indirect employment with stable domestic content

  Jobs per $1 million 

Renewable energy 9.3

Energy efficiency 10.1

Clean energy total 9.7

Fossil fuels 7.6

Clean energy relative to fossil fuels
(percentage) 27.6%

Overall economy 8.9

Clean energy relative to overall economy
(percentage)

9.0%
 

Source: Generated from Table 7.5. Underlying calculations from Appendix 3.
Notes: The clean energy total is calculated with equal renewables and efficiency weights.

Composition of Employment
We present the German figures on composition of employment in Tables 7.7 and 7.8. The main 
findings are as follows:

Gender balance. The clean energy sectors of the German economy, are, like the case of Brazil, 
dominated by male workers, though the female proportions tend to be somewhat higher in 
Germany than Brazil. For the most part, in all renewable and energy efficiency areas, the female 
share of employment ranges between about 25 and 35 percent. The two areas where the female 
ratios are significantly lower are in building retrofits, at 18 percent and coal, at 19 percent. 
These figures reflect the almost entirely male workforce in both construction and coal mining.
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Table 7.7: Germany. Composition of employment generated through alternative energy sector 
spending, 2007

Gender composition of workforce
Wage vs. self-employment
Micro vs. non-micro enterprises
Educational attainment levels (separate table below)

 
Total employment Female 

employment Self-employment Micro enterprise 
employment

Jobs per $1 million  (Percentage)

Renewables        

Bioenergy 11.0 29% 27% 36%

Hydro 8.8 36% 10% 13%

Wind 8.4 25% 9% 13%

Solar 8.8 29% 10% 14%

Geothermal 9.7 29% 14% 22%

Energy efficiency        

Building retrofits 11.8 18% 17% 25%

Industrial efficiency 8.6 33% 11% 16%

Grid upgrades 8.1 26% 10% 14%

Fossil fuels        

Coal 10.0 19% 5% 8%

Oil/natural gas 5.3 27% 11% 17%

Source: See Appendix 4.

 
Self-employment and Micro Enterprises. Not surprisingly, in the case of Germany, our indicators 
of informal employment are generally low. In most cases, self-employment constitutes only 
about 10 -15 percent of jobs linked to either renewable energy or energy efficiency. The one 
standout-case here is bioenergy, where self-employment is at 27 percent. With size of firms, 
bioenergy stands out again, with 36 percent of employment is at the level of micro-enterprises. 
The micro-enterprise proportions are between 13 and 25 percent otherwise. With fossil fuels, 
the coal industry has only 8 percent of employment coming from micro-enterprises. Oil and 
natural gas are comparable to most clean energy areas, at 17 percent.

Educational attainment. Note, first of all, that the reporting on educational attainment 
categories is different in Germany than with Brazil, Indonesia, South Africa and the ROK. In 
the German case, the lowest attainment category includes up to a middle-school education. 
The second category includes those with secondary and non-secondary educational levels, 
including those graduating from vocational colleges. The highest category includes those with 
university-level education, including advanced degrees. The results are shown in Table 7.8
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Table 7.8: Germany. Educational profile of employment generated through alternative energy 
sector spending, 2007

 
 

Middle school or less
Secondary and 

non-university post-
secondary

University and  
post-graduate

(Percentage)

Renewables

Bioenergy 16% 61% 23%

Hydro 11% 51% 38%

Wind 15% 60% 24%

Solar 14% 57% 29%

Geothermal 12% 56% 31%

Energy efficiency

Building retrofits 16% 64% 20%

Industrial efficiency 12% 54% 34%

Grid upgrades 15% 60% 25%

Fossil fuels

Coal 16% 66% 18%

Oil/natural gas 13% 64% 24%

Source: See Appendix 4.

 
We see in Table 7.8 that there are no large differences in the educational attainment patterns 
across the clean energy sectors. About 60 percent of all workers are in the middle educational 
attainment category - i.e. secondary or vocational school educational levels. For the most part, 
about 20-30 percent have either university or graduate level educational attainment levels. 
Between about 11-16 percent are in the lowest category, in which people have middle-school 
levels of education or less. The only standout is in hydropower, where 38 percent of workers 
are at high attainment levels. These same patterns also follow with coal, oil and natural gas. 

As we discuss elsewhere in this report in more detail, Germany is already advancing strongly 
toward building a clean energy economy through large-scale investments in renewable energy 
and energy efficiency. It will continue to create more job opportunities through expanding these 
investment areas as opposed to either expanding or maintaining its existing fossil fuel sectors 
at their current scales. It is not surprising that the composition of the workforce employed in 
clean energy is fairly stable across specific sectors and that there are also no large differences 
relative to the workforce employed in the fossil fuel industries. Thus, there is no evidence 
that building a clean energy economy in Germany will be constrained by shortages in terms of 
workforce experience or educational levels.

At the same time, the continued expansion of a clean energy economy in Germany should be 
seen as providing an opportunity to create a broader set of employment prospects for women. 
Women constitute 46 percent of the overall German workforce, but only about 25-35 percent of 
the clean energy workforce in most areas. 
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Indonesia
Overall Employment Creation

As we see in Tables 7.9 and 7.10, overall employment creation in Indonesia through spending 
in renewable energy and energy efficiency investments will be much higher than the current 
level of employment generation within the fossil fuel economy. This is true across all renewable 
energy and energy efficiency sectors. In the Indonesian case as well, the results are not 
significantly affected by a decline in domestic content as investment in clean energy expands. 
That is, following our assumption that domestic content in tradable sectors declines by 20 
percent due to the expanded demand for clean-energy based inputs, the overall effect is to 
reduce direct and indirect employment by about 2 jobs per $1 million of spending in both 
renewable energy and energy efficiency - from 118.8 to 116.2 jobs per $1 million in renewables 
and 79.4 to 77.3 jobs in energy efficiency.

Table 7.9: Indonesia. Employment creation through spending in alternative energy sectors, 2008

Jobs per $1 million

 
 

Domestic content stable Domestic content declines

Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs

Renewables            

Bioenergy 237.0 73.5 310.5 237.0 72.7 309.7

Hydro 29.4 46.5 75.9 24.9 45.3 70.2

Wind 19.6 60.1 79.7 18.1 59.2 77.3

Solar 18.9 44.5 63.4 17.4 43.4 60.8

Geothermal 18.4 46.2 64.7 18.1 44.9 62.9

Weighted average 
for renewables 64.7 54.2 118.8 63.1 53.1 116.2

Energy efficiency            

Building retrofits 36.3 61.7 97.9 36.3 60 96.3

Industrial efficiency 12.8 46.8 59.6 11.8 45.5 57.3

Grid upgrades 17.0 45.2 62.2 15.5 44.1 59.6

Weighted average 
for efficiency 25.6 53.8 79.4 25 52.4 77.3

Fossil fuels            

Coal 7.1 33.5 40.6 NA NA NA

Oil/natural gas 2.7 0.8 3.5 NA NA NA

Weighted average 
for fossil fuels 4.9 17.1 22.0 NA NA NA

Overall economy 155.1 27.2 182.2 NA NA NA

Source: See Appendix 3.
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Focusing then on the case of stable domestic content, we do here see, even more so than Brazil, 
that the bioenergy sector is by far the largest proportional source of job creation, with 310 jobs 
generated per $1 million in spending. These, again, will be mostly jobs with low compensation 
and poor working conditions in agriculture. In the other renewable energy areas - hydro, wind, 
solar and geothermal - total direct and indirect job creation ranges fairly narrowly, between 64 
and 79 jobs per $1 million.

With our energy efficiency categories, building retrofits generates substantially more jobs per 
$1 million in spending, at 97.9 jobs. Here again, these are all jobs linked to the construction 
industry. With industrial efficiency and grid upgrades, the range is narrow, between 60 and 62 
jobs per $1 million.

These job figures are far greater than those for coal, oil and natural gas. The coal industry, at 40 
jobs per $1 million in spending, is relatively capital intensive in Indonesia compared with even 
the more capital-intensive renewable energy and energy efficiency sectors, such as solar and 
industrial efficiency. But even more so, oil and natural gas are highly capital intensive even by 
global standards, at 3.5 jobs per $1 million. As we saw, in Germany, the comparable figure is 
5.3 jobs per $1 million.

In the last row of Table 7.9, we show our estimated employment multipliers for the overall 
Indonesian economy. As we see, that figure is 182.2 jobs per $1 million. This is fully 46 percent 
greater than the 99.1 jobs per $1 million weighted average figure for Indonesia’s renewables 
and efficiency sectors. 

The overall result in terms of job creation, as we see in Table 7.10, is that a combined renewable 
energy and energy efficiency investment agenda will create 350 percent more jobs in Indonesia 
than comparable levels of spending in the current fossil fuel industries. At the same time, we 
have to also recognize that a clean energy investment project will not increase job creation 
relative to overall spending within the Indonesian economy. Rather, for Indonesia to invest in 
the clean energy economy will generate nearly 50 percent fewer jobs per dollar of expenditure 
than simply expanding overall spending within Indonesia. 

But of course, Indonesia, as with all other economies, cannot function without operating a 
large-scale energy sector. As such, the critical comparison here is between the clean energy 
vs. fossil fuel energy systems as a source of job creation, in which clean energy clearly offers 
far greater opportunities. Thus, as with the other countries, the major benefits for Indonesia 
through advancing a clean energy investment project are focused within the energy system 
itself and the related environmental impacts. Clean energy investments will produce both 
major reductions in CO2 emissions and increase job opportunities relative to maintaining the 
country’s existing fossil fuel based energy systems. Of course, we do need to also consider the 
quality of these jobs, the issue to which we now turn.
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Table 7.10: Indonesia. Summary employment figures, 2008

Direct + indirect employment with stable domestic content

  Jobs per $1 million

Renewable energy 118.8

Energy efficiency 79.4

Clean energy total (with equal renewables and efficiency weights) 99.1

Fossil fuels 22.0

Clean energy relative to fossil fuels
(percentage) 350.3%

Overall economy 182.2

Clean Energy relative to Overall Economy
(percentage) -45.6%

Source: Generated from Table 7.9. Underlying calculations from Appendix 3. 

Composition of Employment

Tables 7.11 and 7.12 present our results on the composition of employment in Indonesia’s 
various energy sectors. 

Gender composition. As in the cases of Brazil and Germany, employment in the clean energy 
sectors is male dominated. The highest proportion of female employment is in bioenergy, at 37 
percent. Otherwise, the percentages range between 22 and 32 percent. As in the other cases, 
investments to build a clean energy economy should be seen as an occasion to provide a whole 
range of new opportunities for women. Employment opportunities for women in fossil fuels is 
overall worse than in the various clean energy sectors. 
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Table 7.11: Indonesia. Composition of employment generated through alternative energy 
sector spending, 2008

Educational attainment levels (separate table below)

 
Total employment Female employment Self-employment Micro enterprise 

employment 

(Jobs per $1 million) (Percentage)

Renewables        

Bioenergy 310.5 37% 91% NA

Hydro 75.9 31% 62% NA

Wind 79.7 32% 65% NA

Solar 63.4 29% 61% NA

Geothermal 64.7 26% 64% NA

Energy efficiency        

Building retrofits 97.9 22% 65% NA

Industrial efficiency 59.6 32% 62% NA

Grid upgrades 62.2 32% 60% NA

Fossil fuels        

Coal 40.6 33% 63% NA

Oil/natural gas 3.5 12% 22% NA

Source: See Appendix 4.

 
Wage employment and micro enterprises. Unfortunately, the Indonesian labor force survey 
data do not provide a breakdown according to the size of the enterprises at which workers are 
employed. We will therefore need to rely more on the self-employment data as an indicator 
of the extent of informalization in the clean energy sectors. As we see, self-employment is 
dominant in the Indonesian bioenergy sector, at 91 percent of total employment. It is also 
prevalent in all the rest of the renewable energy and energy efficiency sectors, at around 60 
percent in all cases. Indeed, the oil and gas sector is the only one in the energy area in which 
wage employment is prevalent, with self-employment constituting only 22 percent of the total.

Most likely, the self-employed jobs are mainly in low-income and low-productivity work 
situations. These conditions could create some supply bottlenecks, assuming the Indonesian 
clean energy economy does begin growing at a rapid rate. At the same time, the high proportion 
of informal employment in the Indonesian clean energy sectors does also establish major 
opportunities for Indonesia to formalize these workplaces as clean energy-linked sectors 
undergo a major expansion.

Educational attainment. Not surprisingly, the educational attainment levels in the clean 
energy sectors are relatively low, though basically not less so than in the fossil fuel sectors. 
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Throughout the renewable and energy efficiency areas, between about 15 and 20 percent of 
workers have less than a primary education (See Table 7.12). If we combine those with no more 
than a primary education, the percentages range between 70 and 90 percent. This is also true 
for Indonesia’s coal sector. The oil and gas sector is the only one in which more than half 
of the workers have either secondary or tertiary educational attainment levels. In short, here 
again, we see an indication of a high degree of informalization and probably relatively low 
productivity levels in the clean energy sectors. At the same time, if we just consider those with 
tertiary educational attainment levels, this ranges narrowly between 5 and 6 percent of total 
employment. The one exception is bioenergy, where only 1 percent of workers have tertiary 
education levels. But generally, this level of tertiary education attainment in the clean energy 
sectors is equal to that of Brazil. As such, the relatively low level of workers with middle levels of 
educational attainment may not pose a significant supply constraint for expanding Indonesia’s 
clean energy economy, as long as the higher-level managerial positions include a reasonable 
share of technically trained workers. 

Table 7.12: Indonesia. Educational profile of employment generated through alternative 
energy sector spending, 2008

 

No education or 
less than primary 

level 
Primary level Secondary level Tertiary level 

(Percentages)

Renewables        

Bioenergy 15% 74% 10% 1%

Hydro 20% 53% 22% 5%

Wind 21% 52% 23% 5%

Solar 21% 48% 25% 6%

Geothermal 21% 52% 22% 5%

Energy efficiency        

Building retrofits 22% 54% 20% 5%

Industrial efficiency 20% 48% 26% 6%

Grid upgrades 20% 46% 28% 6%

Fossil fuels        

Coal 20% 52% 22% 6%

Oil/natural gas 13% 15% 51% 21%

Source: See Appendix 4.

 
Overall, building a clean energy economy in Indonesia, as opposed to maintaining or expanding 
its existing fossil-fuel dominated energy system, will generate both major opportunities and 
challenges in terms of its employment effects. The opportunities exist because, even allowing 
that productivity would grow rapidly as the clean energy sectors mature, the overall level of 
employment will still be far greater than that for fossil fuels. The challenge then will be precisely 
to encourage these workplaces to become increasingly formalized. This, in turn, will allow for 
higher productivity and, thereby, a more rapidly growing clean energy sector in Indonesia.
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South Africa
As we show in Tables 7.13-7.14, employment creation in South Africa linked to the clean energy 
investment agenda will generate a major increase in employment opportunities across all 
renewable energy and energy efficiency sectors relative to spending within the fossil fuel 
sectors. Moreover, as we will see in Tables 7.15 and 7.16, our estimates suggest that the quality 
of employment within most renewable and energy efficiency industries is comparable to job 
quality in fossil fuel industries. Job quality is, on average, relatively low in the key clean energy 
areas of building retrofits and bioenergy, but these patterns are balanced by the relatively high 
level of formality and educational attainment levels in the other clean energy sectors. 

Overall Employment Creation

Tables 7.13 and 7.14 show that the range of employment creation in South Africa through 
renewable energy investments is narrow, excepting the usual case of bioenergy. With bioenergy, 
the estimate we generated is that $1 million in investments will generate 78 jobs. With the 
other renewable sectors - hydro, wind, solar, and geothermal - we estimate that between 55-70 
jobs are generated directly and indirectly through spending $1 million. As a weighted average, 
spending in the renewable energy sectors generate about 65 jobs per $1 million.
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Table 7.13: South Africa. Employment creation through spending in alternative energy 
sectors, 2005

Jobs per $1 million

 
 

Domestic content stable Domestic content declines

Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs

Renewables            

Bioenergy 50.1 28.1 78.2 50.0 26.5 76.5

Hydro 25.4 36.2 61.6 24.9 34.4 59.3

Wind 29.9 30.6 60.5 27.8 29.2 56.9

Solar 19.6 35.9 55.6 18.3 34.1 52.4

Geothermal 31.2 38.2 69.5 30.8 36.4 67.2

Weighted average 
for renewables 31.3 33.8 65.1 30.3 32.1 62.5

Energy efficiency            

Building retrofits 56.5 37.5 94.0 56.5 35.7 92.1

Industrial efficiency 24.6 35.9 60.5 22.8 34.5 57.2

Grid upgrades 24.3 31.6 55.9 22.9 29.8 52.7

Weighted average 
for efficiency 40.5 35.6 76.1 39.7 33.9 73.5

Fossil fuels            

Coal 5.3 24.1 29.4 NA NA NA

Oil/natural gas 11.7 25.1 36.8 NA NA NA

Weighted average 
for fossil fuels 8.5 24.6 33.1 NA NA NA

Overall economy 52.2 70.1 122.3 NA NA NA

Source: See Appendix 3.
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Table 7.14: South Africa. Summary employment figures, 2005 

Direct + indirect employment with stable domestic content

  Jobs per $1 million

Renewable energy 65.1

Energy efficiency 76.1

Clean energy total (with equal renewables and efficiency weights) 70.6

Fossil fuels 33.1

Clean energy relative to fossil fuels (percentage) 113.2%

Overall economy 122.3

Clean energy relative to overall economy (percentage) -42.3%

Source: Generated from Table 7.13. Underlying calculations from Appendix 3.

The range is greater in our respective energy efficiency sectors. That is, the employment levels 
are high with building retrofits, at 94 jobs per $1 million. This reflects the low wage levels for 
construction industry jobs in South Africa. Industrial efficiency and grid upgrades generate, 
by our estimates, between 56-61 jobs per $1 million in spending. Given that we are weighting 
building retrofits as 50 percent of all energy efficiency spending, with the other two sectors as 
25 percent each, this generates a weighted average for job creation in energy efficiency at 76.1 
jobs per $1 million. 

In terms of our consideration of domestic capacity constraints as clean energy investments 
expand, we find in the case of South Africa, as with the situations in Brazil, Germany and 
Indonesia, that increasing the import content of inputs by 20 percent for tradable activities 
does not generate a large decrease in employment. Renewable energy job creation falls from 
65.1 to 62.5 jobs while energy efficiency job creation falls from 76.1 to 73.5 jobs. 

Overall then, as Table 7.14 shows, we estimate that the overall clean energy investment 
package produces a weighted average of 70.6 jobs, which is 113 percent higher than the 33.1 
jobs generated, on average, in coal, oil and gas. Moreover, in the case of South Africa, the 
levels of employment creation in coal versus oil and gas are relatively modest. In short, again, 
our estimates show that South Africa will certainly gain in terms of overall levels of employment 
through undertaking a transformation out of fossil fuels and into renewable energy and energy 
efficiency.

At the same time, similar to the case of Indonesia, we have to also recognize that clean energy 
investment project will not increase job creation relative to overall spending within the South 
African economy. Rather, as we see in Tables 7.13 and 7.14, for South Africa to invest in the 
clean energy economy will generate about 40 percent fewer jobs per dollar of expenditure than 
simply expanding overall spending within South Africa. Of course, South Africa, as with all other 
economies, cannot function without operating a large-scale energy sector. As such, the critical 
comparison here is between the clean energy vs. fossil fuel energy systems as a source of job 
creation, in which clean energy clearly offers far greater opportunities. Thus, as with the other 
countries, the major benefits for South Africa through advancing a clean energy investment 
project are focused within the energy system itself and the related environmental impacts. 
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Clean energy investments will produce both major reductions in CO2 emissions and increase 
job opportunities relative to maintaining the country’s existing fossil fuel based energy system.

Composition of Employment

Tables 7.15 and 7.16 report on our estimates for job composition for the various energy sectors 
in South Africa. Our main findings are as follows:

Table 7.15: South Africa. Composition of employment generated through alternative energy 
sector spending, 2005

Educational attainment levels (separate table below)

 
Total employment Female employment Self-employment Micro enterprise 

employment

(Jobs per $1 million) (Percentage)

Renewables        

Bioenergy 78.2 29% 19% 33%

Hydro 61.6 30% 15% 33%

Wind 60.5 24% 12% 27%

Solar 55.5 28% 14% 32%

Geothermal 69.4 24% 15% 32%

Energy efficiency        

Building retrofits 94.0 15% 11% 24%

Industrial efficiency 60.5 27% 13% 29%

Grid upgrades 55.9 25% 11% 28%

Fossil fuels        

Coal 29.4 28% 10% 26%

Oil/natural gas 36.8 28% 13% 34%

Source: See Appendix 4.
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Table 7.16: South Africa. Educational profile of employment generated through alternative 
energy sector spending, 2005

 
No education or less 

than primary level Primary level Secondary level Tertiary level 

(Percentages)

Renewables        

Bioenergy 28% 44% 24% 4%

Hydro 17% 40% 35% 8%

Wind 14% 48% 33% 5%

Solar 16% 41% 36% 7%

Geothermal 18% 43% 33% 7%

Energy efficiency        

Building retrofits 15% 61% 22% 3%

Industrial efficiency 13% 45% 35% 7%

Grid upgrades 14% 48% 33% 5%

Fossil fuels        

Coal 15% 43% 36% 6%

Oil/natural gas 15% 43% 36% 6%

Source: See Appendix 4.

 
Gender composition. As with Brazil, Germany, and Indonesia, the proportion of women working 
in the renewable energy and energy efficiency sectors is low. With the exception of building 
retrofits, there is a narrow range between all of the sectors, at between 24 and 35 percent 
female employment as a share of total employment. The disparity is even more pronounced 
with building retrofits, which, as discussed before, we have defined as being 100 percent 
construction industry activity. Women hold only 15 percent of the direct plus indirect jobs in 
the construction industry. Thus, once again, a major expansion of activity in renewable energy 
and energy efficiency should be seen as an occasion to open up job opportunities for women, 
in areas such as manufacturing, transportation and construction. 

Self-employment and micro enterprises. According to our estimates, the proportions of self-
employment and employment at micro-enterprises - our indicators of informal employment 
conditions - appear to be relatively low for the South African case. As we see, less than 20 
percent of workers whose jobs are directly or indirectly linked to the renewable energy and 
energy efficiency sectors are self-employed - i.e., across the board, more than 80 percent are 
wage-earners. These figures, for example, are significantly higher than those for Brazil. The 
proportions working in micro-enterprises in the various clean energy sectors is between 24 and 
33 percent in most cases. Overall, as with the case of Brazil, the presence of micro-enterprises 
is not insignificant in the clean energy sectors, even while most workers are employed at larger 
enterprises. However, the fact that most workers are also receiving wages, as opposed to 
being self-employed, suggests that these micro-enterprises may be somewhat less informal 
establishments than would be the case, say, in Brazil.
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Educational attainment. As we see in Table 7.16, the levels of educational attainment are 
basically stable here, across all renewable energy and energy efficiency sectors, with the two 
exceptions of bioenergy and building retrofits. In most of the clean energy sectors, between 
40 and 48 percent of workers have primary educations, between 14 and 18 percent have less 
than a primary education, 24-36 percent have secondary educations, and 5-8 percent have 
higher educations. With bioenergy, we estimate that nearly 30 percent of workers have less 
than a primary education. The percentages of workers in bioenergy with secondary educations, 
at 24 percent, and tertiary levels, at 4 percent, are somewhat lower than those in the other 
clean energy sectors. With building retrofits, the proportion having received secondary-level 
education is relatively low, at 22 percent, while those with primary educations only is higher, 
at 61 percent. The patterns of educational levels for coal and oil and natural gas are basically 
the same as those for hydro, wind, solar, geothermal, industrial efficiency and grid updates. 

Overall, our evidence shows, again, that South Africa would benefit substantially in terms of 
numbers of employment opportunities created through a large-scale expansion of clean energy 
investments. This is because spending within the clean energy sectors creates, according to 
our estimates, 114 percent more jobs than the same level of spending on coal, oil and natural 
gas. In terms of composition of employment, the level of formalization within the clean energy 
sectors - as measured by the proportions of workers who are self-employed and are working in 
micro-enterprises - is already relatively high. The share of formal employment should therefore 
not be expected to change dramatically through a large-scale expansion of clean energy 
investments. Finally, again, it will be important to create more job opportunities for women 
in the areas of the South African economy that are linked to renewable energy and energy 
efficiency, as these sectors expand.

The Republic of Korea
Overall Employment Creation

As we show in Tables 7.17 and 7.18, our estimates for the level of job creation for most renewable 
energy and energy efficiency sectors range fairly narrowly. Again, the one big exception is 
bioenergy. With the other renewable sectors - hydro, wind, solar, and geothermal - we estimate 
direct plus indirect job creation as being between about 11-15 jobs per $1 million in spending 
in our first scenario, in which domestic content proportions are stable. With bioenergy, we 
estimate direct plus indirect job creation at about 28 jobs per $1 million. As with our four 
other selected countries, this is because agriculture accounts for 50 percent of all value added 
in bioenergy in our model, and the compensation levels in agriculture in the ROK are well 
below those for other sectors, such as manufacturing, refining, and transportation, that are 
heavily represented in clean energy. These figures produce a weighted average estimate for all 
renewable sectors at 16.2 jobs per $1 million.
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Table 7.17: Republic of Korea. Employment creation through spending in alternative energy 
sectors, 2008

Jobs per $1 million

 
 
 

Domestic content stable Domestic content declines

Direct jobs Indirect 
jobs

Direct + 
indirect jobs Direct jobs Indirect 

jobs
Direct + 

indirect jobs

(Jobs per $1 million)

Renewables            

Bioenergy 23,1 4,8 27,9 18,8 4,6 23,3

Hydro 7,5 7,8 15,2 6,9 7,3 14,3

Wind 5,9 6,5 12,4 5,2 6,1 11,3

Solar 4,7 6,3 11,0 4,1 5,8 9,9

Geothermal 7,2 7,2 14,3 6,3 6,7 12,9

Weighted average for 
renewables 9,6 6,5 16,2 8,3 6,1 14,3

Energy efficiency            

Building retrofits 5,9 8,0 13,9 5,9 7,4 13,2

Industrial efficiency 5,3 7,1 12,3 3,8 7,3 11,1

Grid upgrades 5,2 6,7 12,0 4,7 6,2 10,9

Weighted average for 
efficiency 5,6 7,5 13,0 5,0 7,1 12,1

Fossil fuels            

Coal 10,1 4,0 14,1 NA NA NA

Oil/natural gas 9,9 3,3 13,1 NA NA NA

Weighted average for 
fossil fuels 10,0 3,6 13,6 NA NA NA

Overall economy 9,9 7,5 17,5 NA NA NA

Source: See Appendix 3.
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Table 7.18: Republic of Korea. Summary employment figures, 2008 

Direct + indirect employment with stable domestic content

  Jobs per $1 million

Renewable energy 16.2

Energy efficiency 13

Clean energy total (with equal renewables and efficiency weights) 14.6

Fossil fuels 13.6

Clean energy relative to fossil fuels (percentages) 7.1%

Overall economy 17.5

Clean energy relative to overall economy (percentages) -16.6%

Source: Generated from Table 7.17. Underlying calculations from Appendix 3.

 
With energy efficiency, in our stable domestic content scenario, we estimate that about 12 jobs 
per $1 million will be generated in both industrial efficiency and grid upgrades. With building 
retrofits - which accounts for half of all spending on efficiency within our framework - at about 
14 jobs per $1 million, our estimated weighted average for the three efficiency categories is 
14.8 jobs per $1 million. 

The case of the ROK is the only one in which our second scenario, of a 20 percent domestic 
content decline in the relevant tradable sectors generates a noticeable impact on our overall 
employment estimates, specifically within the renewable sectors. For example, the direct job 
creation in bioenergy falls from 23 to 19 jobs per $1 million. Our estimated weighted average for 
renewables falls from 16.2 to 14.3 jobs per $1 million. These downward effects on job creation 
reflect the ROK’s status as an advanced economy with high tradable proportions in major 
sectors.

Another unique feature of the ROK case is that our estimated employment multipliers for coal, 
oil and natural gas are basically comparable to those for the clean energy sectors. Once we take 
account, in our second scenario, of an increase in imports tied to clean energy investments, 
our estimated aggregated employment ratios for clean energy and fossil fuels are basically at 
parity - both are at basically 14 jobs per $1 million in spending.

Considering these estimates, we can conclude that, in the case of the ROK, there is not likely 
to be any significant overall level of positive job creation through advancing a clean energy 
agenda as opposed to maintaining the existing fossil fuel energy infrastructure. But this does 
also mean that there should not be any significant sacrifice in job creation as clean energy 
investments expand and fossil fuel spending contracts. It is also the case that advancing a 
clean energy investment agenda will favor certain sectors over others in the ROK as elsewhere. 
Agriculture is a clear case in point with bioenergy. To the extent the ROK may want to see an 
expansion in job opportunities and perhaps an accompanying rise in conditions in agriculture, 
generating a high productivity bioenergy sector could thereby provide broad benefits. 

In the last row of Table 7.17, we show our estimated employment multipliers for the overall the 
ROK economy. As we see, that figure is 17.5 jobs per $1 million. This is about 17 percent more 
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than the weighted average figures for the ROK’s renewables and efficiency sectors. What this 
figure shows is that a clean energy investment project would modestly decrease job creation in 
the ROK relative to overall spending within the ROK economy. As such, the benefits for the ROK 
through advancing a clean energy investment project are focused within the energy system 
itself and the related environmental impacts. Clean energy investments will produce both 
major reductions in CO2 emissions and can achieve this without entailing any sacrifice in job 
opportunities relative to maintaining the country’s existing fossil-fuel based energy systems.

Composition of Employment

We report our estimates for employment composition in the ROK in Tables 7.19 and 7.20. Our 
main findings are as follows:

Table 7.19: Republic of Korea. Composition of employment generated through alternative 
energy sector spending, 2008

 Educational attainment levels (separate table below)

 

Total  
employment

Female  
employment 

Self- 
employment

Micro enterprise 
employment 

Jobs per $1 million (Percentage)

       

Renewables        

Bioenergy 27.9 45% 74% NA

Hydro 15.2 27% 27% NA

Wind 12.4 28% 23% NA

Solar 10.9 32% 23% NA

Geothermal 14.3 24% 19% NA

Energy efficiency        

Building retrofits 13.9 24% 20% NA

Industrial efficiency 12.3 30% 24% NA

Grid upgrades 12.0 30% 21% NA

Fossil fuels        

Coal 14.1 11% 9% NA

Oil/natural gas 13.1 11% 8% NA

Source: See Appendix 4.
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Table 7.20: Republic of Korea. Educational profile of employment generated through 
alternative energy sector spending, 2008

 
 

No education or 
less than primary 

level
Primary level Secondary level Tertiary level 

(Percentage)

Renewables        

Bioenergy 14% 33% 39% 14%

Hydro 1% 7% 51% 41%

Wind 1% 6% 52% 41%

Solar 1% 6% 50% 42%

Geothermal 1% 7% 51% 40%

Energy efficiency        

Building retrofits 1% 8% 52% 39%

Industrial efficiency 1% 6% 48% 44%

Grid upgrades 1% 6% 51% 43%

Fossil fuels        

Coal 1% 7% 63% 29%

Oil/natural gas 1% 6% 62% 31%

Source: See Appendix 4.

 
Gender composition. As we can see in Table 7.19, we find that, as Brazil, Germany, Indonesia 
and South Africa, most renewable energy and energy efficiency sectors in the ROK are male 
dominated. Again, the one exception is bioenergy, in which females occupy fully 45 percent 
of the direct and indirect jobs associated with this sector. Otherwise, we estimate that 
female employment ranges between 24-30 percent in the other clean energy sectors. This is 
substantially below the national average of 41 percent female employment. Nevertheless, it 
is well above the proportions for the coal, oil and natural gas sectors, which are at 11 percent 
female. As such, expanding spending in clean energy sectors while reducing spending on fossil 
fuels should encourage some improvement in the gender composition of employment in the 
ROK’s energy-based sectors. 

Self-employment and micro enterprises. The figures reported in the ROK’s labor force survey 
did not enable us to produce results for micro-enterprise employment. Working then just with 
the estimates for self-employment in the clean energy sectors, we see, overall, that wage 
employment is predominant in all sectors other than bioenergy. Self-employment ranges 
between 19-27 percent in hydro, wind, solar and geothermal, among the other renewable 
sectors. In the energy efficiency sectors, we estimate self-employment as being between 21-
24 percent. With bioenergy, by contrast, we estimate self-employment to be quite high, at 74 
percent. 

The figures on self-employment are lower still for fossil fuels, at only 9 percent for coal and 8 
percent for oil and gas. As such, the shift from fossil fuels to clean energy would likely entail 
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some increase in the extent of informalization, most especially to the extent that the ROK was 
to begin producing bioenergy to a significant extent.

Educational attainment. Overall, we estimate that educational attainment levels for the ROK 
workers in the clean energy sectors is quite high, once again with the one exception of bioenergy. 
Outside of bioenergy, we estimate the percentages of workers with either secondary or tertiary 
educational attainment levels are in the range of 90 percent in all cases. With bioenergy, the 
attainment levels are much more spread out, with 14 percent having less than a primary level, 
33 percent with primary education, 39 percent with secondary, and 14 percent with tertiary. 

The attainment levels in the fossil fuel sectors vary somewhat higher than the average for 
clean energy, with 92-93 percent of workers having either secondary or tertiary educational 
levels. But these figures are not substantially different than those for clean energy other than 
bioenergy. 

Overall, the transition to a clean energy economy in the ROK would not generate dramatic shifts 
in either the level or composition of its employment opportunities. The increased demand for 
agricultural products as inputs in the bioenergy sector is the one exception here. This one 
shift toward a large-scale bioenergy sector would raise the share of women and self-employed 
workers as well as those with lower educational attainment levels. Depending on how the ROK 
was to manage this shift, it could be seen as generating benefits for less well-off segments 
of the labor force as well as an opportunity to increase agricultural productivity. But it could 
also produce supply bottlenecks if the ROK were to seek to expand bioenergy production 
significantly without also improving agricultural productivity concurrently.
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CHAPTER 8: BRAZIL – CLEAN 
ENERGY INVESTMENTS,  
EMISSIONS REDUCTIONS  
AND EMPLOYMENT EXPANSION
 

Level of Development and CO2 Emissions
In Table 8.1, we review the basic statistics from Chapter 1 indicating Brazil’s current level of 
development and the operations of its energy system. According to the World Bank Indicators, 
Brazil is an upper-middle income country, with, as we see in Table 8.1, average income per 
capita at $11,600 as of 2010. Overall energy consumption is at 11.3 Q-BTUs and overall CO2 
emissions are at 450 mmt.60 

Table 8.1: Brazil. Basic energy indicators, 2010

  Brazil World

Per capita GDP
(2005 PPP dollar) $11,600 $10,300

Total energy consumption
(Q-BTUs) 11.3 Q-BTUs 510.5 Q-BTUs

Per capita energy consumption
(M-BTUs/population) 58 M-BTUs 74.0 M-BTUs

Total CO2 emissions
(mmt) 450 mmt 31,502 mmt

Per capita CO2 emissions
(mmt of emissions/population) 2.3 mt 4.6 mt

Energy intensity ratio
(Q-BTUs/$1 trillion GDP) 5.1 Q-BTUs 7.1 Q-BTUs

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 39.9 mmt 65.9 mmt

Source:       See Tables 1.1 and 1.4.

60 The figures in Table 8.1 are compiled from two sources, the World Bank Indicators and the EIA International Energy Statistics, as noted at the bottom 
of Table 1.1. We also draw on two other statistical sources in this chapter: the IEA’s 2013 World Energy Outlook and the 2011 Brazilian Energy Balances, 
published annually by the Brazilian Ministry of Mines and Energy. There are discrepancies between these various sources. One major factor appears 
to be that measurement of the energy supplied from traditional biomass sources is treated differently by the different sources. For the purposes of this 
report, we have relied primarily on the data sources that provide statistics on an international scale, i.e. the EIA, IEA and World Bank figures. This is 
not because we assume these figures are necessarily more reliable than those published by national data sources, such as that for Brazil, but rather 
to maintain consistency in methodology as much as possible between the different countries we are examining. 
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The Brazilian economy operates with a unique energy infrastructure. We have already obtained 
a sense of this in the figures we presented in Chapter 1. In particular, Brazil’s per capita 
emissions level, at 2.3 mt, is half the world average of 4.6 mt, and basically equal already 
to the target 2.4 mt level that is needed throughout the globe to reach the 20-year emissions 
reduction goal. This is while Brazil is still producing domestic output at an upper-middle income 
level. Brazil has achieved this very low level of emissions per capita level among upper-income 
countries through both relying heavily on clean renewable energy sources and operating at a 
high efficiency level. Thus, as Table 8.1 shows, Brazil’s energy intensity ratio, at 5.1 Q-BTUs per 
$1 trillion of GDP, is nearly 30 percent below the global average of 7.1. Its emissions intensity 
ratio - i.e. CO2 emissions per Q-BTU - at 39.9 is 42 percent below the global average of 69.1.

We can see more clearly how Brazil has achieved its low level of CO2 emissions through 
considering its present energy mix, as shown in Table 8.2. The key feature in this mix is that 
hydro power provides 14 percent of all of Brazil’s energy supply, while the share going to coal is 
correspondingly small, at 6 percent. We note also, and discuss more later, that Brazil operates 
a very large bioenergy sector, providing 29 percent of Brazil’s total energy supply. However, 
to date this sector contributes only modestly to reducing Brazil’s emissions, since the most 
prevalent feedstock for Brazil’s bioenergy supply is sugarcane. As we saw in Chapter 3, ethanol 
from sugarcane feedstock generates only 26 percent fewer CO2 emissions than gasoline over a 
30-year cycle. Still the fact that Brazil already has a large bioenergy sector should enable it to 
transition more readily from high- to low-emissions bioenergy over the next 20 years.

Table 8.2: Brazil. Energy consumption and emissions, 2010

Total energy consumption 11.3 Q-BTUs

Energy intensity ratio
(Q-BTUs/$1 trillion GDP)

 
5.1 Q-BTUs

Energy mix:  

Oil 41.0%

Coal 6.0%

Natural gas 9.0%

Nuclear 1.0%

Renewables 43.0%

14.0%

29.0%

0.0%

0.1%

Total CO2 emissions 450 mmt

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 39.8 mmt

CO2 emissions per capita
(with population = 195 million) 2.3 mt

Sources: See Tables 1.1 and 1.4; IEA (2013), “World Energy Outlook 2013” Tables for Scenario Projections, pp. 640-643; EIA 2013b “International Energy 
Outlook 2013.”
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At the same time, Brazil is also unique in that its share of total GHG emissions generated by CO2 
is substantially less than that the world average. As we discussed in Chapter 1, for the world as 
a whole, CO2 emissions constitute 75 percent of all GHG emissions, including methane, nitrous 
oxide and other GHG emission sources in addition to CO2.61 In Brazil, this proportion is only 39 
percent. This is not only because Brazil relies more heavily on hydro power, thereby reducing 
the share of emissions than would otherwise result through generating electricity by burning 
fossil fuels. The less favorable factor here is that Brazil generates high levels of methane and 
nitrous oxide emissions from deforestation of the Amazon and the corresponding growth in 
agriculture. We summarize these two unique features of the Brazilian energy infrastructure - 
its production of hydropower and its high share of other GHG emissions as a share of total 
emissions - in Table 8.3. 

Table 8.3: Brazil relative to world averages in share of hydro power and CO2 emissions, 2010

  Brazil World average

Hydro power as share of total energy supply 14.1% 3.2%

CO2 emissions as share of total GHG emissions 39.0% 75.0%

Sources: Authors’ calculations based on IEA (2013), ”World Energy Outlook 2013” Tables for Scenario Projections, p. 640 (for hydro shares); World Bank 
(2014), “World Bank Indicators” Table 3.9.
 
 
Thus, as a project for mitigating overall GHG emissions, it is appropriate in the short term 
for Brazil to devote a relatively large share of its overall resources to issues other than the 
energy sector. D’Avignon (2013) summarizes the key features of Brazil’s current GHG emissions 
mitigation program as follows:

by between 36.1 and 38.9 percent relative to BAU by 2020;

Amazonia by 80 percent in 2020 relative to 2005. Recent data show that Brazil is 
keeping to this commitment;

may begin to rise again due to an increase in energy-related GHG emissions.

What is clear here is that, given both the high levels of renewable supply and efficiency 
already achieved, as well as the very high percentage of overall emissions in Brazil resulting 
from non-energy sources, Brazil should be devoting a large share of its resources through 
2020 in bringing down GHG from sources other than the energy sector. That is, it may be that 
a somewhat smaller share of GDP should go to clean energy investments, at least through 
2020, than the 1.5 percent of GDP that we have assigned in our country-specific discussions on 
Indonesia, South Africa and the ROK. This would free up more funds to address other projects 
aimed at mitigating GHG emissions. At the same time, the final point raised by d’Avignon on 
the prospects for rising energy-based emissions after 2020 provides a strong motivation for us 
to also focus on reducing energy-based CO2 emissions in Brazil over a 20-year cycle. 

61 Other greenhouse gas emissions, which provide a relatively small share of the emissions total, are by-product emissions of hydrofluorocarbons, 
perfluorocarbons, and sulfur hexafluoride.
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We turn now to reviewing how we might address effectively both sets of concerns. Before doing 
so, it is perhaps also useful to underscore again a point we emphasized in Chapter 1: that none 
of Brazil’s emissions reduction strategies or goals should be altered at all as a consequence 
of the large-scale “pre-salt” oil deposits that have been discovered offshore. Indeed, if Brazil 
were to increase its oil consumption levels due to the development of these new resources, the 
impact will be to only raise Brazil’s emissions levels. More generally, as we have emphasized, 
the burning of oil, coal and natural gas will need to contract substantially in absolute terms 
throughout the globe to achieve the IPCC’s emissions reduction targets. This conclusion is 
unaffected by whether new fossil fuel reserves are discovered, including the “pre-salt” deposits 
in Brazil or elsewhere. It is also unaffected by whether new technologies, such as fracking, are 
employed to produce fossil fuel energy more cheaply. 

BAU vs. Low-Carbon 20-year Scenarios
Table 8.4 reports on two 2030 scenarios for Brazil’s energy consumption, published by the 
IEA in its 2013 World Energy Outlook. These figures are from the same set of estimates we 
described in Chapter 1, regarding world emissions projections for 2030. We now show these 
two 2030 scenarios for Brazil along with actual energy consumption in 2010. The IEA describes 
these alternative scenarios - which they themselves term the “Current Policies Scenario” and 
the “450 Scenario”, but we will call them the BAU and Low Carbon Scenarios respectively - as 
follows:

BAU (Current Policies) Scenario is based on the implementation of the government 
policies and measures that had been enacted by mid-2013.

Low Carbon (450) Scenario sets out an energy pathway that is consistent with a 50 
percent chance of meeting the goal of limiting the increase in average global temperature 
to 2o C compared with pre-industrial levels (p. 645).
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Table 8.4: Brazil. Energy consumption and emissions:  
2010 actuals and alternative official projections

  2010 actuals 2030 IEA BAU 
scenario

2030 IEA Low 
Carbon scenario

Total energy consumption 11.3 Q-BTUs 18.2 Q-BTUs 15.7 Q-BTUs

Energy intensity ratio
Q-BTUs/$1 trillion GDP;
Assumes 2030 GDP is $4.8 trillion via 3.7 percent 
GDP growth

5.1 Q-BTUs 3.8 Q-BTUs 3.3 Q-BTUs

Energy mix:      

Oil 41% 35% 27%

Coal 6% 6% 4%

Natural gas 9% 18% 12%

Nuclear 1% 2% 3%

Renewables 43% 41% 52%

14% 12% 14%

29% 22% 18%

0% 7% 18%

0.1% 2% 2%

Total CO2 emissions 450 mmt 702 mmt 435 mmt

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 39.8 mmt 38.6 mmt 27.7 mmt

CO2 emissions per capita
(with population = 195 million for 2010 and 220 
for 2030)

2.3 mt 3.2 mt 2.0 mt

Sources: See Tables 1.1 and 1.4; IEA (2013), “World Energy Outlook 2013” Tables for Scenario Projections, pp. 640-643.
Note: For the IEA’s 2030 BAU projection we assume a breakdown of 80 percent high-emissions bioenergy/20 percent low-emissions bioenergy. In this 
BAU scenario, that amounts to 3.9 Q-BTUs, with 1 Q-BTU of low-emissions bioenergy. For the IEA’s Low Carbon scenario, we assume the breakdown 
becomes 50 percent each for high- and low-emissions bioenergy sources.

 
As we noted in Chapter 1, in assessing the IEA’s Low Carbon scenario, we should, to begin with, 
not be satisfied with its goal of advancing a project that is consistent with only a 50 percent 
chance of meeting the overall emissions targets for controlling climate change. As such, we 
should consider this Low Carbon scenario for Brazil as representing a most conservative 
version of what could be considered an acceptable emissions mitigation path. At the same 
time, throughout this report we have tried to work with conservative assumptions in advancing 
clean energy investment projects. In this sense therefore, the IEA’s scenario serves us well 
here.62

62 As with our methodological point noted in footnote 1, here again, for two reasons, we focus on the IEA’s model rather than the Brazilian Ministry 
and Mine’s 10- and 20- year projections - the Plano Decenal de Expansao de Energia and its National Energy Plan 2030. The first is because the IEA’s 
projections are for all regions of the world and a range of countries, and therefore is more conducive to international comparisons. In addition, the 
IEA’s projections for 2030 are more conservative, and therefore consistent with our general approach in this report. We do, however, refer to the figures 
from the National Energy Plan 2030 below. 
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As we see under this Low Carbon scenario, overall energy consumption is at 15.7 Q-BTUs in 
Brazil as of 2030. This is 4.4 Q-BTUs more than the actual level for 2010, a 39 percent increase. 
But it is also 2.5 Q-BTUs, or 14 percent, lower than the BAU case, at 18.2 Q-BTUs.63 We can 
interpret this 14 percent reduction in consumption relative to the BAU case as a result of 
increasing investments in energy efficiency. This is not a dramatic improvement in efficiency. 
But one must recognize that because Brazil is already operating at a very high efficiency level, 
further gains are more challenging to achieve. 

According to the IEA, the sector with the largest potential for significant efficiency gains is 
transportation. Within transportation, the biggest potential source of improvements is with 
raising fuel efficiency standards for automobiles. The IEA also stresses that large efficiency 
improvements can be achieved through moving freight transportation out of trucks and onto 
rail and waterway systems.

 In addition to these efficiency gains, a major change in the Low Carbon Emissions scenario 
relative to the 2010 actual figure and the 2030 BAU case is the large increase in the share of 
renewables. We do see hydro, wind, solar all growing relative to 2010, while geothermal is not 
projected to be a significant energy resource in Brazil at any point. Hydro’s growth from 2010-
2013 is in rough proportion to the overall rise in consumption, since it represents 14 percent 
of overall consumption in both 2010 and the 2030 Low Carbon case. Wind and solar rise from 
a negligible base in 2010 to 0.3 Q-BTUs, or 2 percent of total supply. But the critical source of 
new renewable supply is bioenergy. Combining both high- and low-emissions bioenergy, they 
account for 36 percent of total supply as of 2030.

On this point, we need to emphasize that the breakdown shown in Table 8.4 between these 
two sources of bioenergy - at 18 percent each of total supply in the Low Carbon scenario - is 
an assumption that we have built into the scenario. This breakdown is not explicitly stated in 
the IEA’s presentation of the scenario. But something like this breakdown is implicit in their 
qualitative discussion of developments in Brazil’s bioenergy sector. It is worth reviewing the 
IEA’s perspective on this in some detail, as in the following:

Interest in advanced biofuels is increasing in Brazil. As productivity improvements in first 
generation biofuels show signs of diminishing, advanced (second generation) ethanol 
has the potential to generate another leap in output without expanding the harvested 
area. The existence of an established biofuels industry, the availability of low cost 
cellulosic feedstock such as bagasse, a move towards mechanized harvesting (and a ban 
on field burning) and a desire to move into higher value-added sectors all contribute to 
making advanced ethanol production an attractive proposition in Brazil. Another form of 
advanced biofuels is biodiesel from palm oil, with potential yields per land area that are 
an order of magnitude higher than soybean-based biodiesel, potentially reducing the 
future land demand for biodiesel by millions of hectares.

International companies are becoming increasingly visible in Brazil’s ethanol business 
and some have clear plans relating to advanced biofuels, drawing on international 
expertise and technology to build demonstration and commercial plants….Advanced 
biofuels production costs are currently well above those of other fuels, due to the early 

63 The 2030 estimates from Brazil’s National Energy Plan 2030 are 18.8 Q-BTUs of total energy consumption under its BAU scenario and 12.3 Q-BTUs 
under its Low Carbon scenario. Thus under the National Energy Plan’s estimates, overall energy consumption in 2030 is 0.6 Q-BTUs higher than the 
IEA’s estimate under the respective BAU scenarios, but 3.4 Q-BTUs lower under the Low Carbon scenarios.
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stage of technology development and small scale of production. Efforts to develop the 
sector are expected to focus on building capacity and reducing investment costs, reducing 
the costs and enhancing the productivity of the enzymes and improving the efficiency of 
feedstock collection. With significant support from BNDES (Brazil’s development bank), 
the first commercial-scale advanced ethanol plant is scheduled to be operational in 2014. 
Given the supportive growing conditions, policy environment, and funding programs, 
several more commercial-scale production facilities can reasonably be expected by the 
end of the decade (IEA, 2013a, p. 390).

In terms of overall emissions, we see that with the IEA’s low carbon case, Brazil’s overall CO2 
emissions basically remains flat as of 2030 relative to 2010. Emissions per capita fall from 2.3 
to 2 mt, a level that is 17 percent below the average global target of 2.4 mt per person within 20 
years. This is while, according to the IEA’s assumptions, GDP is growing at an average annual 
rate of 3.7 percent, to reach $4.8 trillion by 2030. Average per capita incomes thereby roughly 
double by 2030, to $22,000 per person. In short, this Low Carbon scenario developed by the 
IEA is a reasonable framework for advancing a viable clean energy investment project in Brazil 
over the next 20 years.

Cost Estimates for Low Carbon Case
We do still need to establish some cost parameters for achieving the IEA’s Low Carbon Case for 
Brazil. As we see in Table 8.5, the total reduction in energy consumption in the IEA’s Low Carbon 
case versus the BAU for 2030 is 7.8 Q-BTUs. This includes 2.5 Q-BTUs in efficiency savings and a 
5.3 Q-BTU expansion of clean renewables. 

We based our estimates for the costs of achieving these gains in both efficiency and renewables 
at $11 billion per Q-BTU for efficiency investments and $125 per Q-BTU for expanding clean 
renewable capacity. We derived these two rough average cost figures as follows.

First, as presented in Chapter 4, in particular in Table 4.2 and the accompanying discussion, 
the $11 billion per Q-BTU figure for savings from efficiency investments is the middle-range 
figure in Table 4.2, which comes out of the 2010 McKinsey and Company study discussed in 
Chapter 4 along with other estimates from the World Bank and the U.S. National Academy 
of Sciences respectively. McKinsey reported that their average figure is derived from a wide 
sample of projects throughout Africa, India, the Middle East, South East Asia, Eastern Europe 
and China. 

The $125 billion per Q-BTU for expanding clean renewable capacity is derived from the U.S. Low 
Technology Cost case for the bioenergy sector, as developed by the EIA, for 2035, and presented 
in Table 3.9 and the accompanying text. For various reasons, this figure is an appropriate rough, 
if conservative, benchmark for renewable energy investment costs in Brazil over our full 20-year 
investment cycle. To begin with, as we have seen in Table 8.4, within the framework of the IEA’s 
2030 Low Carbon Scenario, most of Brazil’s clean renewable expansion will be concentrated in 
the area of clean bioenergy. Moreover, the costs of expanding clean renewables in Brazil will 
certainly be well below those for the U.S., since expanding the clean bioenergy sector will be 
concentrated within Brazil’s agricultural sector. Labor costs in Brazil’s agricultural sector are 
themselves certainly well below those for the U.S. We do not have reliable figures for relative 
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unit labor costs in Brazil’s agricultural sector, but in manufacturing, as we report in Appendix 
5 (Table A5.1), wages are about 12 percent those in the U.S. Hence, by using the U.S. Low Cost 
Technology figure for 2035, we are more likely to have a reasonable high-end approximation 
of Brazil’s average costs to expand clean bioenergy capacity over the full 20-year investment 
cycle. The IEA’s Low Carbon scenario does also anticipate major expansions in wind, solar, and 
geothermal power. But these other clean renewable sectors are most likely to begin expanding 
substantially when the costs of expansion begin to reach rough parity with clean bioenergy. 
Overall then, $125 billion per Q-BTU is a reasonable rough benchmark approximation for the 
costs of expanding clean renewables capacity in Brazil over our 20-year investment cycle.

Working with these figures - i.e. $11 billion per Q-BTU of efficiency gains and $125 billion, on 
average, to expand clean renewable capacity by 1 Q-BTU - we then generate results for total 
costs to reach the IEA’s Low Carbon case for Brazil. As we see in Table 8.5, we estimate these 
total costs as $28 billion for the efficiency gains and $663 billion for the renewable supply 
expansion, for a total of $691 billion over 20 years. This then equals $34.4 billion per year 
over 20 years, with $1.4 allocated to efficiency investments and $33 billion to renewables. 
Considered over the full 20-year investment period, this level of annual investment would be 
equal to about 0.9 percent of the midrange figure for Brazil’s GDP over this time span. We 
note that this relatively low level of clean energy investment spending as a share of GDP will 
free resources that Brazil can used to definitively control emissions from methane and nitrous 
oxide, as well as undertaking positive measures for preserving the Amazon.

Table 8.5: Brazil. Estimated cost for Brazil to move from IEA’s 2030 BAU to Low Carbon case

Costs per Q-BTU of renewable energy expansion and efficiency gains

  1. Q-BTUs 2. Assumed 
cost per Q-BTU

3. Total costs
(= column  

1 x 3)

4. Average 
annual costs 
for 20 years
(= column 

3/20)

Expansion of clean renewables: Low 
carbon vs BAU 5.3 Q-BTUs $125 billion per 

Q- BTU $663 billion $33.0 billion 
per year

Gains in energy efficiency: Low carbon 
vs BAU 2.5 Q-BTUs $11 billion per 

Q-BTU $28 billion $1.4 billion per 
year

Totals 7.8 Q-BTUs - $691 billion $34.4 billion 
per year
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Costs as a share of midrange GDP for 2012 - 2032

2012 GDP $2.3 trillion

Projected 20-year average annual GDP growth rate 3.7%

Projected 2032 GDP
(with 3.7 percent average annual GDP growth) $4.8 trillion

Midrange GDP value for investment spending estimates
(= (2012 GDP + 2032 GDP)/2) $3.6 trillion

Average annual clean renewable investments $33 billion

Average annual energy efficiency investments $1.4 billion

Total annual clean energy investments $34.4 billion 

Renewables + efficiency investments as share of midrange GDP 0.9%

Source: Authors’ calculations based on Table 8.4 and text in Chapter 8.

Employment Generation through Clean Energy Investments
Table 8.6 presents our estimates as to the effects on overall annual employment levels through 
a clean energy investment project in Brazil in keeping with the IEA’s Low Carbon scenario for 
2030. Our estimates of employment impacts follow from the employment modeling results we 
generated in Chapter 7. We focus for this analysis on the Domestic Content Stable scenario, 
as opposed to assuming Brazil’s imports will have to rise to meet the demands of its clean 
energy investment project. This is because Brazil is a strongly industrializing economy, with 
well-established and innovative clean energy sectors. The fact that its clean energy investment 
project is also relatively small, at 0.9 percent of GDP, also means that the increased demands 
on domestic resources will also be relatively modest.
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Table 8.6: Brazil. Employment impact of clean energy investments vs. fossil fuel spending

Figures are jobs in Year 1 of 20-year project

- Total investment = 0.9 percent of GDP
- 94 percent clean renewables;
- 6 percent energy efficiency

- 70 percent of investment for capacity creation/production
- 30 percent for financing costs

Brazilian labor force, 2011 = 103 million

  Clean energy investments Fossil fuel spending
Net employment 

effects of clean energy 
investments

Direct + indirect total 
employment in Year 1 542,000 307,000 235,000

Direct + indirect 
employment as share of 
total labor force in Year 1

0.5% 0.3% 0.2%

Source: See Chapter 7 and Appendix 3.

 
We have estimated the costs of the IEA’s Low Carbon scenario to be in the range of $34.4 billion 
per year in spending above what would have been needed under the IEA’s BAU scenario. This 
is equal to about 0.9 percent of the midrange GDP figure for Brazil over the 2010-2030 period, 
assuming a 3.7 percent average annual GDP growth rate.

Of course, given the relatively modest level of investment in clean renewables and energy 
efficiency as a share of Brazil’s GDP, it follows that the extent of job creation will also be modest 
relative to the size of Brazil’s overall labor force of 103 million. The impact on job creation 
will be further diminished by the fact that, of the total annual budgetary allocation for clean 
energy investments, we assume that only 70 percent is used for the activities linked to either 
generating energy or raising efficiency standards, while 30 percent covers financing costs.

Considering these factors, it is nevertheless the case, as we see in Table 8.6, that the clean 
energy investment project at this level will generate about 542,000 jobs for Brazilians. In 
absolute terms, this is clearly a large number of jobs. By comparison, we estimate that spending 
the same amount of money in Brazil on maintaining the economy’s existing fossil fuel energy 
system would create about 307,000 jobs. As such, to the extent that we considered this project 
as a process of shifting resources out of fossil fuels and into clean energy, the net impact will 
be an expansion of employment opportunities throughout Brazil of about 235,000 jobs.
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In Table 8.7, we present our projections for employment creation in Year 20 of Brazil’s 20-year 
clean energy investment project. These figures are based on two separate assumptions as to 
the average growth rate of labor productivity in Brazil’s clean energy sectors over this 20-year 
period - a 1 percent low-end average annual labor productivity growth rate assumption and a 
2.5 percent high-end assumption.

Table 8.7: Brazil. Projected employment impacts of clean energy investments after  
20 Years under alternative labor productivity assumptions

Figures are jobs per year

Assumptions for 20-year employment projections:

Labor force at end of 20-year investment cycle = 118 million

 
Scenario with 1 percent 

average annual labor 
productivity growth

Scenario with 2.5 percent 
average annual labor 
productivity growth

Midpoint between 1 
percent and 2.5 percent 

productivity growth 
scenarios

Year 20 direct + indirect 
total employment 923,400 688,000  805,700

Year 20 direct + indirect 
employment relative to 
Year 1 employment

70.4% 26.9% 48.7%

Direct + indirect 
employment as share of 
Year 20 labor force

0.8% 0.6% 0.7%

Sources: See Chapter 7 and Appendix 3.

 
Working with these assumptions, as well as with the other assumptions on GDP growth, 
population and labor force participation listed above Table 8.7, we generate the following 
results:

1. Assuming labor productivity increases at 1 percent per year, total employment creation 
through clean energy investments will rise to about 923,000 in Year 20. This is a 70 
percent increase relative to employment creation in Year 1. 

2. Under this 1 percent labor productivity growth assumption, employment creation 
through clean energy investments will rise to about 0.8 percent of Brazil’s Year 20 labor 
force relative to the 0.5 percent figure as of Year 1.

3. Assuming average labor productivity in Brazil’s clean energy sectors increases at the 
higher-end rate of 2.5 percent over the 20-year investment cycle, employment creation 
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will then be reduced. Year 20 employment creation through clean energy investments 
then reaches about 688,000. This is still a 27 percent increase over the Year 1 figure. 
Under this scenario, employment creation through clean energy investments still rises 
modestly as a share of Brazil’s overall labor force in Year 20, to around 0.6 percent.

4. In the last column of Table 8.7, we report midpoint employment creation figures, that 
are simply based on averaging the Year 20 employment levels derived from both the 
1 percent and 2.5 percent labor productivity growth assumptions. These figures give 
some additional perspective on the extent of job opportunities that will result through 
Brazil’s 20-year clean energy investment project. As we see, this midpoint figure is 
about 806,000 jobs, which is about 0.7 percent of Brazil’s Year 20 labor force.

Overall, as we see, employment creation through Brazil’s clean energy investment project 
operating at 0.9 percent of GDP per year will expand over time under a wide range of plausible 
assumptions as to the growth of labor productivity over the 20-year investment cycle.

Conclusion
Brazil has long been highly innovative in the operations and development of its energy system. 
As we have seen, it is already a world leader both in terms of its level of energy efficiency and in 
its low level of emissions relative to its aggregate output. At the same time, Brazil is also high in 
the global rankings in terms of generating GHG emissions from sources other than the burning 
of oil, coal and natural gas. Given this combination of circumstances, a reasonable strategy 
for Brazil at present is to spend relatively less money on clean energy investments than other 
countries. This will allow Brazil to focus on reducing emissions from methane and nitrous oxide 
and to preserving the Amazon, in addition to keeping CO2 emission levels low.

The IEA’s Low Carbon scenario for Brazil for 2030 provides a valuable framework for Brazil in 
proceeding with a clean energy investment agenda through 2030. The plan is relatively modest 
in terms of its costs. We estimate them to be in the range of $34 billion per year for 20 years. 
But at this level of spending, we do still see emissions fall by 38 percent relative to the 2030 
BAU case, and decline by 13 percent relative to 2010. As a result, Brazil will continue to operate 
with one of the lowest emissions per capita ratios, at 2 mt. This figure is significantly below the 
target level of 2.4 mt for the world as a whole within the next 20 years.

Meanwhile, in accomplishing these emissions reduction goals, Brazil’s clean energy investment 
project will also generate an expansion of job opportunities throughout the country – 542,000 
in total for advancing the Low Carbon scenario relative to the BAU case in Year 1; and 235,000 
more jobs than would be created through spending the same funds on oil, coal, and natural gas 
rather than on hydro, clean bioenergy, wind and solar power. Assuming a wide range of growth 
rates for labor productivity in Brazil’s clean energy sectors, the gains in employment creation 
will also then increase over time throughout the 20-year clean energy investment cycle.
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CHAPTER 9:  GERMANY - CLEAN 
ENERGY INVESTMENTS, EMISSIONS 
REDUCTIONS AND EMPLOYMENT 
EXPANSION
 

Level of Development and CO2 Emissions
As is well-known, Germany occupies a unique place in the global project of building a clean-
energy economy and controlling climate change. It is fair to say that Germany has made the most 
thoroughgoing commitment to this project among the world’s large high-income countries, and 
perhaps among all countries at all levels of development. Germany has, first, committed to 
creating a nearly emissions-free economy as of 2050, i.e. a level of CO2 emissions at 156 mmt. 
This would represent an 85 percent decline in emissions relative to the 1990 level of 1,042 mmt, 
and a per capita emissions level of 2.1 mt (assuming 2050 population at about 75 million). 
They have also embraced this ambitious project while also aiming to eliminate entirely their 
reliance on nuclear energy over this same period. It is evident that the German case is of great 
importance, both in terms of its impact within Germany itself, and through advancing a set of 
ideas, products, and experiences from which the rest of the world can learn. 

In Table 9.1, we review the basic statistics from Chapter 1 indicating Germany’s current level of 
development and the operations of its energy system. According to the World Bank Indicators, 
Germany is a high-income country, with, as we see in Table 9.1, average per capita income at 
$41,500 as of 2010. Overall energy consumption was at 13.9 Q-BTUs in 2010, and overall CO2 
emissions were at 793 mmt. 
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Table 9.1: Germany. Basic energy indicators, 2010

  Germany World

Per capita GDP
(2005 $PPP) $41,500 $10,300

Total energy consumption
(Q-BTUs) 13.9 Q-BTUs 510.5 Q-BTUs

Per capita energy consumption
(M-BTUs/population) 170.4 M-BTUs 74.0 M-BTUs

Total CO2 emissions
(mmt) 793 mmt 31,502 mmt

Per capita CO2 emissions
(mt of emissions/population) 9.7 mt 4.6 mt

Energy intensity ratio
(Q-BTUs/$1 trillion GDP) 4.1 Q-BTUs 7.1 Q-BTUs

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 57.1 mmt 65.9 mmt

Source: See Tables 1.1 and 1.4.

 
Per capita CO2 emissions were at 9.7 mt, which is a bit more than twice as high as the global 
average of 4.6 mt, and four times higher than the global 20-year goal of 2.4 mt per person 
necessary for the globe to achieve an adequate path for stabilizing global average temperatures 
by 2050. Nevertheless, as we had reviewed in Chapter 1, Germany’s per capita emissions levels 
are far below those of other high-income countries. The figure for the U.S., as we saw in Chapter 
1, is 18.2 mt per person.

The main factor responsible for Germany’s low emissions levels is the high level of energy 
efficiency at which the economy operates. This is evident through its energy intensity ratio, 
which measures Q-BTUs of energy per $1 trillion in GDP. As we have seen, Germany’s index is 
4.1. This is 73 percent below the world average of 7.1. It is also 50 percent lower than the U.S. 
figure of 6.1 and 1/3 of China’s ratio of 12.1.

To date, Germany’s energy mix is not unusually weighted toward clean energy. Its emissions 
intensity ratio - the ratio of CO2 emissions per Q-BTU - is 57.1. This is only modestly lower than 
the global average of 65.9 and basically at parity with the U.S.

We get a more fully specified picture of Germany’s energy mix in Table 9.2. As we see, Germany’s 
consumption is dominated by traditional non-renewable sources, with oil at 34.4 percent, coal 
at 23.7 percent, natural gas at 21.6 percent, and nuclear at 11.4 percent. The only renewable 
source that makes a significant contribution as of 2010 is bioenergy. But to date, Germany’s 
bioenergy sources are generated almost entirely through high-emissions processes. Hydro, 
wind, solar and geothermal power combined account for less than 2 percent of Germany’s total 
energy supply as of 2010. 
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Table 9.2: Germany. Energy consumption and emissions, 2010

Total energy consumption 13.9 Q-BTUs

Total CO2 emissions 793 mmt

CO2 emissions per capita
(with population = 82.3 million) 9.7 mt

Energy intensity ratio
(Q-BTUs/$1 trillion GDP) 4.1 Q-BTUs

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 57.1 mmt

Energy mix (2008):  

Oil 34.4%

Coal 23.7%

Natural gas 21.6%

Nuclear 11.4%

All renewables 8.0%

6.3%

0.0%

0.5%

1.0%

0.2%

0.01%

Sources: See Tables 1.1 and 1.4; EIA (2013b) “International Energy Outlook 2013”; Schlesinger, Lindenberger and Lutz (2010), Table A 1-2.

 
Germany’s Transformational Project: The Energiewende
As is evident from the figures reviewed above, Germany has both made major advances in 
reducing CO2 emissions relative to other high-income countries, but equally, still faces major 
challenges ahead to become a low-emissions economy as of 2050. Germany faces two basic 
problems moving forward. The first is that most of its emissions reductions achievements to 
date have been achieved through energy efficiency investments. Precisely because Germany 
already operates at a high level of efficiency, it could be more difficult for them to obtain further 
major efficiency improvements. The second problem is that, moving forward, Germany intends 
to rely to a major extent on clean renewable energy supplies. This is despite the fact that, to 
date, the contributions of all clean renewables as a share of overall energy supply remains 
negligible. It is therefore critical to review the project Germany has set and the opportunities 
available to them with respect to new large-scale investments both in energy efficiency and 
clean renewable energy sources.64

64 See Hockenos (2013a) for a valuable overview assessment of the Energiewende to date, as well as an analysis of the major challenges ahead. 
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Alternative 2030 Scenarios
We can obtain a good sense of the basics of Germany’s transformational project through 
2030 via the government’s projections of energy supply and consumption patterns within two 
scenarios set out in its 2010 Energy Concept document (BMUB, 2010). We present below two 
of the scenarios developed in that document. The first is the government’s Reference case, 
to which we refer as their “BAU scenario.” The second is its 1A case, through which Germany 
reaches its 2050 target level of 156 mmt in CO2 emissions, i.e. the target of an 85 percent 
emissions decline relative to the 1990 level. We refer to their 1A case as the “Low Carbon 
scenario.” We present these two scenarios, along with the actual figures for 2008, in Table 9.3 
below.

Table 9.3: Germany. Energy consumption and emissions: 2008 actuals and alternative official 
projections

 
 

  German Environmental Ministry, Energy Concept

2008 actuals 2030 BAU Scenario 2030 Low Carbon Scenario

Total energy consumption 14.4 Q-BTUs 10.4 Q-BTUs 9.3 Q-BTUs

Energy intensity ratio
(Q-BTUs/$1 trillion GDP)a 5.1 Q-BTUs 2.1 Q-BTUs 1.9 Q-BTUs

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 52.9 mmt 55.5 mmt 47.2 mmt

Total CO2 emissions 732 mmtb 577 mmtc 439 mmt

CO2 emissions per capita 8.9 mt 7.2 mt 5.5 mt

Energy mix:      

Oil 34.4% 35.8% 32.3%

Coal 23.7% 17.3% 16.1%

Natural gas 21.6% 23.9% 21.9%

Nuclear 11.4% 0.0% 0.0%

All renewables 8.0% 22.8% 30.0%
d 

emissions 6.3% 0.0% 0.0%

emissions 0.0% 14.6% 19.6%

0.5% 0.9% 1.0%

1.0% 4.2% 5.4%

0.2% 2.0% 2.4%

0.0% 1.1% 1.2%

Sources: BMUB (2010), “Energy Concept of 2010”; EIA (2013b), “International Energy Outlook 2013”; Schlesinger, Lindenberger, and Lutz (2010), 
Table A 1-2. 
Notes: a) Calculations based on assumption of 2 percent real GDP growth from 2010 base of $3.3 trillion. b) The emission figures for 2008 come from 
the World Bank Indicators. They are lower than those reported above for 2010, which come from the EIA International Energy Outlook. This is one case 
where the need to rely on more than one source creates some statistical inconsistencies. But it was necessary to use these various sources for the 
purposes of internal consistency within each separate table of figures. c) These figures were derived from the levels of energy consumption assigned 
to oil, coal, and natural gas, with the emissions per Q-BTU figures presented in Table 2.2. The figures taken directly from the Energy Concept source are 
somewhat lower: 503 mmt under the BAU case and 403 under the Low Carbon case. d) As discussed in the text, we assume that, by 2030, the entire 
supply of bioenergy in Germany comes from low-emissions sources. This is not explicitly stated as a feature of the 2030 projections.

– 
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The first thing to note is that Germany achieves major advances in energy efficiency under 
both its BAU and Low Carbon scenarios for 2030. Thus, under the BAU scenario, Germany’s 
energy intensity falls from 5.1 Q-BTUs per $1 trillion in 2008 to 2.1 in 2030, a nearly 60 percent 
improvement in efficiency. The additional efficiency gains from the BAU to the Low Carbon case 
are modest, from a 2.1 to a 1.9 energy intensity ratio. 

The major difference between the BAU and Low Carbon cases is with the change in the energy 
mix. As we see in Table 9.3, under the BAU case, the emissions intensity ratio - i.e. emissions 
per Q-BTU - actually rises modestly as of 2030 relative to 2008, from 52.9 to 55.5 mmt of 
emissions per Q-BTU. However, with the Low Carbon scenario, the emissions intensity ratio 
falls to 47.2 mmt per Q-BTU, a 15 percent decline relative to the BAU case.

We see the overall impact of both the gains in efficiency and the expansion of clean renewables 
supply through the trajectory for overall emissions and emissions per capita as of 2030. In the 
2030 BAU scenario, total emissions do fall by a substantial 21 percent relative to 2008, from 
732 to 577 mmt. With the Low Carbon scenario, the emissions decline is to 439 mmt, a 40 
percent reduction relative to 2008.

We obtain further perspectives on these two 2030 scenarios by examining the changes in 
the specific energy mix in both cases. In both cases, the main changes with respect to non-
renewable sources are the absolute elimination of nuclear energy, from having contributed 
over 11 percent to Germany’s total energy supply in 2008. The share of energy supplied by coal, 
also declines significantly - from nearly 24 percent of total supply in 2008 to 17 percent under 
the 2030 BAU scenario and 16 percent with the Low Carbon scenario.

The relative declines for nuclear power and coal are then matched by a large expansion in 
renewables supply. Wind, solar and geothermal all grow substantially, both under the BAU and 
Low Carbon cases. The share from wind rises from 1 percent in 2008 to 4.2 percent under the 
2030 BAU case and to 5.4 percent in the Low Carbon case. Solar rises from only 0.2 percent 
in 2008 to 2.0 percent in the 2030 BAU case and 2.4 percent under the Low Carbon scenario. 
These are all large proportional increases. But they all remain as relatively modest contributions 
to Germany’s overall energy supply in 2030, under both the BAU and Low Carbon scenarios.

The most important factor in terms of renewables is the large expansion in bioenergy - from 
6.3 percent of total supply in 2008 to 14.6 percent in 2030 under the BAU scenario and to 
19.6 percent under the Low Carbon scenario. What is also critical here is that, between 2008 
and 2030, Table 9.3 shows that the bioenergy supply shifts entirely from high-emissions to 
low-emissions processes. That is, the table shows that low-emissions bioenergy is at zero 
percent of total supply as of 2008, but then, as of 2030, under both the BAU and Low Carbon 
scenarios, high-emissions bioenergy is at zero percent, while low-emissions bioenergy provide 
100 percent of the bioenergy supply. In fact, this breakdown in the relative proportions of high- 
and low-emissions bioenergy is not explicitly stated in the BMUB’s Energy Concept document. 
We have, instead, inferred these shifts in the shares of high- and low-emissions bioenergy 
sources based on changes in emission levels in the 2030 scenarios relative to 2008. That is, it 
would not be possible for overall emissions to fall to the extent presented in the Energy Concept 
document if Germany were to continue to generate bioenergy through the high-emissions 
practices that dominated as of 2008. 
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We discuss this issue of bioenergy sources further below, as part of our discussion of Germany’s 
strategies for achieving its highly ambitious emissions reductions goals for 2030. We first 
consider developments in the area of energy efficiency, then take up investments in renewable 
energy.

Energy Efficiency
Despite the fact that Germany is already operating at a very high efficiency level, the 
government’s policy framework, the 2010 Energy Concept document developed by the BMUB, 
has developed a path through which its energy intensity ratio will still fall much further, from 
the 2008 level of about 5 Q-BTUs per $1 trillion in GDP to about 2 as of 2030 - a roughly 60 
percent efficiency improvement. Germany’s efficiency strategy to date and future plans are 
well summarized in the IEA’s 2013 Energy Efficiency Market Report. The IEA’s study begins by 
noting that “Germany’s state-owned development bank, KfW, plays a crucial role by providing 
loans and subsidies for investment in energy efficiency measures in buildings and industry, 
which have leveraged significant private funds,” (2013, p. 149). The IEA study also believes 
that Germany’s progress to date can indeed continue into the foreseeable future, as long as 
government policies continue to support efficiency investments on a large-scale basis. The 
IEA’s assessment of Germany’s prospects is as follows:

The outlook is bright for energy efficiency markets in Germany, where a combination of 
government policy requiring better energy performance, a history of industry engaged 
in providing energy efficient products, and financial support available to consumers for 
energy efficiency, mean that significant investment is expected to continue. European 
carbon dioxide emissions regulations for cars will require the large German car 
industry to continue investing in fuel-efficient technology. Potential opportunities for 
energy efficiency investment can also be found in industry, where energy management 
programmes are now necessary to access certain tax relief programmes. 

Buildings are likely to remain an area with further potential for investment in energy 
efficiency. The 2 percent renovation rate target set in the Energy Concept strategy should 
translate into further investment opportunities for energy efficiency refurbishments, 
involving both a larger number of buildings and deeper retrofits. Although much 
progress has been made, significant investment opportunities remain in the buildings 
sector over the next five to ten years.

Markets for energy efficiency services, notably energy advice, energy management and 
energy contracting, have experienced steady growth over the last five years in Germany. 
However, they are not considered to have met their potential, and further growth will 
likely be driven by policy in the medium term. Continuing barriers to market development 
are also largely related to policy; moves to facilitate market activity, such as through 
certification and determining transparent definitions of products and services, are 
expected to spur continued growth in energy efficiency markets (IEA, 2013b, p. 159).



195

Renewables
As documented by Eichhammer (2013), the expansion in the supply of wind and solar energy 
production in Germany have been substantial. Germany has also been a major exporter in 
both areas. Prospects are also favorable for a major development in concentrated solar power 
systems for the Middle East and North Africa, with the energy generated there potentially being 
transported back to Europe.

To date, the major driver behind the successful expansion of the solar and wind sectors has 
been the provision of feed-in tariffs, which guarantee a sale price for electricity generated 
through the renewable sources and preferential access to the grid. The 2012 OECD economic 
report on Germany provides a favorable overall assessment of the impact of Germany’s feed-in 
tariff policies, while also suggesting the need for further policy innovations over time: 

These tariffs are in general well designed; they are transparent and predictable (thus 
fostering long-term investment) and are decreasing over time (thus encouraging 
innovation). Tariffs also vary across technologies; while this is potentially supporting 
non-mature but promising power sources more than others, it increases CO2 abatement 
costs for certain technologies to excessive levels. Given the relatively high costs of feed-
in tariffs, efficiency improving adjustments to the system should be considered. It is 
thus welcome that the government revised the photovoltaic tariffs; it should continue to 
monitor the generosity of the feed-in tariffs and adjust them tightly in line with market 
developments (OECD, 2012, p. 21).

Another major factor supporting developments in the solar and wind sectors has been 
technical innovations. The OECD study reports that the number of triadic patents - i.e. those 
filed simultaneously within the European Union, the U.S. and Japan - for renewable energy 
technologies was second only to Japan between 1996 to 2008. The share of GDP allocated in 
Germany to R&D in renewable energy is fourth among OECD economies, after only the ROK, 
Finland and Japan, and is roughly twice as high as the US.

One important area of R&D development in Germany is creating a flexible energy supply load 
curve for renewables, as the demand for energy varies over the course of days, weeks, and 
seasons. Figure 9.1 below, reproduced from Eichhammer (2013), provides an example of the 
type of flexible load management systems being developed for Germany’s renewable energy 
mix as of 2050. As we can see, the management systems will have to take account of the 
relative capacities of domestically produced wind, bioenergy, solar, and hydro to contribute 
at any given time, the capacity to store renewable energy supplies over time, the prospects for 
developing export markets, and the potential residual demand for imports. 
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Figure 9.1: Germany. A model of a flexible renewable energy supply system for Germany, 2050

The figure depicts a possible load curve and supply in Germany in 2050, week 42.

Source: Eichhammer (2013).

However, the single largest set of issues with respect to developing a large-scale supply of clean 
renewable sources by 2030 will be in the area of bioenergy. As we have discussed elsewhere in 
this report, in particular in our Chapter 3 overview with respect to Brazil’s major bioenergy sector, 
the environmental impacts of generating bioenergy vary greatly, depending on feedstocks and 
energy-producing processes involved. For example, as we have seen, emissions generated by 
burning corn ethanol that has been refined through coal-firing processes actually generates 
34 percent greater emissions over a 30-year cycle than burning gasoline. By contrast, using 
corn stover or switchgrass as the feedstock for ethanol, and using renewable energy in refining 
processes, is actually a net absorber of atmospheric CO2. At present, Germany relies almost 
entirely on high-emissions bioenergy sources in supplying 6.3 percent of its total energy 
supply. But the Low Carbon scenario in the BMUB’s Energy Concept has bioenergy as providing 
nearly 20 percent of Germany’s total energy supply in 2030. It will be imperative for Germany 
to transform its bioenergy sector into low-emissions methods in order to meet its overall 2030 
emissions reduction targets.

These issues have recently been debated intensively in Germany. Thus, an analysis published 
in 2012 by the German National Academy of Sciences Leopoldina, Bioenergy - Chances and 
Limits - argues that the negative impacts of bioenergy outweigh the positives, and that the 
realistic prospects for expanding a low-emissions bioenergy sector are limited. One observer 
of Germany’s energy project Paul Hockenos reported on this study as follows in a January 2013 
European Energy Review article: 

A group of 20 experts from various disciplines branded the sector as a bit player in the 
transition to renewables and charged that the net environmental impact is negative. 
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The cultivation and use of energy crops, it concluded, leads to high emissions of 
greenhouse gases, damages ecosystems, and competes with food crops. Germany’s 
biomass imports…effectively export the harmful impact of intensive bioenergy-based 
agriculture. The report recommends bolstering other renewables like PV solar power 
and wind power, as well as finding strategies for increasing energy efficiency rather than 
investing further in the bioenergy branch. Bioenergy makes sense, it concludes, only in 
the limited circumstances when animal or other kinds of waste (residuals) serve as the 
biomass (Hockenos, 2013b).

However, Hockenos also reports that Germany has developed highly stringent and, to 
date, effective certification schemes that were designed explicitly to address bioenergy’s 
environmental shortcomings. Indeed, he writes that “Germany has been the pioneer in 
designing and implementing these controls at home as well as having standards turned into law 
for the EU-27.” Most critically, Hockenos reports that, following Germany’s lead, the European 
Commission is aiming to phase out bioenergy generated with food crops altogether and to use 
only bioenergy produced from residual biomass, waste and selected dedicated crops grown on 
surplus land that cannot be used for the cultivation of food or animal feedstocks. According to 
Hockenos, the authors of the National Academy study did not take adequate account of these 
policy innovations that are already underway in Germany. 

Cost Estimates for Clean Energy Investments
It is evident that Germany does face major challenges in implementing its clean energy 
transformation. The costs of this project are likely to be in the range of 1.5 percent of GDP 
per year, at least through 2030. The Energy Concept document which developed the two 2030 
scenarios we have described estimates that the total costs for Germany to move from the 
BAU to the Low Carbon scenario is likely to be in the range of $500 billion through 2050. That 
would be an average annual cost of $12.5 billion over 40 years. This in turn would represent 
about 0.4 percent of Germany’s current GDP level of $3.3 trillion. However, as we have seen, 
the differences between the BAU and Low Carbon scenarios for 2030 are much smaller than 
either scenario relative to the actual figures for 2008. Indeed, with respect to energy efficiency 
gains, there is only a modest difference between the BAU and Low Carbon scenarios. The major 
transformations are already embedded in the BAU case. 

The differences between the BAU and Low Carbon cases are larger with respect to renewables. 
Still, even in the BAU case, solar power goes from 0.03 to 0.2 Q-BTUs and wind goes from 0.14 
to 0.44 between 2008 and 2030. Most significantly, at least as we have interpreted the 2030 
BAU case, clean bioenergy goes from a zero baseline in 2008 to fully 1.5 Q-BTUs in 2030.

Overall then, if the Concept estimates that the costs of moving from the BAU to the Low Carbon 
case at about 0.4 percent of Germany’s 2010 GDP of $3.3 trillion, it is reasonable to expect that 
moving from the 2008 baseline to the BAU case will entail roughly another 1.1 percent of GDP. 
This means roughly another $36 billion per year, for a total of about $50 billion. 

This figure would then rise annually in correspondence with the economy’s growing GDP. Over 
the full 20-year period from 2010-2030, the midrange level of spending would be $62 billion, 
assuming Germany’s GDP grew at an average annual rate of 2 percent per year.
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Employment Generation through Clean Energy Investments
Table 9.4 presents our estimates as to the effects on overall annual employment levels through 
a clean energy investment project corresponding with the Low Carbon case in Germany’s 
Energy Concept document. Our employment estimates are based on the results of the 
employment models we presented in Chapter 7. We focus for this analysis on the Domestic 
Content Stable scenario, as opposed to assuming Germany’s imports will have to rise to meet 
the resource demands of its clean energy investment project. This is because Germany is an 
advanced economy, which has already built the most innovative clean energy sector among 
large advanced economies.

Table 9.4: Germany. Employment impact of clean energy investments vs. fossil fuel spending

Figures are jobs in Year 1 of 20-year clean energy investment strategy 

- Total investment = 1.5 percent of GDP;
- 67 percent clean renewables;
- 33 percent energy efficiency

- 70 percent of investment for capacity creation/production;
- 30 percent for financing costs.

German labor force in 2011 = 42.3 million

  Clean energy  
investments

Fossil fuel  
spending

Net employment 
effects of clean energy 

investments

Direct + indirect total 
employment at Year 1 331,500 263,300 68,200

Direct + indirect 
employment as share of 
total labor force at Year 1

0.8% 0.6% 0.2%

Source: See Chapter 7 and Appendix 3.

 
We have roughly estimated the costs of achieving the goals of the Low Carbon case as being 
about 1.5 percent of Germany’s GDP through 2030. We then also assume that, of the total annual 
budgetary allocation for clean energy investments, 70 percent is used for the activities linked 
to either generating energy or raising efficiency standards, while 30 percent covers financing 
costs. We estimate employment creation only on the basis of the 70 percent of spending going 
towards expanding renewable energy capacity or raising efficiency standards as opposed to 
the financing costs of undertaking those investment activities.
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Considering these factors, we see that Germany’s clean energy investment project, as we have 
specified it, will generate about 330,000 jobs within Germany in Year 1 of the 20-year investment 
project. This represents about 0.8 percent of Germany’s total workforce. By comparison, if 
Germany were to spend that same 1.5 percent of GDP within its existing fossil fuel sectors, 
the level of employment creation would be about 263,000 jobs, or 0.6 percent of Germany’s 
workforce. The net effect from shifting funds out of fossil fuels and into energy efficiency and 
renewables would be to increase the overall number of jobs within the German economy by 
close to 70,000 jobs. 

In Table 9.5, we present our projections for employment creation in Year 20 of Germany’s 20-
year clean energy investment project. These figures are based on two separate assumptions 
as to the average growth rate of labor productivity in Germany’s clean energy sectors over this 
20-year period - a 1 percent low-end average annual labor productivity growth rate assumption 
and a 2.5 percent high-end assumption.

Table 9.5: Germany. Projected employment impacts of clean energy investments  
after 20 years under alternative labor productivity assumptions

Figures are jobs per year

Assumptions for 20-year employment projections

Labor force at end of 20-year investment cycle = 40 million

 
Scenario with 1 percent 

average annual labor 
productivity growth

Scenario with 2.5 percent 
average annual labor 
productivity growth

Midpoint between 1 
percent and 2.5 percent 

productivity growth 
scenarios

Direct + indirect total 
employment 404,500 299,900 352,000

Year 20 direct + indirect 
employment relative to 
Year 1 employment

22.0% -9.5% 6.2%

Direct + indirect 
employment as share of 
total labor force

1.0% 0.7% 0.9%

Sources: See Chapter 7 and Appendix 3.
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Working with these assumptions, as well as with the other assumptions on GDP growth, 
population and labor force participation listed above Table 9.5, we generate the following 
results:

1. Assuming labor productivity increases at 1 percent per year, total employment creation 
through clean energy investments will rise to about 404,000 in Year 20. This is a 22 
percent increase relative to employment creation in Year 1. 

2. Under this 1 percent labor productivity growth assumption, employment creation 
through clean energy investments will rise to about 1 percent of Germany’s Year 20 labor 
force relative to the 0.8 percent figure as of Year 1.

3. Assuming average labor productivity in Germany’s clean energy sectors increases at the 
higher-end rate of 2.5 percent over the 20-year investment cycle, employment creation 
will then be reduced. Year 20 employment creation through clean energy investments 
then reaches about 300,000. This is about a 9 percent reduction over the Year 1 figure. 
The reason that employment contracts through clean energy investments in this scenario 
is that we are assuming Germany’s average annual GDP growth is a relatively slow 2 
percent. GDP growth would thereby be below our assumed high-end labor productivity 
growth assumption of 2.5 percent. Under this scenario, employment creation through 
clean energy investments declines by 0.1 percent as a share of Germany’s overall labor 
force in Year 20, to around 0.7 percent. 

4. In the last column of Table 9.5, we report midpoint employment creation figures 
that are based on averaging the Year 20 employment estimates derived from both 
the 1 percent and 2.5 percent labor productivity growth assumptions. These figures 
give some additional perspective on the extent of job opportunities that will result 
through Germany’s 20-year clean energy investment project. As we see, the midpoint 
employment level for Year 20 is about 350,000. This would represent about 0.9 percent 
of Germany’s Year 20 workforce.

Overall, employment creation through Germany’s clean energy investment project operating 
at 1.5 percent of percent of GDP per year will expand over time under most scenarios as to the 
growth of labor productivity over the 20-year investment cycle. It is only when labor productivity 
in Germany’s clean energy sectors rise at a rate faster than our assumed relatively slow average 
annual GDP growth rate of 2 percent that the gains in employment through clean energy 
investments decline over time. Nevertheless, even under such scenarios of labor productivity 
rising faster than GDP growth, the clean energy investment strategy will still generate positive 
gains in employment, both absolutely as well as relative to spending within Germany’s fossil 
fuel sectors.

Considering these employment estimates as a whole, the impact on job opportunities of the 
German clean energy investment project will be favorable. On their own, they will not generate 
a dramatic improvement in employment opportunities throughout the German economy. But 
there will positive job benefits that accrue while Germany undertakes its transformational 
project of building a clean energy economy.
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CHAPTER 10: INDONESIA - CLEAN 
ENERGY INVESTMENTS, EMISSIONS 
REDUCTIONS AND EMPLOYMENT 
EXPANSION
 

Growth Trajectory and Emissions
We begin by reviewing in Table 10.1 the basic statistics from Chapter 1 indicating Indonesia’s 
current level of development and the operations of their energy system. As we see in Table 10.1, 
Indonesia is at present a lower-middle income country, with average per capita GDP at $3,600 
as of 2012. Overall energy consumption is at 6.0 Q-BTUs, and overall CO2 emissions are at 415 
mmt. Emissions per capita are at 1.7 mt, which is roughly one-third the global average of 4.6 
mt. It is also below the targeted global average figure of 2.4 mt needed for achieving the 20-
year global CO2 emissions reduction target. In terms of both the energy intensity and emissions 
intensity ratios, Table 10.1 shows that Indonesia is presently close to the global average. 

Table 10.1: Indonesia. Basic energy indicators, 2010

  Indonesia World

Per capita GDP
(2005 $PPP)  $3,600  $10,300

Total energy consumption
(Q-BTUs) 6.0 Q-BTUs 510.5 Q-BTUs

Per capita energy consumption
(M-BTUs/population) 25.2 M-BTUs 74.0 M-BTUs

Total CO2 emissions
(mmt) 414.6 mmt 31,502 mmt

Per capita CO2 emissions
(mt of emissions/population) 1.7 mt 4.6 mt

Energy intensity ratio
(Q-BTUs/$1 trillion GDP) 6.8 Q-BTUs 7.1 Q-BTUs

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 69.1 mmt 65.9 mmt

Source: See Tables 1.1 and 1.4.
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Between 2003-2012, the Indonesian economy has grown at an average annual rate of 5.7 
percent. This sustained strong growth performance has also generated rapid increases in 
energy consumption throughout the country. Nevertheless, the country’s provisioning of energy 
services is still seriously underdeveloped. As of 2012, 35 percent of households do not have 
access to electricity. The country experiences daily power blackouts averaging 4 hours a day.

The economic growth target of the State Ministry of National Planning (BAPPENAS) is for 
Indonesia to move onto a long-term GDP growth path of around 7 percent per year through 2030 
(Republic of Indonesia, 2011). This would represent a very rapid long-term growth trajectory, 
roughly comparable to Japan, the ROK, China and the smaller Asian Tiger economies during 
their strongest growth phases. This growth trajectory would generate a rough tripling of average 
per capita incomes in the country, to around $10,000 per person. If such average income gains 
from growth were equitably distributed, the impact would be a dramatic reduction in poverty.

Of course, we cannot know whether Indonesia will be able to achieve this kind of growth 
performance. But we do know that if they attain anything roughly along these lines while also 
maintaining its existing energy infrastructure more or less intact, the result will be to generate 
a huge increase in the country’s CO2 emissions. This is precisely the quandary that will confront 
not only Indonesia, but all low and lower-middle income countries that aim to achieve a rapid 
growth rate on a foundation of fossil-fuel dominated energy systems. 

In Table 10.2, we can see the impact of Indonesia’s rapid growth path under what the government 
assumes as its BAU energy consumption assumptions through 2030, as presented in its 2010 
document, Indonesia’s Second National Communication under the United Nations Framework 
Convention on Climate Change (UNFCCC). Thus, as we see in the top row of the second column 
of Table 10.2, under the BAU assumptions, Indonesia’s overall energy consumption rises to 
25.8 Q-BTUs by 2030, a 330 percent increase relative to the actual 2010 level. Moving down the 
second column, we can also see how Indonesia’s energy mix is projected to change over this 
time period, with most of the expansion in overall supply coming from coal. The proportion of 
overall energy supplied by coal rises from 32.6 to 47.3 percent. 
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Table 10.2: Indonesia. Energy consumption and emissions: 2010 actuals and alternative 
official projections

  2010 actuals 2030 BAU scenario scenario

Total energy consumption 6.0 Q-BTUs 25.8 Q-BTUs 19.7 Q-BTUs

Energy intensity ratio
(Q-BTUs/$1 trillion GDP)a  6.8 Q-BTUs  11.2 Q-BTUs  8.6 Q-BTUs

Energy mix:      

Oil 39.1% 21.4% 25.7%

Coal 32.6% 52.0% 30.5%

Natural gas 19.2% 20.2% 30.4%

Nuclear 0.0% 0.0% 0.3%

High-emissions renewables 4.0% 2.5% 5.4%b

Clean renewables 5.1% 3.8% 7.9%

4.2% 2.7% 4.0%

0.9% 1.1% 3.9%c

Total CO2 emissions 415 mmt 2,200 mmt 1,450 mmt

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 69.2 mmt 85.3 mmt 73.6 mmt

CO2 emissions per capita
(with population = 280 million) 1.7 mt 7.8 mt 5.2 mt

Source: See Tables 1.1 and 1.4; Republic of Indonesia (2010), “Indonesia’s Second National Communication to the United Nations Framework 
Convention on Climate Change”; EIA (2013b), “International Energy Outlook 2013.”
Note: a) Calculations based on average annual GDP growth of 5 percent; b-c) Assumption is that clean bioenergy supplies 20 percent of all bioenergy 
under 2030 “low carbon” scenario.

The impact of this large increase in energy consumption with a rising proportion supplied 
through burning coal, the most heavily emitting CO2 energy source, is that overall emissions 
will rise from 415 mmt in 2010 to 2,200 mmt in 2030 under the 2030 BAU scenario, a 430 
percent increase. Assuming Indonesia’s population in 2030 is around 280 million, this then 
also means that per capita CO2 emissions rise from 1.7 to 7.8 mt. This figure is 70 percent higher 
the current global average per capita emissions level of 4.6 mt, and more than three times 
higher than the 2.4 mt average per capita level that the world needs to achieve as its 20-year 
emissions reduction target.

The Indonesian government fully recognizes the problem. Thus, its 2010 communication to 
the UNFCCC also presents alternatives to the BAU scenario, which seek to reduce the rise 
in CO2 emissions within the context of the country’s growth process (Republic of Indonesia, 
2010). The third column of Table 10.2 presents the results of the government’s most ambitious 
scenario, which we have termed its “Low Carbon” case (the document itself terms this scenario 
“Climate II”). In this case, overall emissions in 2030, at 1,450 mmt, are 50 percent lower than 
in the BAU case. Most of the improvement here is the result of fuel-switching from coal to 
natural gas. As Table 10.2 shows, in the Low Carbon scenario, natural gas rises from 18.1 to 
27.4 percent of overall supply relative to the BAU case while coal falls from 47.3 to 30.5 percent. 
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Clean renewables also rises relative to the BAU case, from 3.8 to 5.4 percent. The Low Carbon 
case also assumes a first-time contribution from nuclear power, if at a still quite modest level 
of 0.3 percent of total supply.

The most critical result emerging out of Indonesia’s Low Carbon scenario is that per capita 
emissions are still at 5.2 mt in 2030. That is, with this Low Carbon case, per capita emissions as of 
2030 are still more than twice as high as the 2.4 mt global average emissions level needed to reach 
the 20-year emissions reduction target. Clearly, as a framework for beginning to control climate 
change over the next 20 years, even this Low Carbon scenario is not viable for either Indonesia 
itself or other low- to lower-middle income economies aiming for rapid economic growth. 

Emissions Reductions through Clean Energy Investments
In Table 10.3, we present our alternative framework, in which Indonesia’s growth process 
incorporates clean energy investments - i.e. investments in renewable energy and energy 
efficiency - at a rate of 1.5 percent of GDP annually over a full 20-year period. For the purposes 
of our discussion, as sketched earlier in this chapter, we assume that this 1.5 percent of GDP is 
allocated with 1 percent of GDP funding the expansion of clean renewable production while 0.5 
percent of GDP is channeled into energy efficiency investments. 

Table 10.3: Indonesia. Clean energy 20-year investment growth trajectory

2012 GDP $880 billion

 Projected 20-year average annual GDP growth rate 5.0% per year

Projected 2032 GDP
(with 5 percent average annual GDP growth) $2.3 trillion

Midrange GDP value for investment spending estimates
(= (2012 GDP + 2032 GDP)/2) $1.6 trillion

Average annual clean renewable investments
(= 1 percent of midrange GDP) $16 billion

Average annual energy efficiency investments
(= 0.5 percent of midrange GDP) $8 billion

Source: Authors’ calculations based on World Bank (2014) “World Development Indicators,” GDP (current dollars).

 
Growth assumptions for clean energy project. For the purposes of our discussion, we are 
assuming that Indonesia’s average annual GDP growth rate over this 20-year period is 5 percent 
rather than 7 percent. For our purposes, it is reasonable to work with a more conservative, if still 
rapid, projection for long-term GDP growth. But note that, in any case, even under a 7 percent 
average growth scenario over 20 years, if Indonesia were to devote 1.5 percent of its more 
rapidly growing GDP levels to expanding its clean energy sector, the absolute expansion of this 
clean energy sector would be faster with a 7 percent GDP growth rate.

As Table 10.3 shows, when we assume a 5 percent average annual growth rate over 20 years, 
this would mean that Indonesia’s GDP in 20 years would be $2.3 trillion. To then estimate 
an average level of clean-energy investment spending over this 20-year period, we simply 
calculate the midrange GDP value between 2012 GDP at $880 billion and 2032 GDP at $2.3 
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trillion. That figure is $1.6 trillion. This then means that the average level of annual spending 
on clean energy would be 1 percent of $1.6 trillion per year for renewables, which is $16 billion, 
and 0.5 percent for energy efficiency, which is $8 billion per year. 

Capacity for Clean Energy Project. Indonesia has an existing well-developed energy 
infrastructure based around the production of oil, coal and natural gas. Indonesia had long 
been an oil-exporting country and member of OPEC, before the rapid increases in its domestic 
energy consumption converted the country into an oil importer in 2011. Nevertheless, Indonesia 
is still the world’s 20th largest oil-producing country in 2011. It was also the world’s largest 
exporter of coal by weight and its 18th largest exporter of natural gas. In short, Indonesia has a 
demonstrated record of maintaining a large-scale energy infrastructure, capable, among other 
things, of servicing major global export markets. 

Clean Renewables. Indonesia’s level of clean renewable production is still modest, even while 
significant projects are active in selected parts of the country (Satyakti, 2013). Traditional high-
emissions biomass is a major source of energy, generating about 2 Q-BTUs in 2011 (EIA, 2013a). 
Much of this biomass supply frequently goes unreported in surveys since it is produced in the 
residential sectors of the country’s more remote areas. These are regions of the country that 
remain, to a large extent, unconnected to the electrical grid. In addition, Indonesia is currently 
the world’s third largest generator of geothermal energy, after the U.S. and the Philippines. 
This geothermal production still amounts to only about 0.02 Q-BTUs. However, Indonesia 
also has about 40 percent of the world’s potential geothermal supply, located mostly in Bali 
and Java. The Ministry of Energy itself estimates that the country has the natural resources 
to expand geothermal supply to nearly 1 Q-BTU - a more than 20-fold expansion. Indonesia’s 
solar radiation is also 50 percent higher than in Europe, offering the prospect for a solar sector 
that, with efficient technologies, could generate large-scale amounts of energy at costs that are 
closer to the low end of the range that we cited for “other Asia” in our Chapter 3 discussion. 
That range, at present is between 14-70 cents per kWh, but these figures, as they apply to 
Indonesia specifically, should be coming down rapidly as technologies mature over the next 
decade. Large-scale hydro is operating at about 0.25 Q-BTUs. The government estimates that 
there is room for significant expansion here, including through small-scale projects.

Energy Efficiency. As we have seen, the government’s own Low Carbon scenario for 2030 
includes a 24 percent decline in energy consumption relative to its 2030 BAU projection. This 
is close to the level of savings we estimate to be attainable through investing 0.5 percent of 
GDP per year in efficiency. 

As described by Indonesia’s Directorate General of New Renewable Energy and Energy 
Conservation (2012) as well as in recent reports issued by the IEA (2013), Mudiantoro (2013), 
United States AID (Anastasia and du Pont, 2007) and the European Commission’s most recent 
Indonesia country report (Macdonald, 2010), the potential is substantial for large-scale gains 
through energy efficiency investments in Indonesia. This includes investments in all major 
areas of buildings, industry, and transportation. The only issue is what the cost levels are likely 
to be needed to achieve major efficiency gains. We will work with the cost assumption of $11 
billion per Q-BTU, based on the 2010 McKinsey study described in Chapter 4. As we saw in 
Chapter 4, the World Bank provided a much lower cost range, on the order of $1.9 billion per 
Q-BTU. The broader point is that various sources do appear to converge in support of the idea 
that widespread efficiency gains are attainable in Indonesia at reasonable costs.
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Clean Energy Capacity and Emissions
In Table 10.4, we estimate the levels of capacity expansion for both clean renewables and energy 
efficiency. We based our estimates for the costs of achieving these gains in both efficiency and 
renewables at $11 billion per Q-BTU for efficiency investments, as noted above, and $125 per 
Q-BTU for expanding clean renewable capacity. These are the same average cost figures we 
used for the case of Brazil. The reasoning for using these figures as rough benchmarks is the 
same as we presented for the Brazilian case in Chapter 8. Given that labor costs in Indonesia 
are significantly lower than those for Brazil, if anything, these cost assumptions for achieving 
energy efficiency savings and expanding clean renewable productive capacity in Indonesia are 
likely to be high-end figures. 

Working with these assumptions, we then estimate the two alternative cases. Under Case 
1, the clean energy investment project begins promptly, which means that Indonesia begins 
accumulating a growing capital stock of renewable energy and energy efficient processes over 
the full 20-year time period. Under Case 2, a more conservative scenario, we assume a 3-year 
delay from the time the investment project begins until when Indonesia first sees renewable 
energy and energy efficiency capacity expand. Thus, under Case 2, the accumulation of new 
capacity grows for only 17 years of the full 20-year investment cycle. We are assuming that the 
second scenario is more realistic, and therefore we focus our discussion on this case. 

Table 10.4: Indonesia. Cost assumptions and capacity expansion for clean renewables and 
energy efficiency investments

  Clean renewable energy Energy efficiency

1) Cost assumptions $125 billion per Q-BTU of capacity $11 billion per Q-BTU of energy 
savings

2) Annual spending levels $16 billion per year
(= 1 % of midrange GDP)

$8 billion per year
(= 0.5 % of midrange GDP)

CASE 1: No delay in implementing 
program: 20- year spending cycle    

3)  Total spending with 20- year 
spending cyclea $320 billion $160 billion

4)  Total capacity expansion or energy 
savings through 20 year spending 
cycleb

2.6 Q-BTUs of new capacity 14.6 Q-BTUs of energy savings

CASE 2: 3-year delay in implementing 
program: 17- year spending cycle    

5)  Total spending with 17-year 
spending cyclec $272 billion $136 billion

6)  Total capacity expansion or energy 
savings through 17- year spending 
cycled

2.2 Q-BTUs of new capacity 12.4 Q-BTUs of energy savings

Notes: a) Calculated as row 2 multiplied by 20; b) Calculated as row 3 divided by row 1; c) Calculated as row 2 multiplied by 17; d) Calculated as row 
5 divided by row 1.
Source: Authors’ calculations.

 



207

We see under Case 2 that total investment spending on renewables would be $272 billion 
over 20 years, with a 17-year spending cycle after the 3-year start-up period. Energy efficiency 
investments would be $136 billion, again, based on a 17-year spending cycle and a 3-year start-
up period. 

We then show the net effects of Case 2 in the bottom row of Table 10.4. That is, after 20 years, 
Indonesia would have created 2.2 Q-BTUs of clean renewable energy capacity. This would 
include a mix of clean renewable productive capacity that would, of course, be determined 
through examining a full range of options. As documented by Satyakti (2013) and elsewhere, 
Indonesia does have favorable prospects, in varying degrees, in all clean renewable areas. 
Indonesia would have also been able to save 12.4 Q-BTUs of energy consumption through 
having invested $136 billion in energy efficiency processes. We can then apply that 12.4 Q-BTUs 
of efficiency as energy savings relative to the government’s 2030 BAU energy consumption 
level of 25.8 Q-BTUs.

Table 10.5 shows the impact of this clean energy investment project for Indonesia on its overall 
emission level in 20 years. We show this by comparing energy consumption figures under the 
government’s 2030 BAU scenario with our more conservative Case 2 investment trajectory. 

Table 10.5: Indonesia. Impact of clean energy investment relative to 2030 BAU scenario

  2030 BAU scenario 20-year clean energy investment
(Case 2: 3-year start-up delay)

Total energy consumption 25.8 Q-BTUs
13.4 Q-BTUs

(with 12.4 Q-BTUs  
of energy-efficiency savings)

Total clean renewable energy supply 1.0 Q-BTUs
3.2 Q-BTUs

(with 2.2 Q-BTUs of additional  
clean renewables)

Total nuclear power supply 0.0 0.0

Total fossil fuel + High-emissions renewables 24.8 Q-BTUs 10.2 Q-BTUs

Total CO2 emissions 2,200 mmt
714 mmt

(Based on 70 mmt average emissions 
per Q-BTU for fossil fuels)

Total CO2 emissions per capita
(with population = 280 million) 7.9 mt 2.6 mt

Source: Authors’ calculations.

 
As we see, under the government’s BAU assumptions, Indonesia’s total energy consumption 
level in 2030 is, again, 25.8 Q-BTUs. This level now falls to 13.4 Q-BTUs due to the energy 
efficiency investments, which we estimate would generate 12.4 Q-BTUs of energy saving 
relative to the BAU scenario. Total clean renewable capacity in Indonesia now rises to a total of 
3.2 Q-BTUs. This includes the 1 Q-BTU that was built into the government’s BAU scenario, plus 
the 2.2 Q-BTUs that would be generated through investing 1 percent of GDP per year over a 17-
year period, following the initial 3-year start-up phase.
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The net effect of these energy efficiency and renewable investments can then be seen in terms 
of Indonesia’s residual demand for fossil fuel energy sources. As we see, the demand for all 
fossil fuel sources falls from 24.8 Q-BTUs under the BAU scenario to 10.2 Q-BTUs under the 
clean energy investment scenario. This is a reduction of 14.6 Q-BTUs, or 58.9 percent, in the 
consumption of oil, coal and natural gas. 

This decline in fossil fuel consumption in turn has a dramatic impact on Indonesia’s overall 
CO2 emissions within 20 years, as we see in the bottom two rows of Table 10.5. We assume an 
average emissions level for Indonesia’s fossil fuel energy mix at 70 mmt per Q-BTU, which is 
approximately equal to the country’s actual emissions levels per Q-BTU in 2010. Under this 
assumption, Indonesia’s overall emissions fall from the BAU figure of 2,200 mmt to 714 mmt, 
a 68 percent decline. Emissions per capita are now 2.6 mt. This figure is only slightly above the 
20-year global target level of 2.4 mt. But now, as a result of the 20-year clean energy investment 
project, Indonesia would have essentially stabilized its per capita emissions at the global target 
level while the economy would have also grown by 5 percent per year for 20 years, and population 
would have increased from 250 to 280 million people. This means that per capita income would 
have risen from its 2010 level of $3,600 to $8,200 - a 144 percent increase - while still maintaining 
a level of per capita emissions close to the global target level of 2.4 mt as of 2032.

Employment Generation through Clean Energy Investments
Table 10.6 presents our estimates of the effects on overall annual employment levels through 
an Indonesian clean energy investment project at the level of 1.5 percent of GDP. Of course, our 
results are derived from our employment estimates presented in Chapter 7 of numbers of jobs 
generated per $1 million in spending.

Table 10.6: Indonesia. Employment impact of clean energy investments vs. fossil fuel spending

Figures are jobs in Year 1 of 20-year clean energy investment strategy

Assumptions for clean energy investments:

-  67 percent clean renewables;
- 33 percent energy efficiency

Indonesia labor force in 2011 = 115.9 million

  Clean energy 
investments

Fossil fuel 
spending

Net employment effects of 
clean energy investments

Direct + indirect total employment in Year 1 953,900 203,300 750,600

Direct + indirect employment as share of 
total labor force in Year 1 0.8% 0.2% 0.6%

Source: See Chapter 7 and Appendix 3.
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Working within that framework, we have calculated the effects of the 1.5 percent of GDP 
investment project given a spending breakdown at two-thirds renewables and one-third energy 
efficiency. We also make two other assumptions. First, we use the results from our “Domestic 
Content Declines” scenario. This provides a more conservative assessment as to the capacity 
of Indonesia to expand clean energy activities on the basis of their current proportions of 
domestic resource use. It assumes, in other words, that Indonesia will need to increase its 
imports while advancing its clean energy investment scenario. Indonesia is a rapidly growing 
economy, and anticipates sustaining an even faster growth trajectory over the coming 20 years. 
Still, building out clean energy sectors on a large scale will probably create significant strains 
on the country’s resources of technological capacity and skilled labor. 

We then also assume that of the total amount of spending on the clean energy investment 
project, 30 percent is allocated to cover financing costs. This leaves 70 percent available for 
spending on creating capacity and producing, refining, transporting and marketing energy.

From these assumptions, we estimate that the total amount of direct plus indirect employment 
generated through the clean energy investment project at 1.5 percent of GDP would be about 
950,000 jobs. This is, of course, a very large number of jobs. But, as we show, it is still only 0.8 
percent of the overall Indonesian labor force of 115.9 million people as of 2011. The impact of the 
clean energy investment project would therefore be strongly positive in terms of employment, 
but its overall scope would be relatively small.

To gauge the net benefits of this level of job creation, we do also need to compare these figures 
with the job creation that would occur through maintaining spending in Indonesia’s existing 
fossil fuel industry, as opposed to shifting funds into clean energy. We see in Table 10.6 that 
the same level of spending in the coal, oil and natural gas sectors in Indonesia would create 
203,000 jobs. As such, the net gain in employment through shifting funds out of fossil fuels 
and into clean energy at the level of 1.5 percent of Indonesia’s GDP would be 750,000 jobs, or 
0.6 percent of Indonesia’s 2011 workforce.

In Table 10.7, we present our projections for employment creation in Year 20 of Indonesia’s 20-
year clean energy investment project. These figures are based on two separate assumptions 
as to the average growth rate of labor productivity in Indonesia’s clean energy sectors over this 
20-year period - a 1 percent low-end average annual labor productivity growth rate assumption 
and a 2.5 percent high-end assumption.
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Table 10.7: Indonesia. Projected employment impacts of clean energy investments 
after 20 years under alternative labor productivity assumptions 

Figures are jobs per year

Assumptions for 20-year employment projections
· Baseline year-one employment levels given in Table 10.6
· 20-year average annual GDP growth is 5 percent
· Average annual labor productivity growth ranges between 1 – 2.5 percent
· Population figure is projected 2035 population
· Labor force/population ratio at end of 20-year investment cycle equals 2011 ratio

Labor force at end of 20-year investment cycle = 145 million

 
Scenario with 1 percent 

average annual labor 
productivity growth

Scenario with 2.5 percent 
average annual labor 
productivity growth

Midpoint between 1 
percent and 2.5 percent 

productivity growth 
scenarios

Direct + indirect total 
employment 2.1 million 1.6 million 1.8 million

Year 20 direct + indirect 
employment relative to 
Year 1 employment

119.1% 63.9% 91.5%

Direct + indirect 
employment as share of 
total labor force

1.4% 1.1% 1.3%

Sources: See Chapter 7 and Appendix 3.
Notes: Labor force at end of 20-year investment cycle = 145 million. Assumptions for 20-year employment projections: a) Baseline year-one employment 
levels given in Table 10.6; b) 20-year average annual GDP growth is 5 percent; c) Average annual labor productivity growth ranges between 1–2.5 
percent; d) Population figure is projected 2035 population; e) Labor force/population ratio at end of 20-year investment cycle equals 2011 ratio.
 
Working with these assumptions, as well as with the other assumptions on GDP growth, 
population and labor force participation listed above Table 10.7, we generate the following 
results:

1. Assuming labor productivity increases at 1 percent per year, total employment creation 
through clean energy investments will rise to about 2 million in Year 20. This is a nearly 
120 percent increase relative to employment creation in Year 1. This strong gain in 
employment creation results through our assumption that GDP growth will average 5.0 
percent per year over the 20-year clean energy investment cycle - a 4 percent faster rate 
than labor productivity in the clean energy sectors. GDP growth at 5 percent per year in 
turn means that clean energy investments will also be growing at 5 percent per year, to 
remain as a fixed 1.5 percent of GDP every year over the 20-year investment cycle.

2. Under this 1 percent labor productivity growth assumption, employment creation 
through clean energy investments will rise to about 1.4 percent of Indonesia’s Year 20 
labor force relative to the 0.8 percent figure as of Year 1.

3. Assuming average labor productivity in Indonesia’s clean energy sectors increases 
at the higher-end rate of 2.5 percent over the 20-year investment cycle, employment 
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creation will still be rising significantly, given that we assume GDP growth will average 
5.0 percent per year. Year 20 employment creation through clean energy investments 
then reaches 1.6 million. This is still a nearly 64 percent increase over the Year1 figure. 
Under this scenario, employment creation through clean energy investments rises as a 
share of Indonesia’s overall labor force in Year 20, to around 1.1 percent, a 0.3 percent 
increase relative to the Year 1 figure of around 0.8 percent.

4. In the last column of Table 10.7, we report midpoint employment creation figures, that 
are based on averaging Year 20 employment levels derived from both the 1 percent and 
2.5 percent labor productivity growth assumptions. As we see, the midpoint figure is 1.8 
million jobs, which is about 1.3 percent of Indonesia’s Year 20 labor force.

Overall, as we see, employment creation through Indonesia’s clean energy investment project 
operating at 1.5 percent of GDP per year will expand significantly over time under a wide range 
of plausible assumptions as to the growth of labor productivity over the 20-year investment 
cycle. As such, we can conclude that the clean energy project for Indonesia, scaled at about 
1.5 percent of GDP per year, will generate, first, huge reductions in CO2 emissions while, 
concurrently, providing expanding employment opportunities throughout the country over the 
full 20-year investment cycle.

SECTION 3 :  INDIVIDUAL COUNTRY STUDIES





213

CHAPTER 11: SOUTH AFRICA - 
CLEAN ENERGY INVESTMENTS, 
EMISSIONS REDUCTIONS AND 
EMPLOYMENT EXPANSION
 

Growth Trajectory and Emissions
In Table 11.1, we review the basic statistics from Chapter 1 indicating South Africa’s current 
level of development and the operations of their energy system. According to the World Bank 
Indicators, South Africa is at present an upper-middle income country, with, as we see in Table 
11.1, average per capita GDP at $7,500 as of 2010. Overall energy consumption is at 5.6 Q-BTUs 
and overall CO2 emissions are at 473.2 mmt. Emissions per capita are at 9.5 mt, which is more 
than twice the global average of 4.6 mt. It is also nearly four times greater than the targeted 
global average figure of 2.4 mt needed for achieving the 20-year global CO2 emissions reduction 
target. In terms of both the energy intensity and emissions intensity ratios Table 11.1 shows that 
South Africa is both inefficient and dirty, relative to global averages, in its use of energy. These 
figures reflect the fact that South Africa relies heavily on its own abundant coal reserves to 
provide the economy with low-cost energy. 

Table 11.1: South Africa. Basic energy indicators, 2010

  South Africa World

Per capita GDP
(2005 $PPP) $7,500 $10,300

Total energy consumption
(Q-BTUs) 5.6 Q-BTUs 510.5 Q-BTUs

Per capita energy consumption
(M-BTUs/population) 111.8 Q-BTUs 74.0 M-BTUs

Total CO2 emissions
(mmt) 473.2 mmt 31,502 mmt

Per capita CO2 emissions
(mt of emissions/population) 9.5 mt 4.6 mt

Energy intensity ratio
(Q-BTUs/$1 trillion GDP) 14.6 Q-BTUs 7.1 Q-BTUs

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 84.5 mmt 65.9 mmt

Source: See Tables 1.1 and 1.4.
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Between 2003 and 2012, the South African economy grew at an average annual rate of 3.5 
percent. Projections by the government and other agencies, including the IMF and OECD, 
assume that this average growth rate will accelerate to at least around 4 percent over the next 
decade. This growth trajectory would generate a rough doubling of average GDP per capita in 
the country, from its current level of $7,500 to about $14,500. If such average income gains 
from growth are equitably distributed, the impact would be a large reduction in South Africa’s 
poverty rate, which is presently at 23 percent of the population, according to the government’s 
official measure. But for South Africa to sustain a healthy growth trajectory while maintaining 
its existing energy infrastructure more or less intact will also generate large increases in the 
country’s per capita CO2 emissions. These CO2 increases would then be on top of a level, which 
is already twice the average global level.

In Table 11.2, we show the impact of South Africa’s growth path under our rough estimate as 
compared to its BAU scenario for energy consumption through 2030. We are unaware of any 
official energy consumption projections for 2030. But the Department of Environmental Affairs 
does provide a range of projections for CO2 emissions for various years. We present those 
projections in full later in this chapter. Based on assumptions we can make as to the ratio of CO2 
emissions per Q-BTU of energy, we were then able to provide energy consumption projections 
derived from these official emissions-level figures. As we have seen, under the actual figures 
from 2010, emissions per Q-BTU were 84.5 mmt. For the purposes of our estimate, we assume 
that ratio declines modestly to 80 mmt under the BAU scenario, reflecting a modest decline 
in the proportion of coal as a share of total consumption and a modest improvement in the 
efficiency in the country’s fossil-fuel energy technologies. 
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Table 11.2: South Africa. Energy consumption and emissions:  
2010 actuals and alternative official projections

  2010 actuals 2030 BAU Scenario Scenario

Total energy consumption 5.6 Q-BTUs
8.7 – 15.0 Q-BTUsb

Midpoint = 11.9 
Q-BTUs

5.3 – 8.2 Q-BTUsc

Midpoint = 6.7 
Q-BTUs

Energy intensity ratio
(Q-BTUs/$1 trillion GDP)a 14.6 15.0 8.4

Energy mix:      

Oil 19% NA NA

Coal 67% NA NA

Natural gas 2% NA NA

Nuclear 2% NA NA

High-emissions renewables 10% NA NA

Clean renewables      

< 1% < 1% < 1%

0 < 1% < 1%

Total CO2 emissions 473.2 mmt 952 mmtd 503 mmte

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 84.5 mmt 80 mmtf 75 mmtg

CO2 emissions per capita
(with population = 55 million) 9.5 mt 17.3 mt 9.2 mt

Sources: Authors’ calculations based on “South African Department of Environmental Affairs (2014); EIA (2013b), “International Energy Outlook 
2013”; See Tables 1.1 and 1.4. 
Note: a) Calculations based on average annual GDP growth of 4 percent; b-g) The energy consumption projections are derived from South Africa’s 
Department of Environmental Affairs projections on CO2 emissions. In generating the energy consumption levels from the emissions estimates, we 
assume an average level of CO2 emissions at 80 mmt per Q-BTU under the BAU scenario and 75 mmt per Q-BTU under the “Low Carbon” scenario. 
This difference in emission levels per BTU reflects the assumption that, under the Low Carbon case, the share of coal in overall consumption 
declines relative to alternative sources.

 
Because the Environmental Affairs Department projects a range of emissions levels for various 
years as opposed to single data point, we show in Table 11.2 a range for energy consumption. 
As we see, that range is between 8-7 and 15 Q-BTUs. As a reference point, we then also report 
the midpoint within that range, which is 11.9 Q-BTUs. We work with this midpoint figure in 
considering our full set of emissions and employment scenarios for South Africa here. But, as 
is indicated in Table 11.2, we did not have enough detailed data to generate estimates of energy 
supply levels for the specific energy sources.

As Table 11.2 shows, working from this 11.9 Q-BTU level of overall energy consumption under 
South Africa’s 2030 BAU case, the result is that CO2 emissions would rise to 952 mmt. This 
amounts to 17.3 mt per person, assuming that South Africa’s population is around 55 million as 
of 2030. This figure is 82 percent higher than South Africa’s 2010 per capita emissions figure of 
9.5 mt. It is also 7 times higher than the 2.4 mt average per capita level that the world needs to 
achieve as its 20-year emissions reduction target. 
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As we also see in Table 11.2, the Environmental Affairs Department has also developed 
alternative CO2 emissions projections, including a “Low Carbon” scenario. Working with this 
alternative emissions projection, we then derived another set of energy consumption figures, 
following the same approach that we used for the BAU scenario. The one difference in the 
calculations with the Low Carbon scenario is that we assumed that the emissions intensity 
ratio is somewhat lower, at 75 mmt. This lower figure reflects both a relative decline in the 
country’s reliance on coal as well as greater efficiencies in generating energy from coal and 
other fossil fuel sources. We show in the last column of Table 11.2 that our range for overall 
energy consumption under the Low Carbon scenario is 5.3-8.2 Q-BTUs. The midpoint estimate 
in this case is 6.7 Q-BTUs.

Based on this midpoint estimate, South Africa’s overall emissions as of 2030 would then be 
503 mmt and emissions per capita would be 9.2 mt. What these figures show is that, under 
South Africa’s Low Carbon scenario, CO2 emissions would remain flat through 2030, even as 
average incomes roughly double. This would certainly be a positive development. But it would 
also mean that South Africa’s average per capita emissions would still be nearly four times the 
20-year global target figure of 2.4 mt. It is therefore imperative to explore further possibilities 
for achieving dramatic reductions in South Africa’s emissions levels over the next 20 years 
through a large-scale clean energy investment project.

Major Developments Supporting Clean Energy Investment Project 
Overall Frameworks and Projections. According to South Africa’s Department of Environmental 
Affairs:

South Africa is a signatory to the United Nations Framework Convention on Climate 
Change (UNFCCC), as well as the Kyoto Protocol. … Furthermore, South Africa has 
associated itself with the Copenhagen Accord, and was a Party to the decisions of the 
sixteenth Conference of the Parties (COP16) under the auspices of the UNFCCC in Cancun 
in 2010 (Marquard, Trollip and Winkler, 2011, p. 8). 

Within these stated commitments, South Africa’s formal submission to the UNFCCC in a letter 
of January 29, 2010 proposes that the country “will take nationally appropriate mitigation 
action to enable a 34 percent decline from the BAU emissions growth trajectory by 2020 and a 
42 percent decline by 2025” (Parramon-Gurney and Gilder, 2012). The baseline was not stated 
in this document, but has been widely assumed to be the BAU baseline presented as part of 
the country’s 2011 Long Term Mitigation Scenario.65 These baseline emissions are projected to 
be 760.5 mmt for 2020 and 901.5 for 2025. The declines from this baseline of 34 and 42 percent 
respectively imply national emissions target levels of 501.9 mmt as of 2020 and 522.9 mmt as 
of 2025. 

Figure 11.1 below, reproduced from the Department of Environmental Affairs website page 
titled “South Africa’s Position on Climate Change,” shows further documentation on these 
alternative scenarios.66 This figure shows the trajectory for the BAU case versus what it terms 
its “Peak, Plateau, Decline,” scenario, which we have termed above the “Low Carbon” case. 

65 Marquard, Trollip, and Winkler (2011).
66 Figure 11.1 here is a replica of the image on the DEA’s website, which was produced using data in Department of Environmental Affairs (2011a).
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As we see in Figure 11.1, under the BAU case, emissions are expected to continue increasing, 
although the range for these projections is quite wide. The Peak, Plateau and Decline trajectory 
shows a possible range of emissions from 398 to 614 mmt as of 2030, or about 50 percent 
below the BAU projections Department of Environmental Affairs (2011a).

Figure 11.1: South Africa. Alternative greenhouse gas emissions trajectories through 2050: 

Source: South Africa Department of Environmental Affairs, http://www.climateaction.org.za/cop17-cmp7/sa-government-position-on-climate-change.

In addition to these emissions reduction goals, South Africa’s Department of Energy announced 
its Vision 2014 and Vision 2025 in its 2012 Revised Strategic Plan. The first goal aims to achieve 
universal access to modern energy carriers by 2014, while the second aims for clean energy 
sources, including nuclear power, to supply 30 percent of all energy by 2025. 

As yet, there have been no official projections as to how much it would cost for South Africa to 
achieve these energy supply and clean energy targets. But broadly, the government projects 
the range as being between 1 and 2.5 percent of South African GDP. Our own working estimate 
for the clean energy investment project at 1.5 percent of GDP is therefore close to the mid-level 
within this range provisionally projected by the government. 

Electricity Sector. The Department of Energy does provide more detailed projections for 
electricity supply specifically in its Integrated Resource Plan (IRP) 2010-2030 (Department of 
Energy, 2011). We show those figures in Table 11.3 below. As we see, in 2010, coal provided 90 
percent of all energy used for generating electricity. Hydro and nuclear power each accounted 
for 5 percent. Under the 2030 BAU scenario, the share for coal rises slightly, to 91 percent, even 
while total electricity consumption rises from about 0.9 to 1.5 Q-BTUs. The shares for hydro 
and nuclear decline slightly under the BAU scenario, while there is a modest development 
of gas turbine capacity. Under the Low Carbon scenario, the share of total supply provided 
by coal declines sharply, to 65 percent. The big difference in this case is a large expansion of 
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nuclear energy, to where it would provide 20 percent of all electricity generating power. Wind 
and solar energy are shown as beginning to also grow under the Low Carbon scenario, with 
wind accounting for 5 percent and solar for 4 percent of total electricity-generating supply as of 
2030. It is notable also that, with this Low Carbon electricity scenario, there is no reduction in 
overall supply relative to the BAU case. That is, under both 2030 scenarios, electricity-based 
energy consumption is fixed at 1.5 Q-BTUs. We will therefore need to consider other references 
to obtain a sense of the prospects for energy efficiency investments in South Africa.

Table 11.3: South Africa. Electricity consumption levels and sources of supply under alternative 
scenarios, 2010-2030

Electricity 
source 2010 actuals 2030 BAU scenario 2030 Low Carbon scenario

  Q-BTUs Share of total 
supply Q-BTUs Share of total 

supply Q-BTUs Share of total 
supply

Coal 0.782 90% 1.36 91% 0.97 65%

Hydro 0.043 5% 0.06 4% 0.075 5%

Nuclear 0.043 5% 0.045 3% 0.3 20%

Gas turbines 0 0 0.03 2% 0.015 1%

Wind 0 0 0 0 0.075 5%

Solar 0 0 0 0 0.06 4%

Total 0.869 100% 1.49 100% 1.49 100%

Source: Department of Energy (2011); and authors’ calculations.
Notes: Figures for gas turbines includes open- and combined-cycle turbines. Figures for solar power include solar PV and concentrated solar power (CSP).

 
Renewables. In considering renewables in South Africa, we must first recognize that fuel wood 
is the most commonly used source of renewable energy, though it is not used to produce 
electricity. Beyond this, we see that the Low Carbon scenario in the Integrated Resource Plan 
assumes that modern renewable capacity - hydro, wind, and solar - will grow to about 14 percent 
of total electricity generating supply as of 2030. But a broadly-held view in South Africa is that 
the potential for growth in renewables is much larger. These prospects include the following:

needs. Solar panels are already widely used in remote rural areas that are off the grid. 
But there is great potential for further expansions of solar power, both through supplying 
the grid and on off-grid distribution systems. 

than the capacity level as of 2011. 

fuels as of 2030. This would mainly take the form of biodiesel liquid fuels, derived from 
soybeans, canola oil, sunflower oil, or ethanol from sugar cane and sugar beets. Ethanol 
from corn is excluded in the target.
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biogas is produced from waste biomass. These are both relatively clean processes for 
utilizing biomass sources. According to South Africa’s Second National Communication 
to the UNFCCC:

The development of biomass energy is being highlighted in ‘Working for Energy’ (WfE), 
South Africa’s national renewable energy programme. The purpose of the programme is 
to develop and apply practical approaches for sustainable, labour intensive, renewable 
energy and energy management type projects in rural areas.67

In terms of more developed areas of the country, Ayogu (2013) describes major opportunities 
for advancing a solar sector in Gauteng, South Africa’s economic hub. Gauteng accounts for 25 
percent of South Africa’s population and 35 percent of its GDP. Ayogu says that Gauteng enjoys 
excellent solar radiation levels. Solar PV systems could be placed widely on rooftops, mine 
dumps, dolomitic areas and other sites that are either not habitable or fit for agriculture. Ayogu 
describes an initial roll-out of solar PV technology over 8 million square meters of rooftops in 
Gauteng, providing 300 MW of solar capacity. The development of an economy-wide renewable 
investment strategy could build from such initial initiatives in Gauteng.68

Energy Efficiency. While the 2010 Integrated Resource Plan did not incorporate policies or 
projections regarding energy efficiency for the electricity sector, the South African government’s 
2011 National Energy Efficiency Strategy set targets, as of 2015, to reduce energy intensity by 10 
percent for commercial and public buildings, 15 percent for the residential sector, 10 percent 
for the transport sector, 15 percent for industry and 15 percent for the mining sector, as part of 
its Green Economy Accord.69

In addition, a 2006 paper by Harald Winkler specifies efficiency strategies and potential energy 
savings in various sectors.70 Winkler’s major findings are as follows:

compared to BAU scenario, the highest among all sectors. The strategies include greater 
use of variable speed drives, efficient motors, compressed air management, efficient 
lighting, heating, ventilation and cooling (HVAC) system efficiency and other thermal 
saving. Winkler covers these areas of energy saving potential in detail in his 2006 study 
(see pp. 112-13 in particular). 

residential sector focused on the end uses. These include solar water heaters, geyser 
blankets71, liquid petroleum gas for cooking, efficient housing shells, and compact 
fluorescent lights (CFLs) for lighting. But Winkler also emphasized that only urban 
higher-income electrified households could afford building retrofits to improve energy 
efficiency, while suggesting that geyser blankets should be generally used for poorer 

67 Department of Environmental Affairs (2011b, p 19).
68 Ayogu also cites the important work by the EnerKey project in Gauteng, which is a collaboration between South African and German researchers on 
developing and commercializing the most effective renewable energy and energy efficiency technologies. See, for example, the EnerKey Technology 
Handbook (IER, 2012).
69 South African Government (2011).  
70 Ayogu (2013) provides a good overview of similar types of energy efficiency initiatives and prospects, especially as they are developing in Gauteng 
Province.
71 A geyser blanket is an insulator that is wrapped around a geyser to reduce wasted heat loss.
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households with electricity, due to their low costs.

for about 12 percent in energy savings. Strategies include new building thermal design, 
HVAC retrofit and for new buildings, installing variable speed drives for fans, efficient 
lighting systems, heat pumps for water heating, solar water heating and fuel switching.

Africa. It uses three-quarters of South Africa’s petroleum products. The main areas 
for energy efficiency investments here would include the introduction of more energy 
efficient automobiles and the introduction of licensing differentials according to a car’s 
engine efficiency, and roadworthy tests, with a targeted energy demand reduction of 
9 percent by 2014. The transport sector also could achieve major gains in efficiency 
through the development of high-quality mass transit and rail systems. 

Emissions Reductions through Clean Energy Investments
In Table 11.4, we begin to present the main features of our clean energy investment framework. 
In fact, this framework is closely aligned with the approach advanced by the various South 
African government agencies that we have reviewed above. This includes the government’s 
broad view that the level of clean energy investments needed to achieve its Low Carbon (“Peak, 
Plateau, and Decline”) scenario will be in the range of 1 to 2.5 percent of GDP on an annual basis 
for 20 years or more. Our framework attempts to provide further specificity to this approach. 
We begin with the assumption that South Africa’s growth process incorporates clean energy 
investments at a rate of 1.5 percent of GDP annually over a full 20-year period. We define “clean 
energy investments” as including clean renewable energy sources and energy efficiency only. 
We do not include nuclear power or high-emissions renewables such as corn ethanol as clean 
energy sources. For purposes of our discussion, as with our other country-specific analyses, we 
assume that this 1.5 percent of GDP is allocated with 1 percent of GDP funding the expansion of 
clean renewables while 0.5 percent of GDP is channeled into energy efficiency investments. We 
are also assuming that South Africa’s average annual GDP growth rate over 20 years will be 4 
percent. This figure is in line with the long-term growth projections for South Africa developed 
by the IMF and OECD, and is also close to South Africa’s actual growth experience from 2003-
2012.
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Table 11.4: South Africa. Clean energy 20-year investment growth

2012 GDP $363 billion

Projected 20-year average annual GDP growth rate 4.0%

Projected 2032 GDP
(with 4 percent average annual GDP growth) $795 billion

Midrange GDP value for investment spending estimates
(= (2012 GDP + 2032 GDP)/2) $579 billion

Average annual clean renewable investments
(= 1 percent of midrange GDP) $5.8 billion

Average annual energy efficiency investments
(= 0.5 percent of midrange GDP) $2.9 billion

Source: Authors’ calculations based on World Bank (2014), “World Development Indicators,” GDP (current $US).

 
As Table 11.4 shows, when we assume a 4 percent average annual growth rate over 20 years, the 
result is that South Africa’s GDP in 20 years would be $795 billion. To then estimate an average 
level of clean-energy investment spending over this 20-year period, we simply calculate the 
midrange GDP value between 2012 GDP at $363 billion and 2032 GDP at $795 billion. That 
midrange figure is $579 billion. This then means that the average level of annual spending on 
clean energy would be 1 percent of $579 billion per year for renewables, which is $5.8 billion, 
and 0.5 percent for energy efficiency, which is $2.9 billion.

Clean Energy Capacity and Emissions
In Table 11.5, we then estimate the levels of capacity expansion for both clean renewables 
and energy efficiency that will result through investing 1 percent of GDP annually in clean 
renewables and 0.5 percent of GDP in energy efficiency. Our estimates are derived from the 
assumptions that the costs of achieving gains in both efficiency and renewables are: $11 billion 
per Q-BTU for efficiency investments, as noted in Chapter 3; and $125 per Q-BTU for expanding 
clean renewable capacity. These are the same average cost figures we used for the case of 
Brazil. The reasoning for using these figures as rough benchmarks is the same as we presented 
for the Brazilian case in Chapter 8.
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Table 11.5: South Africa. Cost assumptions and capacity expansion for clean renewables and 
energy efficiency investments

  Clean renewable energy Energy efficiency

1) Cost assumptions $125 billion per Q-BTU of 
capacity

$11 billion per Q-BTU of 
energy savings 

2) Annual spending levels $5.8 billion
(= 1% of midrange GDP)

$2.9 billion
(= 0.5% of midrange 

GDP)

CASE 1: No delay in implementing program: 
20-year spending cycle    

3) Total spending with 20-year spending cyclea $116 billion $58 billion

4)  Total capacity expansion or energy savings 
through 20-year spending cycleb 0.9 Q-BTUs of new capacity 5.3 Q-BTUs of energy 

savings 

CASE 2: 3-year delay in implementing program: 
17-year spending cycle    

5) Total spending with 17-year spending cyclec $99 billion $49.3 billion

6)  Total capacity expansion or energy savings 
through 17-year spending cycled 0.8 Q-BTUs of new capacity 4.5 Q-BTUs of energy 

savings

Source: Authors’ calculations as developed in Chapter 11.
Notes: a) Calculated as row 2 multiplied by 20; b) Calculated as row 3 divided by row 1; c) Calculated as row 2 multiplied by 17; d) Calculated as row 
5 divided by row 1. 

 
Working with these assumptions, we then estimate the two alternative cases. Under Case 1, 
the clean energy investment project begins promptly, which means that South Africa begins 
accumulating a growing capital stock of renewable energy and energy efficiency processes over 
the full 20-year time period. Under Case 2, the more conservative scenario, we assume a 3-year 
delay from the time the investment project begins until the time when South Africa first sees 
renewable energy and energy efficiency capacity expand. Thus, under Case 2, the accumulation 
of new capacity proceeds for only 17 years of the full 20-year investment cycle. We are assuming 
that the second scenario is more realistic, and therefore we focus our discussion on this case.

We see under Case 2 that total investment spending on renewables would be $99 billion 
over 20 years, with a 17-year spending cycle after the 3-year start-up period. Energy efficiency 
investments would be $49 billion, again, based on a 17-year spending cycle and a 3-year start-
up period.

We then show the net effects of Case 2 in the bottom row of Table 11.5. That is, after 20 years, 
South Africa would have created 0.8 Q-BTUs of new clean renewable capacity. This would 
include a mix of clean renewables that would be determined through examining the full range 
of options as described, for example, by Ayogu (2013). South Africa would have also been 
able to save 4.5 Q-BTUs of energy consumption through having invested roughly $50 billion in 
energy efficiency processes. We can then apply that 4.5 Q-BTU of efficiency as energy savings 
relative to the 2030 BAU scenario with our more conservative Case 2 investment trajectory.
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We can then see the impact of these expanded levels of investment in renewables and efficiency 
in Table 11.6 below. As we see, under our rough estimate of the government’s BAU assumptions, 
South Africa’s total energy consumption level in 2030 is, again, 11.9 Q-BTUs. This level now 
falls to 7.4 Q-BTUs due to the energy efficiency investments, which we estimate would generate 
4.5 Q-BTUs of energy saving relative to the BAU case. Total clean renewable capacity in South 
Africa now rises to a total of 0.9 Q-BTUs. This includes the 0.1 Q-BTUs that was built into the 
government’s BAU scenario, plus the 0.8 Q-BTUs that would be generated through investing 1 
percent of GDP per year over a 17-year period, following the initial 3-year start-up phase.

Table 11.6: South Africa. Impact of clean energy investments relative to 2030 BAU scenario

  2030 BAU Scenario 20-year Clean Energy Investment scenario
(Case 2: 3-Year Start-Up Delay)

Total energy consumption 11.9 Q-BTUs 7.4 Q-BTUS
(with 4.5 Q-BTUs of energy efficiency savings)

Total clean renewable energy 
supply 0.1 Q-BTUs

0.9 Q-BTUs
(with 0.8 Q-BTUs of additional clean 

renewables)

Total nuclear power supply 0.05 Q-BTUs 0.05 Q-BTUs

Total fossil fuel + High- 
emissions renewables 11.7 Q-BTUs 6.4 Q-BTUs

Total CO2 emissions

936 mmt 
(Based on 80 mmt 

average emissions per 
Q-BTU for fossil fuels)

480 mmt 
(Based on 75 mmt average emissions per 

Q-BTU for fossil fuels)

Total CO2 emissions per capita
(with population = 55 million) 17.0 mt 8.7 mt

Source: Authors’ calculations as developed in Chapter 11.

 
The net effect of these clean renewable and energy efficiency investments can then be seen in 
terms of South Africa’s residual demand for fossil fuel energy sources. As we see, the demand 
for all fossil fuel sources falls from 11.7 Q-BTUs under the BAU scenario to 6.4 Q-BTUs in the 
clean energy investment scenario (after also taking account of nuclear energy supply at 0.05 
Q-BTUs). This is a reduction of 5.3 Q-BTUs, or 45 percent, in the consumption of oil, coal and 
natural gas.

This decline in fossil fuel consumption in turn has a major impact on South Africa’s overall CO2 
emissions within 20 years, as we see in the bottom two rows of Table 11.6. As noted earlier, 
we assume an average emissions level for South Africa’s fossil fuel energy mix as 80 mmt 
per Q-BTU in the BAU case and 75 mmt per Q-BTU in the Clean Energy scenario. Under these 
assumptions, South Africa’s overall emissions fall from the BAU figure of 936 mmt to 480 mmt, 
a 49 percent decline. Emissions per capita are now 8.7 mt. This figure is still 3.6 times greater 
than the global target figure of 2.4 mt within 20 years. But it also is an 8 percent absolute 
decline from the 2010 per capita emissions figure of 9.5 mt. This would occur while South 
Africa’s population will have grown by 10 percent and per capita incomes would have roughly 
doubled.
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Employment Generation through Clean Energy Investments
Table 11.7 presents our estimates of the effects on overall annual employment levels through 
a South African clean energy investment project at the level of 1.5 percent of annual GDP. Of 
course, our employment results are derived from our estimates presented in Chapter 7 of 
numbers of jobs generated per $1 million in spending.

Table 11.7: South Africa. Employment impact of clean energy investments vs. fossil fuel 
spending

Figures are jobs in Year 1 of 20-year clean energy investment strategy 

Assumptions for clean energy investments:

- 67 percent clean renewables;
- 33 percent energy efficiency

South Africa labor force in 2011 = 18.6 million

  Clean energy 
investments

Fossil fuel 
spending

Net employment effects of 
clean energy investments

Direct + indirect total employment 
in Year 1 252,200 126,200 126,000

Direct + indirect employment as 
share of total labor force in Year 1 1.4% 0.7% 0.7%

Source: See Chapter 7 and Appendix 3.

 
Working within that framework, we have calculated the effects of the 1.5 percent of GDP 
investment project given a spending breakdown at two-thirds renewables and one-third energy 
efficiency. We also make two other assumptions. First, we use the results from our “Domestic 
Content Declines” scenario, which assumes that South Africa will need to increase its imports 
as a result of advancing its clean energy investment scenario. South Africa’s economy has been 
growing at a healthy rate over roughly the past decade. It anticipates sustaining an even faster 
growth trajectory over the coming 20 years. Nevertheless, it is reasonable to anticipate that 
building out clean energy sectors on a large scale will probably create significant strains on the 
country’s resources of technological capacity and skilled labor. 

We then also assume that of the total amount of spending on the clean energy investment 
project, 30 percent is allocated to cover financing costs. This leaves 70 percent available for 
spending on creating capacity and producing, refining, transporting and marketing energy.

From these assumptions, we estimate the total number of direct plus indirect employment 
generated through the clean energy investment project at 1.5 percent of GDP is 250,000 jobs. 
That is a very large number of jobs in absolute terms. But it is also only 1.4 percent of the South 
African labor force of 18.6 million as of 2011. The impact of the clean energy investment project 
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would therefore be strongly positive in terms of absolute employment, but its overall scope 
would be limited.

To gauge the net benefits of this level of job creation, we also need to compare these figures 
with the job creation that would occur through maintaining spending in South Africa’s existing 
fossil fuel industry, as opposed to shifting funds into clean energy. We see in Table 11.7 that 
the same level of spending in South Africa’s coal, oil and natural gas sectors would create 
about 126,000 jobs. That is, investing in clean energy in South Africa at a level of 1.5 percent 
of the economy would produce a net expansion of roughly 126,000 jobs in comparison with 
maintaining the country’s existing fossil fuel energy infrastructure. 

In Table 11.8, we present our projections for employment creation in Year 20 of South Africa’s 
20-year clean energy investment project. These figures are based on two separate assumptions 
as to the average growth rate of labor productivity in South Africa’s clean energy sectors 
over this 20-year period - a 1 percent low-end average annual labor productivity growth rate 
assumption and a 2.5 percent high-end assumption.

Table 11.8: South Africa. Projected employment impacts of clean energy investments  
after 20 years under alternative labor productivity assumptions

Figures are jobs per year

Assumptions for 20-year employment projections

-year average annual GDP growth is 4 percent

-year investment cycle equals 2011 ratio

Labor force at end of 20-year investment cycle = 21.4 million

 
Scenario with 1 percent 

average annual labor 
productivity growth

Scenario with 2.5 percent 
average annual labor 
productivity growth

Midpoint between 1 percent 
and 2.5 percent productivity 

growth scenarios

Direct + indirect total 
employment 455,500 339,700 398,000

Year 20 direct + indirect 
employment as share 
of Year 1 employment

80.6% 34.7% 57.6%

Direct + indirect 
employment as share 
of total labor force

2.1% 1.6% 1.9%

Sources: See Chapter 7 and Appendix 3.
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Working with these assumptions, as well as with the other assumptions on GDP growth, 
population and labor force participation listed above Table 11.8, we generate the following 
results:

1. Assuming labor productivity increases at 1 percent per year, total employment creation 
through clean energy investments will rise to about 450,000 in Year 20. This is about 
an 80 percent increase relative to employment creation in Year 1. This strong gain in 
employment creation results through our assumption that GDP growth will average 4.0 
percent per year over the 20-year clean energy investment cycle - a 3 percent faster rate 
than labor productivity in the clean energy sectors. GDP growth at 4 percent per year in 
turn means that clean energy investments will also be growing at 4 percent per year, to 
remain as a fixed 1.5 percent of GDP every year over the 20-year investment cycle.

2. Under this 1 percent labor productivity growth assumption, employment creation 
through clean energy investments will rise to about 2.1 percent of South Africa’s Year 20 
labor force relative to the 1.4 percent figure as of Year 1.

3. Assuming average labor productivity in South Africa’s clean energy sectors increases 
at the higher-end rate of 2.5 percent over the 20-year investment cycle, employment 
creation will still be rising significantly, given that we assume GDP growth will average 
4.0 percent per year. Year 20 employment creation through clean energy investments 
then reaches nearly 340,000. This is still a nearly 35 percent increase over the Year1 
figure. Under this scenario, employment creation through clean energy investments 
rises as a share of South Africa’s overall labor force in Year 20, to around 1.9 percent, a 
0.5 percent increase relative to the Year 1 figure of around 1.4 percent.

4. In the last column of Table 11.8, we report midpoint employment creation figures, that 
are based on averaging Year 20 employment levels derived from both the 1 percent and 
2.5 percent labor productivity growth assumptions. As we see, the midpoint figure is 
nearly 400,000 jobs, which is about 1.9 percent of South Africa’s Year 20 labor force.

Overall, as we see, employment creation through South Africa’s clean energy investment 
project operating at 1.5 percent of GDP per year will expand significantly over time under a 
wide range of plausible assumptions as to the growth of labor productivity over the 20-year 
investment cycle. Moreover, this net gain in employment opportunities through clean energy 
investments will result in correspondence with the economy also making significant absolute 
declines in CO2 emissions through the clean energy investment project over the next 20 years. 
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CHAPTER 12: THE REPUBLIC 
OF KOREA - CLEAN ENERGY 
INVESTMENTS, EMISSIONS 
REDUCTIONS AND EMPLOYMENT 
EXPANSION

Growth Trajectory and Emissions
In Table 12.1, we review the basic statistics from Chapter 1 indicating the ROK’s current level of 
development and the operations of their energy system. According to the World Bank Indicators, 
the ROK is a high-income country, with, as we see in Table 12.1, average per capita GDP at 
$22,000 as of 2010. Overall energy consumption is at 10.8 Q-BTUs and overall CO2 emissions 
are at 581 mmt. Emissions per capita are at 11.6 mt, which is 2.5 times the global average of 
4.6 mt. It is also five times higher than the targeted global average figure of 2.4 mt needed for 
achieving the 20-year global CO2 emissions reduction target. According to the energy intensity 
ratio - i.e. Q-BTUs/$1 trillion GDP – the ROK is operating an inefficient energy system. Its energy 
intensity ratio of 9.8 is nearly 40 percent higher than the global average of 7.1. 

At the same time, its energy mix is relatively clean compared with the global average. Its 
emissions intensity ratio - CO2 emissions/Q-BTUs - is 53.8. This is about 18 percent below the 
global average of 66. It is also a lower figure than either the U.S. or Germany. As we will see, the 
ROK can realistically reduce its per capita CO2 emissions roughly in half over the next 20 years. 
It can achieve this while still maintaining a healthy GDP growth rate over this 20-year period 
and while expanding employment opportunities relative to maintaining its existing fossil fuel 
dominated energy infrastructure.
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Table 12.1: Republic of Korea. Basic energy indicators, 2010

  ROK World

Per capita GDP
(2005 $PPP) $22,000 $10,300

Total energy consumption
(Q-BTUs) 10.8 Q-BTUs 510.5 Q-BTUs

Per capita energy consumption
(M-BTUs/population) 218.2 M-BTUs 74.0 M-BTUs

Total CO2 emissions
(mmt) 581 mmt 31,502 mmt

Per capita CO2 emissions
(mt of emissions/population) 11.6 mt 4.6 mt

Energy intensity ratio
(Q-BTUs/$1 trillion GDP)  9.8 Q-BTUs 7.1 Q-BTUs

Emissions intensity ratio
(CO2 emissions/Q-BTUs)  53.8 mmt 65.9 mmt

Source: See Tables 1.1 and 1.4.

 
Between 2003-2012, the economy of the ROK grew at an average annual rate of 3.9 percent. The 
average growth rate projection through 2040 that the EIA reports under a range of alternative 
assumptions - including its Reference case, as well as its high- and low-growth cases, and 
its high- and low-oil price cases - is between 3.2-3.3 percent. These are conservative growth 
projections given the ROK’s past growth performance, but for the purposes of our discussion, 
it is better to work with relatively conservative assumptions. In generating our own estimates 
on clean energy investments and employment in this discussion, we will therefore assume that 
the ROK’s average growth rate through 2030 will be 3.3 percent. 

This growth trajectory would generate a near-doubling of average incomes in the country, from 
its current level of $22,000 per capita to $42,000, given that the projections are also that the 
ROK’s population will remain roughly constant at around 50 million people through 2030. 

In Table 12.2, we show the ROK’s energy consumption and emissions levels for 2030 under 
the EIA’s BAU scenario. As we see, the EIA estimates that the ROK’s total energy consumption 
rises from 10.8 to 14.7 Q-BTUs between 2010-2030. This is a 36 percent increase in energy 
consumption over the 20-year period, which amounts to an average annual increase of 1.6 
percent. As such, the EIA is projecting that the ROK will make significant gains in energy 
efficiency over the next 20 years, given that they project GDP to grow at an average of 3.3 
percent. We see this directly through the change in the energy intensity ratio, which falls from 
9.8 in 2010 to 7 by 2030, a 29 percent improvement, according to the EIA’s BAU model. 
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Table 12.2: Republic of Korea. Energy consumption and emissions: 2010 actuals and alternative 
official projections

  2010 actuals 2030 EIA BAU scenario

Total energy consumption 10.8 Q-BTUs 14.7 Q-BTUs

Energy intensity ratio
(Q-BTUs/$1 trillion GDP) 9.8 Q-BTUs 7.0 Q-BTUs

Energy mix:    

Oil 42% 36%

Coal 29% 22%

Natural gas 14.3% 14%

Nuclear 13% 8%

High-emissions renewables NA NA

Clean renewables NA NA

Hydro 0.9% 2.0%

All others NA NA

Total CO2 emissions 581 mmt 666 mmt

Emissions intensity ratio
(CO2 emissions/Q-BTUs) 53.8 mmt 45.3 mmt

(CO2 emissions per capita)
(with population = 50 million for 2010 and 2030) 11.6 mt 13.3 mt

 

Source: Authors’ calculations based on EIA (2013), “International Energy Outlook 2013.”

 
In addition to these significant gains in energy efficiency, there are also changes in the ROK’s 
energy mix under the BAU 2030 assumptions. The most important ones are that the level of 
coal consumption remains flat, and that most of the growth in overall energy consumption is 
absorbed by natural gas. The EIA estimates natural gas supply to more than double, from 1.8 
to 4.7 Q-BTUs. Clean renewables is also projected to experience a major expansion. But it is 
operating from a very low base, so that, in absolute terms, its total supply as of 2030 would 
remain a modest 0.3 Q-BTUs, 2 percent of the ROK’s overall 2030 energy supply.

The gains in energy efficiency, combined with a major coal-to-natural gas fuel switching 
transition does then mean that the ROK’s energy mix becomes significantly cleaner, with its 
emissions intensity ratio falling from 53.8 to 45.3. Yet overall emissions do still rise, because 
energy consumption is still rising, albeit at a relatively slow rate. The overall effect is that 
emissions per capita do still rise, from 11.6 mt in 2010 to 13.3 mt in 2030. That is, even with the 
ROK achieving major gains in energy efficiency and undertaking a major coal-to-natural gas fuel 
switch, the net impact is that its emissions per capita ratio, at 13.3 is still 5.5 times greater than 
the Year 20 global target ratio of 2.4 mt.

It is therefore clear that it is necessary to explore the prospects for a still more ambitious 
clean energy transformation for the ROK over the next 20 years. The central premises of such a 
strategy would fully coincide with the commitment the government of the ROK to be a leader in 
pursuing an innovative Green Growth policy agenda moving forward.
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Major Developments Supporting Clean Energy Investment Project
The Republic of Korea’s Green Growth Strategy

Since the presentation of its first National Basic Energy Plan in 2008, the government of the 
ROK has begun a major project of defining and advancing what it has called a Green Growth 
strategy.72 The statement of the first National Basic Energy Plan for 2008-2030 sets out its 
vision as follows:

The first Basic National Energy Plan suggests a society that realizes healthy growth 
while consuming less energy; a society that minimizes environmental pollution even 
when using energy; a society where energy industries create jobs and growth engines; 
and a strong energy self-reliant and welfare society despite energy crises as a long-term 
energy policy vision.

As the implementation blueprint for the vision, the Basic National Energy plan also 
suggests realization of a ‘low energy-consuming society’ through improvement of 
energy intensity…independence from fossil energies in energy supply through a 4.6-fold 
expansion of the new and renewable energy ratio to 11 percent by 2030 from the present 
2.4 percent while reducing the fossil energy ratio…including oil, to 61 percent by 2030 
from 83 percent at present…

The implementation plan also aims to raise the energy technology level, including ‘green 
technology’ compared with advanced countries to the world-class level by 2030 from the 
present 60 percent; nurture the energy industry into a growth engine; realize a self-reliant 
energy and welfare society by increasing self-development rates of oil and gas to the 
30 percent level by 2030 from the present 4.2 percent, and addressing all energy-poor 
classes, which currently stand at the 7.8 percent level (Government of Korea, 2008, p. 5)

As outlined by Kang (2013), six key features of the ROK’s Green Growth strategy have been 
developed since the presentation of the National Energy Basic Plan. These are:

1. The formation of the Presidential Committee on Green Growth (2009).

2. The establishment of legislation of the Framework Act on Low Carbon, Green Growth 
(2010).

3. The establishment of the National Greenhouse Gas Reduction Target (2009). This set 
the 2020 target as a 30 percent reduction in all GHG emissions at 30 percent below BAU 
through 2020.

4. The establishment of a Green Budget for 2009-2013, with 2 percent of GDP devoted to 
Green Growth Policies.

5. Organizing the Green Technology Development project for 27 core areas of green 
technology.

72 See UNEP (2010) for a detailed overview of the Green Growth Strategy.
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6. The establishment of the ROK as an international leader in fostering global green growth. 
The formation of the Global Green Growth Institute in 2010 was one major initiative 
within this international project.

Kang (2013) further writes that the ROK’s Green Growth strategy consists of three key strategies, 
which incorporate 10 policy directions within the three strategies. These are:

Strategy 1: Measures for climate change and securing energy independence.

Strategy 2: Creation of a new growth engine.

Strategy 3: Contribution to international community

Table 12.3 below shows the Government of the ROK’s overall fiscal expenditures on green 
growth, and the breakdown of spending according to strategic areas, as developed by Kang. 
As we see, total spending over the period 2009-2013 has been $122.8 billion (converted from 
current KRW to dollars at average annual exchange rates), for an average of $24.6 billion per 
year. As the table also shows, this figure is approximately 2.2 percent of the ROK’s average 
annual GDP between 2009-2013.73

73 We estimated the ROK’s 2013 GDP based on a growth rate for the year at 3.4 percent. This is taken from figures from the first three quarters of the 
year and projections for the rest of the year. See Jun (2013).
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Table 12.3: Republic of Korea. Fiscal expenditure on green growth, 2009-2013

Current dollars at average annual KRW/Dollar exchange rate

 
 

  Shares of total spending

Total spending
Mitigation of climate 

change & energy 
independence

Creating new engines 
for economic growth

Improvement in quality 
of life and enhanced 

international standing

2009 $22.3 billion 49% 27% 24%

2010-11 $54.7 billion 60% 22% 18%

2012-13 $45.8 billion 46% 31% 23%

All years

$122.8 billion

52% annual average 27% annual average 21% annual averageAverage spending per 
year = $24.6 billion

2.2 percent of GDP

Sources: Kang (2013) for spending figures, presented in KRW. Converted to dollars from IMF International Financial Statistics database.

Note: GDP figure for 2013.4 estimated on basis of 3.4 percent growth rate for 2013.

 
We also see from Table 12.3 that roughly half of the ROK’s green growth budget has been 
devoted to mitigation of climate change and energy independence, while the other half 
has been divided between “creating new engines of economic growth,” at 27 percent, and 
“improvement in quality of life and enhanced international standing,” at 21 percent. The focus 
of our project is on the first strategy, mitigation of climate change and energy independence, 
which has received an average of about 1.1 percent of the ROK’s GDP, or $12.8 billion per year. 

This figure is basically in line with our working assumption that each of our five selected 
economies devotes 1.5 percent of GDP to investments in renewable energy and energy efficiency. 
However, to the best of our knowledge to date, there are two significant differences in comparing 
the Government of the ROK’s budget allocation with the budgetary assumptions we use in this 
report. The first is that the ROK’s budgetary figures includes funds to support the development 
of domestic oil and gas industries, following the goal expressed in the National Energy Basic 
Plan to increase “self-development rates of oil and gas to the 30 percent level by 2030 from the 
present 4.2 percent.” Our funding allocation is targeted exclusively for investments in energy 
efficiency and clean renewable energy sources. The second is that the Government of the ROK’s 
spending figure is, again, to the best of our knowledge to date, funds allocated by the public 
sector only. Our funding figures are inclusive of all public plus private spending within the 
economy of the ROK on clean renewable and energy efficiency investments. Nevertheless, our 
own clean energy investment figures are still in rough alignment with the large-scale funding 
commitments that the ROK’s government has made since 2009 to clean energy. 
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Developments in Renewable Energy and Energy Efficiency
The impacts of these large-scale government green growth funding commitments are reflected 
in the recent advances as well as the prospects for renewable energy and energy efficiency 
investments. We review briefly some of the major developments in these two areas. 

Clean Renewables 

According to the most recent actual data, the levels of energy supplied from all clean renewable 
sources is negligible, less than 1 percent of the 10.8 Q-BTUs of total supply for 2010. This 
includes all hydro as well as clean bioenergy, wind, solar and geothermal energy sources. At 
the same time, major developments are underway, as described in the government’s 2011 
document Low Carbon, Green Growth.74 These include the following.

Hydro. Hydro is currently the leading source of renewable energy supply in the ROK. Economically 
feasible hydro production is estimated at being around 19,000 GWh per year, including small-
scale hydro. Current installations generate about 5 percent of this potential level of production. 

Tidal. The ROK has built the largest tidal plant in the world at Sihwa Lake, which opened in 
2011. It has the capacity to supply power for about 500,000 homes. According to Park (2007), 
it also should be able to play a major positive role in restoring the Lake Sihwa ecosystem 
and water quality through the continuing circulation of seawater. Because a dam has been 
operating at the lake, this led to a cut-off of tidal currents and the rapid increase of population 
and industrial waste loads from factories in the neighborhood. Other plants are also under 
development. 

Biomass. This is considered a critical future resource in the ROK, which is a largely forested 
country. The government wants to promote production and use of wood pellets for electricity and 
heat. In 2007, biomass accounted for 6 percent of renewable production, but the Government 
of the ROK expects it to account for 30 percent by 2030, including both domestic production 
and imports. 

Biofuels. The ROK is currently producing modest levels of biodiesel, as well as purchasing 
imports. There is potential for more biodiesel production from waste oils and algal sources. 
These can be harvested on bodies of water and thereby avoid some of the land-constraint 
problem facing other biofuels in the ROK. 

Wind. Wind production has been increasing rapidly over the last decade, from about 5,900 
MWh in 1999 to over 900,000 in 2012. Offshore wind projects are currently being developed, 
including one 500 turbine offshore project. Offshore wind is considered to have major 
untapped potential, in the range of 190 TWh per year - i.e. roughly 200 times the current level 
of generation. Onshore wind is considered to have less potential, because of terrain and siting 
issues.

74 This document is the Government of the ROK’s Third Annual National Communication under the United Nations Framework Convention on Climate 
Change.
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Solar. The use of solar panels has recently declined. However, the ROK aims to become one of 
the top five countries in the world in terms of solar panel usage by 2015. Among the specific 
short-term goals within this broader project is to install solar panels on 60 percent of all homes 
in the ROK.

Energy Efficiency

The IEA 2013 Energy Efficiency Market Report assesses developments to date in the ROK as 
follows:

Korea has a robust energy efficiency regime, founded on the Energy Use Rationalization 
Act, and strong related policies Label and Standard Program. Energy efficiency markets 
have grown remarkably due to strong government leadership, assertive regulations and 
industry-driven technical innovations in appliances and automobiles. Three important 
market sub-sectors stand out: appliances, transport, and energy service companies 
(IEA, 2013, p. 178). 

According to the 2013 IEA study as well as the government’s 2011 Low Carbon, Green Growth 
report, the main areas for energy efficiency market expansion include the following:

Transportation. Increasing the development and deployment of highly energy-efficient 
automobiles as well as the expansion in public transportation systems. 

Residential and commercial buildings. Improving home appliance and building energy 
efficiency standards through labeling programs, insulation standards and improved 
equipment.

Promotion of energy management systems (EMS). EMS allow entities to monitor, control 
and optimize the performance of their energy systems. The application of EMS will 
enable the ROK to draw on its competitive information and communications technology 
for energy-efficient related information for components such as sensors, software, 
hardware and controlling techniques. EMS can be applied to a variety of sectors, 
including factories, buildings and homes.

Government Spending on Environmental Research  
and Development
 
The prospects for the ROK to advance rapidly in both renewables and energy efficiency are 
being strengthened greatly by the high level of government commitment to R&D spending on 
environmental technologies. Figure 12.1 provides useful perspective on this, as it shows the 
ROK’s environmental R&D spending levels compared with other OECD members. As we see, as 
a share of the economy’s GDP, the ROK’s R&D spending is the highest among OECD members 
- indeed, by a considerable margin compared with most other OECD countries. As Figure 12.1 
shows, the ROK’s R&D spending was about 0.13 percent of GDP as of 2012, equal to about 
$1.3 billion. By comparison, environmental R&D spending is about half that share of GDP in 
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Germany. In the U.S., the share of environmental R&D spending is about one-quarter the share 
of GDP as in the ROK. 

Figure 12.1: Republic of Korea. Government R&D spending on environment and energy relative 
to other OECD countries

Percent of GDP, 2010 or latest

Source: OECD (2012) “OECD Economic Surveys: Germany 2012,” OECD Publishing, Figure 9 (p. 31). http://dx.doi.org/10.1787/eco_surveys-deu-2012-en.

Emissions Reductions through Clean Energy Investments
In Table 12.4, we begin to present the main features of our 20-year clean energy investment 
framework for the ROK. As we have noted before, this framework is closely aligned with the 
government’s Green Growth strategy. It is distinct in that our framework is more narrowly 
focused on investments in the areas of clean renewables and energy efficiency, in contrast 
with the broader agenda advanced under the Green Growth strategy. In addition, our annual 
budgetary allocation of 1.5 percent of GDP is a figure that is meant to apply to all public plus 
private spending. Our understanding of the funding levels we reported on Green Growth from 
2009 to 2013 in Table 12.3 above, again, were public allocations only. 
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Table 12.4: Republic of Korea. Clean energy 20-year investment growth trajectory

2012 GDP $1.1 trillion

Projected 20-year average annual GDP growth rate 3.3%

Projected 2032 GDP
(with 3.3 percent average annual GDP growth) $2.1 trillion

Midrange GDP value for investment spending estimates
(= (2012 GDP + 2032 GDP)/2) $1.6 trillion

Average annual clean renewable investments
(= 1 percent of midrange GDP) $16 billion

Average annual energy efficiency investments
(= 0.5 percent of midrange GDP) $8 billion

Source: Authors’ calculations based on World Bank (2014), “World Development Indicators,” GDP (current $US).
 
In our discussion, we assume that 1.5 percent of annual GDP is allocated with 1 percent of 
GDP funding the expansion of clean renewables while 0.5 percent is channeled into energy 
efficiency investments. We are also following the EIA in assuming that the ROK’s average 
annual GDP growth rate over the next 20 years will be 3.3 percent. 

As Table 12.4 shows, when we assume a 3.3 percent average annual growth rate over 20 years, 
the result is that the ROK’s GDP in 20 years will be $2.1 trillion. To then estimate an average 
level of clean-energy investment spending over this 20-year period, we calculate the midrange 
GDP value between 2012 GDP at $1.1 trillion and 2032 GDP at $2.1 trillion. That midrange figure 
is $1.6 trillion. This then means that the average level of annual spending on clean energy 
would be $16 billion per year, equal to one percent of the midrange GDP figure, for renewables 
and $8 billion per year for energy efficiency, at 0.5 percent of the 20-year midrange GDP level.

Clean Energy Capacity and Emissions
In Table 12.5, we then estimate the levels of capacity expansion for both clean renewables and 
energy efficiency. The average cost assumptions that we work with are: 1) Expanding clean 
renewable capacity will cost $125 billion per Q-BTU, the same figure we have used for Brazil, 
Indonesia, and the ROK, following the reasoning we described for the Brazilian case in Chapter 
8; and 2) Energy efficiency savings relative to the BAU case will cost $20 billion per Q-BTU. 
As we reported in Table 4.2, this $20 billion figure is at roughly the midpoint between the $11 
billion per Q-BTU estimated in the 2010 McKinsey and Company study for projects throughout 
Africa, India, the Middle East, South East Asia, Eastern Europe and China and the $29 billion 
per Q-BTU estimated for the U.S. in the 2010 National Academy of Sciences study. 
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Table 12.5: Republic of Korea. Cost assumptions and capacity expansion for clean 
renewables and energy efficiency investments

  Clean renewable energy Energy efficiency

1) Cost assumptions $125 billion per Q-BTU of 
capacity

$20 billion per Q-BTU of 
energy savings

2) Annual spending levels
$16 billion

(= 1 percent of midrange 
GDP)

$8 billion
(= 0.5 percent of midrange 

GDP)

CASE 1: No delay in implementing program:
20-Year spending cycle    

3) Total spending with 20-Year spending cyclea $320 billion $160 billion

4)  Total capacity expansion or energy savings 
through 20-Year spending cycleb  2.6 Q-BTUs of new capacity 8.0 Q-BTUs of energy savings

CASE 2: 3-Year delay in implementing program 
17-Year spending cycle    

5) Total Spending with 17-Year Spending Cyclec $272 billion $136 billion

6)  Total capacity expansion or energy savings 
through 17-Year spending cycled 2.2 Q-BTUs of new capacity 6.8 Q-BTUs of energy savings

Notes: a) Calculated as row 2 multiplied by 20; b) Calculated as row 3 divided by row 1; c) Calculated as row 2 multiplied by 17; d) Calculated as row 
5 divided by row 1.

Source: Authors’ calculations as developed in Chapter 12.

 
Working with these cost assumptions, we then estimate the two alternative cases. Under 
Case 1, the clean energy investment project as we have defined it begins promptly - i.e. the 
increased levels of investments in clean renewables and efficiency build immediately off of the 
developments already underway through the Green Growth project. This means that the capital 
stock for clean renewable capacity and energy efficiency processes grows every year over the 
full 20-year cycle. Under Case 2, a more conservative scenario, we assume a 3-year delay in the 
implementation of this expanded focus on investments in renewables and energy efficiency. 
Thus, under Case 2, the accumulation of new capacity proceeds for only 17 years of the full 
20-year investment cycle. Even though the ROK is already well underway in implementing its 
national Green Growth project, we are still assuming that the second scenario is more realistic. 
We therefore focus our attention on this case.

We see that under Case 2, total investment spending on clean renewables would be $272 
billion over 20 years, with a 17-year spending cycle after the 3-year start-up period. Energy 
efficiency investments would be $136 billion, again, based on a 17-year spending cycle after a 
3-year start-up period.

We then show the net effects of Case 2 in the bottom row of Table 12.5. That is, after 20 years, 
the ROK would have created 2.2 Q-BTUs of clean renewable capacity. This would of course 
incorporate a mix of clean renewables that would be determined through examining the full 
range of options as described, for example, in the government’s 2011 Low Carbon, Green 
Growth report. The ROK would have also been able to save 6.8 Q-BTUs of energy consumption 
through having invested $136 billion in energy efficiency processes over 20 years. We can then 
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apply those 6.8 Q-BTUs of saving relative to the EIA’s 2030 BAU scenario.

We can then see the impact of these expanded levels of investment in renewables and 
efficiency in Table 12.6 below. We begin again, with the EIA’s BAU assumption that total energy 
consumption in 2030 will be 14.7 Q-BTUs. This level now falls to 7.9 Q-BTUs due to energy 
efficiency investments, which we estimated would generate 6.8 Q-BTUs of energy saving 
relative to the BAU case. Total clean renewable capacity in the ROK now rises to a total of 2.5 
Q-BTUs. This includes the 0.3 Q-BTUs that was built into the BAU scenario, plus the 2.2 Q-BTUs 
that would be generated through investing 1 percent of GDP per year over a 17-year period, 
following the initial 3-year start- up phase.

Table 12.6: Republic of Korea. Impact of clean energy investments relative to 2030 BAU scenario

  2030 BAU scenario
20-year clean energy investment 

scenario
(Case 2: 3-year start-up delay)

Total energy consumption 14.7 Q-BTUs
 7.9 Q-BTUS

(with 6.8 Q-BTUs of energy 
efficiency savings)

Total clean renewable energy 
supply 0.3 Q-BTUs

2.5 Q-BTUs
(with 2.2 Q-BTUs of additional 

clean renewables)

Total nuclear power supply 1.2 Q-BTUs 1.2 Q-BTUs

Total fossil fuel + High-emissions 
renewables 13.2 Q-BTUs  4.2 Q-BTUs

Total CO2 emissions 666 mmt  294 mmt

Total CO2 emissions per capita
(with population = 50 million) 13.3 mt 5.9 mt

Sources: EIA (2013b) for BAU Scenario; discussion in text for 20-year scenario.

 
We then factor in total energy supplied by nuclear power. We assume that this level will remain 
constant at 1.2 Q-BTUs relative to the BAU case. 

The overall net effect of these clean renewable and energy efficiency investments can then be 
seen in terms of the ROK’s residual demand for fossil fuel energy sources. As we see, according 
to this scenario, the demand for all fossil fuels falls to 4.2 Q-BTUs. Assuming an average 
emissions level of 70 mmt of CO2 emissions per Q-BTU from the ROK’s mix of oil, natural gas, 
and coal consumption in Year 20 of its clean energy investment cycle, this then means that the 
ROK’s total CO2 emissions would be at 294 mmt as of Year 20. This amounts to 5.9 mt of CO2 
emissions per capita - a 56 percent decline in per capita emissions relative to the ROK’s 2030 
BAU scenario of 13.3 mt of per capita CO2 emissons, as well as a 50 percent decline relative to 
the ROK’s actual emission level for 2010. 
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Employment Generation through Clean Energy Investments
Table 12.7 presents our estimates of the effects on overall annual employment levels through a 
ROK clean energy investment project at the level of 1.5 percent of annual GDP. 

Table 12.7: Republic of Korea. Employment impact of clean energy investments vs. fossil fuel 
spending

Figures are jobs in Year 1 of 20-year clean energy investment strategy

Assumptions for clean energy investments: 

- 67 percent clean renewables;
- 33 percent energy efficiency

Labor force in 2011 = 25.2 million

  Clean energy investments Fossil fuel spending
Net employment 

effects of clean energy 
investments

Direct + indirect total 
employment at Year 1 174,800 157,100 17,700

Direct + indirect 
employment as share of 
total labor force at Year 1

0.7% 0.6% 0.1%

Source: See Chapter 7 and Appendix 3.

Our employment results are derived from our estimates presented in Chapter 7 as to the 
numbers of jobs generated per $1 million in spending through spending 1.5 percent of GDP 
per year on investments in clean renewables and energy efficiency. As such, our project should 
be seen as complimentary to, but distinct from, the important study by Kang, Oh, Lee, Jang, 
Hwang, Lee and Kim, Green Growth: Green Industry and Green Jobs (2011). The Kang et al. study 
is more broadly gauged. It attempts to estimate levels of employment for all green activities 
in the economy of the ROK, as defined within the economy’s overall Green Growth project, as 
described above. In our case, we are estimating the number of jobs per year produced through 
investing 1.5 percent of the country’s GDP per year in renewable energy and energy efficiency. 
We then compare the extent of job creation through these clean energy investments with the 
job creation generated by spending the same amount of money within the oil, coal and natural 
gas sectors.

Working within our own framework, we have calculated the effects of the 1.5 percent of GDP 
investment project given a spending breakdown at two-thirds renewables and one-third energy 
efficiency. We also make two other assumptions. 

First, we focus for this analysis on the Domestic Content Stable scenario, as opposed to 
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assuming the ROK’s imports will have to rise to meet the resource demands of its clean energy 
investment strategy. This is because the ROK is an advanced economy, which has already been 
actively engaged in developing Green Growth initiatives throughout the economy. The ROK 
also has a long-term record of success as an economy capable of effective adaptation to new 
technologies. This basic strength of the economy of the ROK will only be enhanced with time 
through its major commitment to clean energy R&D spending. 

In addition, we assume that, of the total amount of spending on the clean energy investment 
project, 30 percent is allocated to cover financing costs. This leaves 70 percent available for 
spending on creating capacity and producing, refining, transporting, and marketing energy.

From these assumptions, we estimate the total amount of direct plus indirect employment 
generated through the clean energy investment project at 1.5 percent of GDP is about 175,000 
jobs. This is a very large number of jobs in absolute terms. But it is also only 0.7 percent of the 
ROK’s total labor force of 25.2 million as of 2011. The impact of the clean energy investment 
project would therefore be strongly positive in terms of absolute employment, but its overall 
scope would be limited.

To gauge the net expansion in job opportunities, we also need to compare these figures with 
the job creation that would occur through maintaining spending in the ROK’s existing fossil fuel 
industry, as opposed to shifting funds into clean energy. We see in Table 12.7 that the same 
level of spending in the ROK’s coal, oil, and natural gas sectors would create close to the same 
number of jobs, at 157,000. That is, overall, there is a net gain of about 18,000 jobs through 
pursuing the clean energy investment agenda rather than standing pat with the fossil fuel-
based infrastructure. We thus again see that, compared with maintaining the ROK’s current 
fossil fuel based energy infrastructure, the clean energy investment project will be a net source 
of job creation, though this net gain in employment will be modest within the context of the 
ROK’s overall labor market.

In Table 12.8, we present our projections for employment creation in Year 20 of the ROK’s 20-
year clean energy investment project. These figures are based on two separate assumptions 
as to the average growth rate of labor productivity in the ROK’s clean energy sectors over this 
20-year period - a 1 percent low-end average annual labor productivity growth rate assumption 
and a 2.5 percent high-end assumption.
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Table 12.8: Republic of Korea. Projected employment impacts of clean energy investments 
after 20 years under alternative labor productivity assumptions 

Figures are jobs per year

Assumptions for 20-year employment projections
12.7

percent
percent

population
ratio

Labor force at end of 20-year investment cycle = 27.2 million

 
Scenario with 1 percent 

average annual labor 
productivity growth

Scenario with 2.5 percent 
average annual labor 
productivity growth

Midpoint between 1 
percent and 2.5 percent 

productivity growth 
scenarios

Direct + indirect total 
employment 315,700 235,400 276,000

Year 20 direct + indirect 
employment as relative to 
Year 1 employment

80.6% 34.7% 57.6%

Direct + indirect 
employment as share of 
total labor force

1.2% 0.9% 1.0%

Sources: See Chapter 7 and Appendix 3.

 
Working with these assumptions, as well as with the other assumptions on GDP growth, 
population and labor force participation listed above Table 12.8, we generate the following 
results:

1. Assuming labor productivity increases at 1 percent per year, total employment creation 
through clean energy investments will rise to about 316,000 in Year 20. This is about 
an 80 percent increase relative to employment creation in Year 1. This strong gain in 
employment creation results through our assumption that GDP growth will average 3.3 
percent per year over the 20-year clean energy investment cycle - a 2.3 percent faster 
rate than labor productivity in the clean energy sectors. GDP growth at 3.3 percent per 
year in turn means that clean energy investments will also be growing at 3.3 percent 
per year, to remain as a fixed 1.5 percent of GDP every year over the 20-year investment 
cycle.

2. Under this 1 percent labor productivity growth assumption, employment creation 
through clean energy investments will rise to about 1.2 percent of the ROK’s Year 20 
labor force relative to the 0.7 percent figure as of Year 1.

3. Assuming average labor productivity in the ROK’s clean energy sectors increases at the 
higher-end rate of 2.5 percent over the 20-year investment cycle, employment creation 
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will still be rising, though more modestly, given that we assume GDP growth will average 
3.3 percent per year. Year 20 employment creation through clean energy investments 
then reaches 235,000. This is still a roughly 35 percent increase over the Year 1 figure. 
Under this scenario, employment creation through clean energy investments rises to 
around 0.9 percent as a share of the ROK’s overall labor force in Year 20. 

4. In the last column of Table 12.8, we report midpoint employment creation figures, that 
are based on averaging Year 20 employment levels derived from both the 1 percent and 
2.5 percent labor productivity growth assumptions. As we see, the midpoint figure is 
276,000 jobs, which is about 1 percent of the ROK’s Year 20 labor force.

Overall, as we see, employment creation through the ROK’s clean energy investment project 
operating at 1.5 percent of GDP per year will continue to expand over time under a wide range 
of plausible assumptions as to the growth of labor productivity over the 20-year investment 
cycle. As such, the overarching conclusion we reach here is that, through the clean energy 
investment project as we have described it, the ROK would be able to build on its major 
accomplishments to date in advancing a green growth policy framework. In fact, through this 
clean energy investment project at the level of 1.5 percent of GDP over the course of 20 years, 
the ROK could realistically reduce its absolute per capita emissions by 50 percent relative to 
actual 2010 emissions and by 56 percent relative to the EIA’s 2030 BAU scenario for the ROK. 
Moreover, this dramatic level of emissions reduction can be accomplished without having to 
make any sacrifices overall in terms of creating job opportunities for its citizens.
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CHAPTER 13: CONCLUSION

This report addresses the profound challenge now facing humanity to control climate change. 
According to the IPCC, to successfully control climate change over the next 35-40 years, we 
need to reduce total GHG emissions by 40 percent as of 2030 and 80 percent as of 2050 relative 
to current emissions levels. 

The purpose of this report has been to show how the IPCC’s intermediate emission reduction 
target can be achieved. We have been particularly focused on how it can be accomplished 
through a clean energy investment project that is also capable of expanding decent employment 
opportunities throughout all regions of the world. Any project to control climate change, which 
entails reducing decent job opportunities will also create major difficulties for all countries 
to raise average living standards and reduce poverty. These difficulties will be experienced 
most sharply in developing countries, where the imperative to fight poverty and raise average 
living standards is strongest. Limiting opportunities for countries to proceed on a healthy 
economic growth trajectory will also face formidable political resistance. This in turn will create 
unacceptable delays in proceeding with effective policies to control climate change. 

Because of this report’s sharp focus on achieving the IPCC’s 20-year emission reduction 
targets while also expanding decent job opportunities, we do not compare the relative costs 
and benefits of investments that can reduce CO2 emissions versus investments that can, for 
example, promote a successful high-tech sector. Correspondingly, it is only within the context 
of reducing CO2 emissions that we explore the impact of a clean energy investment agenda 
on generating decent job opportunities. This is because it is only through investing in clean 
energy resources that we are able to deal with the challenge of achieving a country’s emissions 
reduction targets. Within all country settings, there is, of course, a wide range of additional 
issues that need to be explored on behalf of the goals of promoting economic growth and 
employment opportunities. Many of these issues are not particularly concerned with a country’s 
energy sector. It is of course critical that other researchers continue to explore this broader set 
of questions along with the energy- and environment-focused themes of this report. 

Focusing on energy-based CO2 emissions, which account for nearly 80 percent of all global GHG 
emissions, we present in Chapter 1 the IPCC’s intermediate emission reduction target in terms 
of average emissions per capita for the entire global population. As of 2010, average annual 
global per capita CO2 emissions were at 4.6 mt. This figure will need to fall to 2.4 mt within 20 
years, after taking account of increasing population. 

The basic idea of the strategy we have developed for achieving the IPCC’s emission reduction 
target is simple. It proposes that most countries - including especially most large countries, in 
terms of either GDP or population levels - devote about 1.5 percent of GDP per year to investments 
in energy efficiency and clean renewable energy resources. In advancing this proposal, we 
have focused on the challenges faced by five countries - Brazil, Germany, Indonesia, South 
Africa, and the ROK. These are sharply distinct countries, in terms of their regions, levels of 
development, as well as their current energy infrastructures and emissions levels. But they are 
also all leading economies within their respective regions, and as such, represent important 
case studies. We conclude that the 1.5 percent of GDP clean energy investment project applies 

SECTION 3 :  INDIVIDUAL COUNTRY STUDIES



GLOBAL GREEN GROWTH

244

well to four of our five case study countries. 

Brazil is the one exception, for two reasons. The first is that Brazil is already a very strong 
performer in both its reliance on renewable energy and its level of energy efficiency. As we saw 
in Chapter 1, per capita emissions in Brazil are presently at 2.3 mt - that is, at a level already 
slightly below the 2.4 mt global average level that is targeted for Year 20 based on the IPCC’s 
emissions reduction goals. In addition, Brazil is unique among our five selected countries in 
that CO2 emissions from energy-based sources account for less than 40 percent of the country’s 
total GHG emissions. As such, for roughly the next decade, Brazil should devote a relatively 
large share of its resources to controlling methane and nitrous oxide emissions from non-
energy sources. We saw that Brazil could reduce its CO2 emissions to 2.0 mt per capita within 
20 years through investing about 0.9 percent of GDP annually in clean renewable energy and 
energy efficiency, rather than the 1.5 percent that would apply to most other countries.

One of our starting points in developing the idea of a 1.5 percent of GDP clean energy 
investment strategy for most countries was that policymakers in our five selected countries 
have themselves proposed clean energy strategies at roughly along these lines - i.e. between 
1-2 percent of their country’s GDP. In addition, for all five of our selected countries and 
throughout the world more generally, there are no viable paths for achieving the IPCC’s 20-
year emissions reduction target through maintaining dependence on non-renewable energy 
sources at anything approximating current levels, much less through allowing consumption 
of non-renewables to increase. We reported in Chapter 1 the global emissions projections for 
2030 of both the EIA and the IEA. Both the EIA and IEA project that, under their global energy 
consumption Reference cases for 2030, global CO2 emissions will be more than twice as high as 
the IPCC’s 20,000 mmt target level. Even under the IEA’s “New Policies Case,” for 2030, which 
incorporates “broad policy commitments…to address energy-related challenges,” (IEA, 2013A, 
p. 645), the IEA still projects 2030 emissions at 36,493 mmt. This is 82 percent higher than 
the 20,000 mmt target. Increasing global fossil fuel consumption levels through any means - 
including utilizing existing resources and technologies; finding new reserves such as Brazil’s 
pre-salt deposits; or deploying advanced technologies such as fracking - will, in all cases, only 
raise emission levels further.

Some analysts believe that CCS technologies and nuclear energy can effectively expand non-
renewable energy supplies without producing emissions. But we conclude that neither CCS 
nor nuclear energy offer viable long-term solutions. CCS technologies aim to capture emitted 
carbon and transport it, usually through pipelines, to subsurface geological formations, where 
it would be stored permanently. Such technologies have not been proven at a commercial 
scale. The dangers of carbon leakages from flawed transportation and storage systems will, 
in any case, only increase to the extent that CCS technologies are commercialized. Nuclear 
power does generate electricity without producing CO2 emissions. But it also creates major 
environmental and public safety concerns, which have only intensified since the March 2011 
meltdown at the Fukushima Daiichi power plant in Japan.

In Chapters 3 and 4, we review the body of evidence from around the world as to the costs of 
building capacity in both clean renewable energy supply and energy efficiency. This body of 
evidence provides the critical basis supporting our conclusion that investments in these two 
areas can be the foundation for achieving the 20-year global emissions reduction target. 
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With respect to clean renewables, cost estimates from both IRENA and the EIA support the 
view that generating electricity from onshore wind, small-scale hydro, geothermal and clean 
bioenergy are all either at, or at least rapidly approaching, cost parity with non-renewables under 
average conditions. Solar is not yet approaching cost parity, but solar costs are diminishing 
rapidly. Through technical innovations and expanded market opportunities over the next two 
decades, solar promises to become the cleanest, safest, and most abundant renewable energy 
source. The range of costs are still generally greater for all clean renewables, given differences 
in, among other things, the amounts of sun, wind, and fast-flowing rivers between regions and 
specific locations. But this wider range can be controlled through policies that utilize the most 
cost-effective combination of renewable sources within any given setting. 

In addition, these cost comparisons between clean renewables and non-renewables do not 
factor in any impact of carbon cap or carbon tax policies that would raise the relative prices 
of oil, coal, and natural gas. As we review in Chapter 3, renewables would become still more 
competitive if the market prices of fossil fuels incorporated some reasonable measure of the 
environmental costs generated by burning oil, coal, and natural gas. Using a simple mark-up 
approach to estimating such price effects, we show in Chapter 3 that, with a $75 per ton carbon 
price utilized in the EIA’s energy forecasting models, price mark ups for fossil fuels would range 
between about 20 percent for crude oil, 64 percent for natural gas, and 250 percent for coal. 
The price increases would of course be higher still with a higher carbon price, such as the $125 
per ton figure used by the IEA in its policy modeling exercises.

With respect to energy efficiency costs, we reported in Chapter 4 on the wide range of cost 
estimates presented by alternative studies. For example, a 2008 World Bank study by Taylor 
et al. of 455 projects in 11 industrialized and developing economies estimated the average 
costs of achieving one Q-BTU of energy savings at $1.9 billion. A 2010 study by McKinsey and 
Company of a range of non-OECD economies estimated average energy efficiency energy costs 
at $11 per Q-BTU. The U.S. National Academy of Sciences estimates average costs within the 
U.S. at roughly $30 billion per Q-BTU. 

These alternative studies do not provide sufficiently detailed methodological discussions 
that would enable us to identify the main factors generating these major differences in cost 
estimates. But it is at least reasonable to conclude from these figures that there are likely to 
be large variations in costs on a project-by-project basis. At the same time, for the purposes 
of our estimates in this report, we needed to proceed with some general rules-of-thumb for 
estimating the level of savings that are attainable through a typical set of efficiency projects in 
our five selected countries, as well as in other settings. 

Our approach has been to assume relatively high-end average costs both for expanding clean 
renewable productive capacity and achieving major gains in energy efficiency. Specifically, we 
derived our clean energy investment cost assumptions as follows: 1) With clean renewables, we 
worked from both IRENA’s region- and country-specific figures on costs per kWh of electricity 
and the EIA’s U.S.-based figures on capital expenditures for building renewable capacity; and 
2) For energy efficiency, we utilized the three studies described in Chapter 4 - from the World 
Bank, McKinsey and Company, and the U.S. National Academy of Sciences respectively - on 
investment costs per Q-BTU of energy savings. Working with these various studies, for the 
cases of Brazil, Indonesia, and South Africa, we assumed the average costs of expanding clean 
renewable capacity at $125 billion per Q-BTU and the costs for efficiency investments at $11 
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billion per Q-BTU of savings. For the ROK, we assume the same $125 billion average figure for 
clean renewable investments but a higher figure, $20 billion per Q-BTU, for efficiency gains. 
With Germany, we directly incorporated the government’s own cost estimates for their 2030 
Low Carbon Scenario.

 The key here is not that these cost assumptions are necessarily accurate in any of the countries, 
and certainly not on an individual project-by-project basis, but rather that they err, if anything, 
on the high side. This is because we need to assess whether investing 1.5 percent of GDP in 
clean renewables and energy efficiency can bring down CO2 emissions sufficiently within a 
framework of relatively high-end cost assumptions in all cases. Our support for a 1.5 percent of 
GDP clean energy investment project would not be robust if we could demonstrate its viability 
only on the basis of highly aggressive low-end assumptions on costs, including an assumption 
of rapid cost reductions through technological learning. 

In working with these cost figures, we should also emphasize again that, in all cases, the 
payback period for such energy efficiency investments are generally estimated to be relatively 
short - in most cases, less than three years for full payback. The 2011 survey research by UNIDO 
that we discussed in Chapter 4 provided more careful evidence on mean internal rates of 
return for the 119 energy efficiency projects they analyzed. UNIDO found that mean IRRs ranged 
between 25 percent for projects with a three-year lifespan to 50 percent for 10-year projects. 

We do also consider in Chapter 4 the prospect that large-scale efficiency investments may 
not have their intended effect, as a result of the rebound effect. However, we concluded that 
any rebound effect that may emerge as a by-product of an economy-wide energy efficiency 
investment project will not be large enough to counteract the emissions and cost reductions 
these efficiency investments can achieve. Still, the most effective way to limit rebound effects 
is to combine efficiency investments with complementary measures to expand renewable 
energy capacity and to establish a price on carbon emissions.

Assessing the likely employment effects of clean energy investments in Brazil, Germany, 
Indonesia, South Africa, and the ROK required us to first estimate the numbers of jobs generated 
by a given amount of spending in each country’s various clean energy sectors. We estimated 
these employment effects on the basis of the I-O modeling approach we developed in Chapter 
6 as well as the assumptions we described in Chapter 5 on each country’s domestic content 
proportions as demand increases along the clean energy sectors’ supply chain. Overall, we 
find here that, per $1 million in spending in each country (converted at current exchange rates), 
clean energy investments generate, on average, about 37 jobs in Brazil, 10 jobs in Germany, 
100 jobs in Indonesia, 70 jobs in South Africa, and 15 jobs in the ROK. Critically, as mentioned 
above, we also find that the clean energy investments create more jobs in all five countries 
than spending the same amount of funds within each country’s fossil fuel sectors. In the cases 
of Brazil, Indonesia, and South Africa, the net employment gains for clean energy investments 
are substantial. They are more modest in Germany and especially the ROK. Still, in all cases, 
we find that investing in building a clean energy economy will also be a net positive source of 
job creation. 

In Chapter 7, we also provide disaggregated statistics showing the types of jobs that would be 
created through an expansion of clean energy investments. We look at four criteria - gender 
balance; the proportions in self-employment and working in micro-enterprises; and the 
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educational attainment levels of people employed in energy-linked activities. Not surprisingly, 
these disaggregated employment results varied significantly by country, and sectors. We 
observe, for example, a high proportion of employment in informal sectors in Brazil, Indonesia, 
and South Africa, and, to a somewhat lesser extent, the ROK, as indicated by our figures on 
both self-employment and micro-enterprise employment. This pattern is tied, first, to the large 
proportion of agricultural employment that will be generated by the growth of clean bioenergy 
production. It is also associated with the large increase in construction work that would result 
through the expansion of energy efficiency building retrofit projects. The major increase in 
investment funds flowing into construction and agriculture should provide opportunities to 
raise the level of formalization for these sectors. 

In its current composition, employment in clean energy areas is heavily male dominated in all 
five countries. This is due to the significant role played by both manufacturing and construction 
in overall clean energy investments. Advancing major clean energy initiatives in all five countries 
(and elsewhere) could therefore be seen as an opportunity to open up decent job opportunities 
for women in these heretofore male employment strongholds. In general terms, the levels of 
educational attainment in the clean energy areas are not especially high. This suggests that, at 
least at the level of general educational levels, there should not be major challenges in finding 
qualified workers to cover the rising employment needs for expanding clean energy activities. 
At the same time, some of these new employment activities will entail new activities and skills. 
Countries advancing clean energy investment projects will therefore need to make provisions 
for new types of training and related skill acquisition initiatives. 

In Chapters 8 -12, we then presented the overall effects on emissions reductions and employment 
expansion through clean energy projects in each of our five selected countries. For Brazil in 
Chapter 8, we estimated that clean energy investments will need to be at about 0.9 percent of 
GDP on average over the 20-year investment cycle to achieve the IEA’s Low Carbon Scenario, 
through which Brazil’s per capita emissions would fall to 2.0 mt as of 2030. For Germany, 
Indonesia, South Africa, and the ROK in Chapters 9-12, we assume clean energy investments at 
1.5 percent of GDP every year over the 20-year cycle. We were able to generate these estimates 
of emission reductions and employment expansion on the basis of: 1) our cost estimates for 
investments in clean energy and energy efficiency; 2) our estimates of employment creation 
per dollar of expenditure in each of the five countries; and 3) our assumptions for average 
GDP growth in each country over the 20-year cycle. We deliberately work with conservative 
GDP growth assumptions, derived from projections by the IEA, IMF and the countries’ own 
forecasting models. Once again, our point in working with these conservative GDP growth 
forecasts is not that they should necessarily be accurate but that, if anything, they err on the 
low side. If our five selected countries experience faster GDP growth than we assume, this then 
also means that they have more resources to channel towards clean energy investments, since 
our clean energy investment levels for all countries are a fixed ratio of each country’s GDP (1.5 
percent of GDP in all cases but Brazil, with Brazil at 0.9 percent of GDP).

In Table 13.1, for each of our five selected countries, we summarize the impact of our 20-year 
clean energy investment project on emissions levels and employment creation as of Year 20. 
Panel A of Table 13.1 shows the main results of our estimates for all countries, and Panel B 
presents the main underlying assumptions underlying our estimates.
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Table 13.1: Summary of emissions reduction and employment expansion effects through  
20-year country-specific clean energy investment projects

a) Main results from estimates

  Brazil Germany Indonesia South Africa ROK

Emissions reductions

Year 20 per capita 
emissions 2.0 mt 5.5 mt 2.6 mt 8.7 mt 5.9 mt

Year 20 per capita 
emissions relative to 
2010

-13.0% -43.3% +52.9% -8.4% -49.1%

Year 20 per capita 
emissions relative to 
2030 BAU

-37.5% -28.6% -66.7% -49.7% -55.6%

Employment 
expansion

Clean energy jobs per 
$1 million 37.4 jobs 9.5 jobs 103.3 jobs 66.2 jobs 15.1 jobs

Clean energy minus 
fossil fuel jobs per $1 
million

16.2 jobs 1.9 jobs 81.3 jobs 33.1 jobs 1.5 jobs

Midpoint Year 
20 employment 
through clean energy 
investments

806,000 352,000 1.8 million 398,000 276,000

Midpoint Year 20 
employment as share 
of labor force

0.7% 0.9% 1.3% 1.9% 1.0%

Sources: For emissions figures, Tables 1.4, 8.4 9.3, 10.5, 11.6, and 12.6. For employment figures, Tables 7.1, 7.5, 7.9, 7.13, 7.17, 8.7, 9.5, 10.7, 11.8, 12.8.
 
b) Main assumptions underlying estimates

  Brazil Germany Indonesia South Africa ROK

20-Year GDP growth 
trend 3.7% 2.0% 5.0% 4.0% 3.3%

Clean energy 
investments as share 
of GDP

0.9% 1.5% 1.5% 1.5% 1.5%

Costs of clean 
renewable capacity 
expansion per Q-BTU

$125 billion
Direct 

government 
estimates

$125 billion $125 billion $125 billion

Costs of energy 
efficiency 
improvements per 
Q-BTU

$11 billion
Direct 

government 
estimates

$11 billion $11 billion $20 billion

Sources: Tables 8.5, 9.3, 10.3, 10.4, 11.4, 11.5, 12.4.
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As the table shows, in all cases, the clean energy investment project generates major gains 
in emissions reductions relative to both 2010 levels and BAU assumptions as of Year 20. 
Brazil is at 2.0 mt per capita emissions under the clean energy strategy. This is a 38 percent 
improvement over the BAU model, even while Brazil is devoting only 0.9 percent of GDP to the 
project. We assume that Brazil is also channeling major resources toward controlling other GHG 
emissions from non-energy sources. Germany is at 5.5 mt per capita emissions through our 
clean energy investment project. This is a 43 percent improvement relative to 2010 and a 29 
percent improvement relative to Germany’s 2030 BAU scenario. Indonesia is at 2.6 mt within 
20 years under our investment project. This figure is 53 percent higher than Indonesia’s actual 
2010 level. But, critically, it is also 67 percent lower lower than Indonesia’s BAU framework for 
2030, and it is still only slightly higher than the 20-year target figure of 2.4 mt per capita of CO2 
emissions. This result for Indonesia underscores how Indonesia can proceed on a rapid GDP 
growth trajectory (our assumption being 5.0 percent for the 20-year period) without generating 
major increases in its per capita emissions. The Indonesian case thus suggests a workable 
approach for other low- and lower-middle income countries to follow, enabling them to grow 
rapidly while still keeping emissions levels within close range of, if not below, the 20-year 2.4 
mt target. The situation is similar for South Africa, even while the South African economy is at a 
much higher per capita GDP level than Indonesia. Nevertheless, we show that South Africa can 
support a 4.0 percent GDP growth trajectory while still lowering its emissions within 20 years 
by nearly 50 percent relative to its 2030 BAU scenario. Similarly, with the ROK, we show that 
investing 1.5 percent of GDP per year over the 20-year investment cycle can lower the country’s 
per capita CO2 emissions by fully 56 percent relative to the 2030 BAU Scenario.

In conjunction with these major across-the-board gains in emissions reductions, we also see 
in Table 13.1 that clean energy investments will be a positive source of net job creation for all 
five countries. As we have discussed, these positive job effects are proportionally larger for 
South Africa, Indonesia, and, operating on a somewhat smaller scale project, Brazil. They are 
relatively modest in Germany and the ROK, because the levels of employment creation per 
dollar of expenditure are more similar to those in the fossil fuel sectors in these countries. 
Therefore, for Germany and the ROK, the job increases generated by clean energy investments 
will be more closely matched by the job losses produced by retrenchments in the oil, coal and 
natural gas sectors. 

The most critical point of our report nevertheless remains valid for all five selected countries. 
In all five cases, our research finds that the clean energy investment project is capable of 
achieving dramatic reductions in CO2 emissions while overall job opportunities are expanding 
and GDP growth proceeds along a healthy long-run growth trajectory.

Effective industrial policies, for all countries at all levels of development, will certainly be 
necessary to advance these emission reduction and employment expansion outcomes. In 
Chapter 5, we reviewed some of the main considerations with respect to advancing effective 
industrial policies. This begins with governments playing a leading role in adapting clean 
energy technology. As the UNIDO 2013 Industrial Development Report usefully summarized 
specifically with respect to uptakes of green technologies in manufacturing, “technological 
change rarely takes place in a vacuum, and often requires incentives. Success stories of new 
energy technologies are the product of forward-thinking ambitious government policies,” 
(2013, p. 124). Governments will also need to play a leading role in delivering affordable and 
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flexible financing arrangements for clean energy investments to be sustained on a large-scale 
basis.

Ambitious government policies will also be needed to effectively manage the unavoidable 
major retrenchments in the oil, coal and natural gas industries. As we review in Chapter 5, 
all owners of fossil fuel assets, including public sector entities as well as private oil, coal and 
natural gas corporations, will, by necessity, experience a major decline in the value of their 
holdings. Along with this, workers tied to the oil, coal, and natural gas industries will inevitably 
face job losses as a consequence. Economic policies are needed in all countries to assist these 
workers, as well as their families and communities, with transitional support into new areas of 
economic activity, where decent job opportunities are expanding. In most countries, the energy 
efficiency and clean renewable energy sectors will be among the most important new areas of 
expanding job opportunities. 

Overall again, the overarching conclusions that emerge from this report are straightforward. We 
conclude that there is a clear path for the global economy to achieve the 20-year CO2 emissions 
target from energy-based sources of 20,000 mmt, or, on a per capita basis, 2.4 mt of emissions. 
We show that the large-scale investments necessary to build a clean energy economy over the 
next 20 years will also promote expanded job opportunities, even while the fossil fuel sectors 
will be contracting. Further, pursuing these clean energy investments will not act as an obstacle 
to countries sustaining healthy long-term growth trajectories. In large measure, this is due to 
the fact that costs of generating energy from clean renewable sources are approaching parity 
with non-renewables. Equally important is that investments in energy efficiency are highly cost 
effective over time. 

In short, this report has advanced a realistic framework for dramatically reducing CO2 emissions 
and thereby taking major strides towards controlling climate change over the next 20 years. It 
is also a project that can expand job opportunities and does not depend on slowing down GDP 
growth in any country or regional setting. This, indeed, is what makes the project realistic. It is 
a unified framework for controlling climate change and improving living standards in all country 
and regional settings.
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APPENDIX 1: CALCULATIONS AND 
CONVERSIONS FOR ESTIMATING 
THE EFFECTS ON FOSSIL FUEL 
PRICES OF A CARBON PRICE 

We present here the calculations through which we estimate the impact on the prices of oil, 
coal and natural gas of a $75 per ton carbon price, operating in 2035. As described in the main 
text in Chapter 3, we work within a simple price mark-up framework. That is, we assume that 
the cost and price increases on fossil fuels from the carbon price policy follow proportionally 
from both the stipulated level of the given carbon price policy - in this case the $75 per ton 
carbon price - and the amount of CO2 emissions generated by burning oil, coal, and natural 
gas to produce energy. Our figures on emissions are those that we present in Table 2.2, and 
show again in Table 3.8. These are expressed in terms of emissions per Q-BTU of energy: oil is 
approximately 69 mmt per Q-BTU, coal is at 100 mmt per Q-BTU, and natural gas is at 56 mmt 
per Q-BTU.

Calculations for Oil
1. Converting CO2 emissions figures from millions of tons to tons.

u  1 Q-BTU of energy emits 69 mmt of CO2, then:
2. Therefore:

2 is produced by ~14.5 M-BTUs of oil
» (i.e. 1 billion BTUs/69 mmt of C02)

oil

2. Converting oil units from BTUs to barrels of oil

u  1 barrel of oil = 5.6 M-BTUs of energy; therefore
u  2.6 barrels of oil = 14.5 M-BTUs of oil

3. Carbon price in barrels of oil

u  If 2.6 barrels of oil = 14.5 M-BTUs of oil, it follows that 2.6 barrels of oil will generate 1 
ton of CO2 emissions; and that 

u  1 barrel of oil will generate ~ 0.4 tons of emissions (i.e. = 1 ton CO2/2.6 barrels of oil)
u  If carbon price is $75 per ton, that means the price of barrel of oil will go up by about $30 

per barrel of oil (i.e. $75 * .4 = $30).
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4. Scaling carbon price increase for oil

u  The EIA reference case for the price of oil in 2035 is ~ $140 per barrel.
u  Thus, the impact of a cost mark-up through the carbon price would be a price increase 

of 21.4 percent (= $30/$140).

Calculations for Coal
1. Converting CO2 emissions figures from millions of tons to tons.

u  100 mmt of CO2 emissions are generated per 1 Q-BTU of coal-fired energy; therefore:
2; therefore

2 is produced along with 10 M-BTUs of coal-fired energy; and
2 are produced by 1 M-BTUs of coal-fired energy.

2. Carbon price per 1 M-BTUs of coal energy 

u  1 M-BTUs of coal-fired energy will carry a carbon price of $7.50 (i.e. $75 per ton/0.1 tons).

u  The EIA’s reference price for coal in 2035 is ~ $3.00 per 1 M-BTUs.

percent - an increase of $7.50, from $3.00 to $10.50.

Calculations for Natural Gas 
1. Converting CO2 emissions figures from millions of tons to tons.

u  56 mmt of CO2 are generated per 1 Q-BTU of natural gas-fired energy; therefore:
2; and

2 is produced with 18 M-BTUs of natural gas-fired energy; and
2 are produced by 1 M-BTUs of natural gas-fired energy

2.Carbon Price per 1 M-BTUs of natural gas energy

u  1 million BTUs of natural gas-fired energy will bear a carbon price of $4.50 (i.e. $75 per 
ton/0.06 tons).

M-BTUs.

percent - an increase of $4.50, from $7.00 to $11.50.
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APPENDIX 2: ESTIMATING 
DOMESTIC CONTENT OF CLEAN 
ENERGY INVESTMENTS 
Domestic content is defined as the proportion of a good or service that is produced in 
domestically as opposed to being imported. For each country in our report, we use country-
specific data on imports and domestic production from the I-O tables in order to calculate 
domestic content in each industry. For the constructed renewable energy sectors, as defined in 
Appendix 3, we calculate weighted average domestic content figures for each energy category. 

The domestic content percentage of each industry (DCi) is calculated as 

The weighted domestic content for each energy category is the sum of the domestic content of 
each component industrial sector multiplied by the weight of that industry in the category (see 
Appendix 3 for weights and industries):

where wi is the weight of industry i within category c.

The domestic content of each energy category will be affected both by what the industry 
composition is, and what the domestic content is in each industry. For example, weatherization 
has a very high domestic content since it is comprised of the construction industry, which tends 
to have domestic content close to 100 percent. Categories with more manufactured goods, 
such as solar and wind, will generally have lower domestic content, since a larger share of 
manufactured goods are imported.

It is important to note here that since we calculate employment based on the I-O model, and we 
proxy clean energy industries using the industrial sectors as defined in the I-O tables, it is quite 
possible that the actual domestic content values for industries such as wind or solar could 
differ from those presented in this report. The results presented in this report show what the 
domestic content could be if these proxy industries were producing clean energy goods, given 
the relationships captured by the I-O model. 
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Two Cases of Domestic Content:  
Baseline and Reduced Domestic Content
 
We present two different scenarios – one in which the domestic content of all industries remains 
the same even as production scales up. This we consider the “aggressive industrial policy 
scenario” since it implies that all industries will scale up production as more investments are 
made in clean energy, and one in which domestic content in “tradable” industries is reduced by 
20 percent. This we call the more conservative scenario, since it implies that not all industries 
will be able to scale up production and that some increase in imports will be necessary in order 
to meet increased demands for clean energy.

We identify all industries in the I-O models of each country as either “non-tradable” or 
“tradable.” Non-tradable industries are those that have a domestic content of 90 percent or 
above. The country is nearly or completely self-sufficient in meeting demands for the goods or 
services of these industries, and they are often location-specific industries such as construction 
or education. Industries with less than 90 percent domestic content are considered “tradable” 
since there is already more than 10 percent of imported good or services in these industries.

We generate weighted-average domestic content and employment estimates for both the 
original domestic content and the reduced domestic content scenarios. In the reduced scenario, 
we reduce the domestic content of “tradable” industries by 20 percent from their current level. 
Thus, an industry that is currently meeting its demands with 85 percent domestic production 
and 15 percent imports, we reduce the domestic content from 85 percent to 68 percent. This 
enables us to calculate domestic content and employment in a scenario in which industries are 
not able to adequately scale up to meet increased demands. For calculating weighted average 
domestic content in this “reduced” scenario, the procedure is the same as above. In order to 
calculate employment, we reduce employment levels by 20 percent in each of the “tradable” 
industries contained throughout the supply chain of each energy category and then recalculate 
our employment multipliers as described in Appendix 3.
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APPENDIX 3:  METHODOLOGY AND 
DATA SOURCES FOR AGGREGATE 
EMPLOYMENT ESTIMATES 
 
Input-Output Methodology
The employment impacts of investments in renewable energy or energy efficiency are estimated 
using an I-O model. I-O tables are national accounting systems that show linkages between 
industries and are used to analyze how changes in final demand affects industrial output 
and employment. I-O models are constructed from country-specific data, including firm-level 
information. I-O models have been widely used to estimate employment since they were first 
developed by Wassily Leontief in the 1930s, and have recently been used by economists to 
study the impacts of clean energy investments.75 

Miller and Blair (2009) note that the two main assumptions in I-O tables are those of fixed 
technical coefficients and fixed input proportions. Fixed technical coefficients means that the 
inter-industry flows from industry i to industry j depend entirely on the output of industry j. 
In other words, if the output of industry j doubles, its input from industry i will also double 
i.e. the models assume that the production technology exhibits constant returns to scale. 
Fixed proportions  implies that industry j will use the same mix of inputs from all industries 
even as demand increases for industry j’s output – the basic I-O model does not allow input 
substitution. 

Given these assumptions, I-O tables are best suited to studying the current state of the 
economy and making short-term projections. We should therefore exercise caution when using 
I-O models to conduct long-range forecasts. The assumption of constant returns to scale is 
relevant only for relatively small changes in levels of output. If an industry increases output by, 
say, 5 or 10 percent, we might be able to assume constant returns to scale. But a doubling of 
the size of the industry, such as we might expect to occur with renewable energy, may lead to 
changes in the returns to scale. Furthermore, because I-O data is captured at a point in time 
(such as through an annual census), the resulting I-O tables themselves are static. Thus, we 
must be aware of not only homogeneity and proportionality, but also of fixed prices. If, over 
time, input prices change, then we would expect industries to substitute cheaper inputs for the 
more expensive inputs. 

The limitations of the I-O model lie in these three assumptions (homogeneity, proportionality, 
and fixed prices), which are made to simplify the analysis. Its strength, however, lies in the 
transparency of the model and the relatively limited number of assumptions in comparison 
to more complex general equilibrium models that typically rely on a far greater number of 
assumptions.76 Richardson (1972) says that part of the appeal of the I-O model is that it is 

75 For a detailed discussion of the I-O method, including data collection and the mathematical underpinnings, see the Horowitz and Planting (2009).
76 For example, typical assumptions in CGE include profit-maximization, perfect competition, market-clearing conditions, production at full capacity, 
and full employment.
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“value-free” and “neutral” and thus is useful for economic impact studies in a wide variety of 
settings – from capitalist to planned economies. 

I-O tables can essentially be used in one of three ways: To determine the current state of 
economic interactions (static); to change assumptions regarding production functions or 
prices, or to change final demand (comparative static); or to incorporate technological change 
or permit expansion of the economy by introducing capital accumulation into the framework 
(dynamic). In this report, we use the I-O model for comparative static analysis. Namely, we will 
study the employment effects of an increase in final demand for renewable energy and energy 
efficiency.

The industrial categories in the economic censuses and I-O tables of the featured countries 
in this report currently do not explicitly identify ‘Renewable Energy’ or ‘Energy Efficiency’ 
industries. While traditional energy industries such as oil/gas extraction, coal mining, 
support services for these extraction activities, power generation and distribution, and 
various petroleum- or coal-based manufacturing activities are identified within the accounts, 
renewable energy sectors such as wind, solar, biomass, geothermal, and so on, are not defined 
as distinct sectors. Similarly, energy efficiency industries such as building weatherization, 
industrial energy efficiency, and so on are not included as distinct sectors. Nonetheless, the 
component activities of these industries are captured within the explicitly defined industrial 
sectors that comprise the I-O model. 

For example, the manufacture of hardware and electrical equipment used for solar panels 
are categorized respectively in the hardware and electrical equipment industries. If we can 
thus identify the various components and their weights that make up the REEE industry, we 
can study the impact of increased demand for REEE products and services. The methodology 
for this strategy is presented in Miller and Blair (2009). PERI economists have employed this 
methodology in a variety of studies77 and in consulting work for the U.S. Department of Energy. 
The estimates produced by PERI have been corroborated through survey work as well as 
through data collected by the U.S. Department of Energy as part of the energy provisions of the 
American Recovery and Reinvestment Act of 2009.

In this report, we construct employment requirements tables for each of the five featured 
countries using their national I-O tables and industry-specific employment/output (E/O) ratios. 
Multiplying the Leontief Inverse Coefficient Matrix by the industry-specific E/O ratios yields 
the employment requirements table, from which the number of jobs (both direct plus indirect) 
associated with a given amount of expenditure on the final demand for the products or services 
of a given industry or set of industries.

77 See, for example, (Pollin, Heintz and Garrett-Peltier, 2009)
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Incorporating Variable Coefficients and Labor Productivity into 
Employment Estimates
 
Estimates of output multipliers. The data used to estimate the change in output multipliers 
over time were taken from the World Input-Output Database (WIOD), a project of the European 
Commission. The WIOD produces annual I-O tables for select countries. I-O tables exist for four 
out of the five countries in this report: Brazil, Germany, Indonesia, and the ROK. The WIOD tables 
are more aggregated than the ones used to produce the employment estimates presented in 
this report. The sectors in the WIOD are standardized across countries. There are 34 industrial 
sectors in the I-O tables for Brazil, Germany, and the ROK and 33 sectors for Indonesia. The 
missing sector in the Indonesian tables is “sale, maintenance, and repair of motor vehicles and 
motorcycles”. This industrial category does not feature in the estimates of output multipliers 
for the various energy sectors considered in the report and its absence should not affect the 
results.

Output multipliers are calculated from the Leontief inverse for each of the four countries. The 
Leontief inverse matrix is given by L=(I-A)-1 in which L is the Leontief inverse matrix, I is the 
identify matrix, and A is the matrix of I-O coefficients derived from the WIOD tables. The energy 
sectors analyzed in this report are synthetic sectors – in that they represent weighted averages 
of the sectors that actually appear in the I-O tables. The weights for determining the output 
multipliers of these sectors correspond to the weights used in the employment estimates 
presented in the report. Since the WIOD tables are more aggregated than the I-O tables used in 
the primary analytics of this report, the weights had to be adjusted to match the 34 (or, in the 
case of Indonesia, the 33) sectors of the WIOD tables.

Estimates of labor productivity growth rates. The data used to calculate labor productivity growth 
rates were taken from the World Bank’s World Development indicators. Labor productivity 
was defined as value-added per worker and as estimated for three broad sectors: agriculture, 
industry, and services. Total employment in these broad sectors was estimated from the size 
of the working age population, the employment to working age population ratio, and the share 
of total employment in agriculture, industry, and services. Total value added was expressed in 
constant local currency units – i.e. labor productivity was measured in real terms. Note that the 
data used to calculate labor productivity was only available for South Africa beginning in 2000.

Annual growth rates in labor productivity were estimated by calculating the percent change 
in labor productivity over the relevant time period and then converting these total percent 
changes into annualized values. The change in labor productivity for each of the energy sectors 
was then calculated as a weighted average of the change in labor productivity in agriculture, 
industry, and services. The weights correspond to the weights used elsewhere in the report.
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Modeling Clean Energy
The national I-O accounts in this report do not explicitly identify clean energy industries as 
such. We therefore created “synthetic” industries that are proxies for various renewable energy 
(RE) and energy efficiency (EE) industries. Based on past modeling experience by PERI as well as 
various publications on the components and costs of renewable energy and energy efficiency 
installations78, we construct renewable energy and energy efficiency categories that are similar 
across countries but based on the specifics of each country’s I-O tables. The weighting scheme 
for each country is presented in Table A3.1.

Table A3.1: Industries and weights for renewable energy, energy efficiency and fossil fuels in 
the I-O models

Brazil
Category I-O industry Weight

Bioenergy

Agriculture, forestry, logging 50%

Construction 25%

Petroleum refining and coking 12.5%

Other services 12.5%

Solar

Construction 30%

Manufacture of steel and steel products 5%

Machinery and equipment, including maintenance and repairs 6%

Machinery, equipment and material 7%

Electronic material and communication equipment 35%

Information services 18%

Wind

Appliances 4%

Electronic material and communication equipment 14%

Machinery and equipment, including maintenance and repairs 11%

Manufacture of steel and steel products 14%

Transport, storage and mail (belong to the service sector, for example, 
transport here could mean using transportation to deliver goods, etc.) 14%

Construction 22%

Cement 15%

Information services 8%

Geothermal

Information services 30%

Oil and natural gas (drilling) 15%

Construction 45%

Machinery, equipment and material 10%

78 See, for example, IRENA (2012) and various other studies in the “Renewable Energy Cost Analysis” studiesseries produced in 2012 by Agency 
IRENA.
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Hydro

Information services 43%

Cement 18%

Construction 18%

Machinery and equipment, including maintenance and repairs 7%

Appliances 14%

Weatherization Construction 100%

Grid upgrades

Construction 25%

Machinery and equipment, including maintenance and repairs 25%

Electronic material and communication equipment 50%

Industrial energy 
efficiency

Machinery and equipment, including maintenance and repairs 50%

Information services (includes R&D) 30%

Construction 20%

Coal
Other mining 50%

Petroleum refining and coking 50%

Oil/gas
Oil and natural gas 70%

Transportation 30%

“Renewable 
energy” Bioenergy, hydro, wind, solar, geothermal 20% each

“Energy efficiency”

Weatherization 50%

Industrial energy efficiency 25%

Grid upgrades 25%

“Fossil fuels” Coal, oil/gas 50% each

Germany
Category I-O industry Weight

Bioenergy

Products of agriculture, hunting 25%

Forestry and DL 25%

Bauinstallations and other construction work 25%

Coke, refined petroleum products and nuclear materials 13%

Research and development services 13%

Solar

Prep site work, civil engineering work 30%

Foundry products 18%

Electrical machinery and apparatus, nec- 18%

Nachrtechn, Rundf. -. Televisions and electron. Components 18%

Research and development services 18%
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Wind

Prep site work, civil engineering work 26%

Plastic products 12%

Foundry products 12%

Machinery 37%

Electrical machinery and apparatus, nec- 3%

Nachrtechn, Rundf. -. Televisions and electron. Components 3%

Research and development services 7%

Geothermal

Research and development services 30%

Oil, gas, DL for petroleum, natural gas extraction (Drilling) 15%

Bauinstallations and other construction work 45%

Machinery 10%

Hydro

Research and development services 43%

Pig iron, steel, pipes and products thereof 18%

Prep site work, civil engineering work 18%

Machinery 7%

Electrical machinery and 3apparatus, nec- 14%

Weatherization
Prep site work, civil engineering work 50%

Bauinstallations and other construction work 50%

Industrial energy 
efficiency

Machinery 20%

Electrical machinery and apparatus, nec- 30%

Bauinstallations and other construction work 20%

Research and Development Services 30%

Grid upgrades

Prep site work, civil engineering work 25%

Machinery 25%

Electrical machinery and apparatus, nec- 25%

Nachrtechn, Rundf. -. Televisions and electron. Components 25%

Coal
Mining and quarrying Other mining and quarrying products 50%

Coal and peat 50%

Oil/gas

Oil, gas, DL for petroleum, natural gas extraction 50%

Coke, refined petroleum products and nuclear materials 20%

Otherwise. Landv.leistungen, transportation via pipelines 30%

“Renewable 
energy” Bioenergy, hydro, wind, solar, geothermal 20% each

“Energy efficiency”

Weatherization 50%

Industrial energy efficiency 25%

Grid upgrades 25%

“Fossil fuels” Coal, oil/gas 50% each
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Indonesia
Category I-O industry Weight

Bioenergy

Rice 12.5%

Maize 12.5%

Wood 25%

Refining 12.5%

Construction 25%

Other services 12.5%

Solar

Construction 30%

Manufacture of fabricated metal products 17.5%

Manufacture of machine, electrical machinery and apparatus 35%

Other services 17.5%

Wind

Manufacture of rubber and plastic wares 12%

Manufacture of fabricated metal products 12%

Manufacture of machine, electrical machinery and apparatus 43%

Construction 26%

Other services 7%

Geothermal

Crude oil, natural gas and geothermal mining (drilling) 15%

Manufacture of machine, electrical machinery and apparatus 10%

Construction 45%

Other services 30%

Hydro

Manufacture of non metallic mineral products 18.2%

Manufacture of machine, electrical machinery and apparatus 21%

Construction 18.20%

Other services 42.90%

Weatherization Construction 100%

Industrial energy 
efficiency

Manufacture of machine, electrical machinery and apparatus 50%

Other services 30%

Construction 20%

Grid Upgrades
Construction 25%

Manufacture of machine, electrical machinery and apparatus 75%

Coal
Coal and metal ore mining 50%

Manufacture of chemicals 50%

Oil/gas
Crude oil 50%

Petroleum refinery products 50%

“Renewable 
energy” Bioenergy, hydro, wind, solar, geothermal 20% each
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“Energy efficiency”

Weatherization 50%

Industrial energy efficiency 25%

Grid upgrades 25%

“Fossil fuels” Coal, oil/gas 50% each

South Africa
Category I-O industry Weight

Bioenergy

Agriculture (Including live animals) 25%

Forestry 25%

Construction 12.5%

Construction services 12.5%

Petroleum products 12.5%

Research and development 12.5%

Solar

Electrical machinery 48%

Glass products 5%

Non-ferrous metals 5%

Structural metal products 7%

Engines, turbines 4%

Construction 16%

Research and development 15%

Wind

Construction 13%

Construction services 13%

Plastic products 12%

Other fabricated metal 12%

General machinery 37%

Lifting equipment 3%

Electrical machinery 3%

Research and development 7%

Geothermal

Research and development 30%

Petroleum products (Drilling) 15%

Construction 45%

Pumps, compressors 10%
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Hydro

Research and development 42.9%

Plaster, cement 18.2%

Construction 18.2%

Engines, turbines 7%

Electrical machinery 14%

Weatherization
Construction 50%

Construction services 50%

Industrial energy 
efficiency

Special machinery 30%

General machinery 10%

Engines, turbines 10%

Research and development 30%

Construction 10%

Construction services 10%

Grid upgrades

Construction 12.5%

Construction services 12.5%

General machinery 25%

Electrical machinery 37.5%

Electricity and Gas 12.5%

Coal
Coal and lignite 50%

Petroleum products 50%

Oil/gas

Other minerals 50%

Petroleum products 10%

Coal and lignite 10%

Transport 30%

“Renewable 
energy” Bioenergy, hydro, wind, solar, geothermal 20% each

“Energy efficiency”

Weatherization 50%

Industrial energy efficiency 25%

Grid upgrades 25%

“Fossil fuels” Coal, oil/gas 50% each
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Republic of Korea
Category I-O industry Weight

Bioenergy

Cropping 25%

Forestry 25%

Building construction and repair 25%

Refined petroleum 12.5%

Research and development 12.5%

Solar

Electrical equipment, and supplies 44%

Glass products 5%

Nonferrous metal ingots and primary nonferrous metal products 5%

Fabricated metal products except machinery and funiture 8%

Electrical equipment, and supplies 7%

Building construction and repair 16%

Research and development 15%

Wind

Building construction and repair 26%

Plastic products 12%

Fabricated metal products except machinery and funiture 12%

Machinery and equipment of general purpose 37%

Other transportation equipment 3%

Electronic components and accessories 3%

Research and development 7%

Geothermal

Research and development 30%

Mining of coal, crude petroleum and natural gas (drilling) 15%

Building construction and repair 45%

Machinery and equipment of general purpose 10%

Hydro

Research and development 42.9%

Cement and concrete products 18.2%

Civil engineering construction 18.2%

Machinery and equipment of general purpose 6.9%

Electrical equipment, and supplies 14%

Weatherization Construction 100%

Industrial energy 
efficiency

Machinery and equipment of general purpose 10%

Machinery and equipment of special purpose 30%

Electrical equipment, and supplies 10%

Building construction and repair 20%

Research and development 30%
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Grid upgrades

Building construction and repair 25%

Machinery and equipment of general purpose 25%

Electronic components and accessories 25%

Household electrical appliances 12.5%

Electrical equipment, and supplies 12.5%

Coal
Coal mining + support activity 52%

Coke and hard-coal 48%

Oil/Gas

Mining of coal, crude petroleum and natural gas 50%

Refined petroleum products 20%

Gas and water supply 30%

“Renewable 
energy” Bioenergy, hydro, wind, solar, geothermal 20% each

“Energy efficiency”

Weatherization 50%

Industrial energy efficiency 25%

Grid upgrades 25%

“Fossil fuels” Coal, oil/gas 50% each

Source: Authors’ own estimates.

Data Sources
Brazil

We obtain the 55-sector level I-O Leontief Inverse Coefficient Matrix for year 2005 from the 
National Statistic Office of Brazil, the IBGE (Instituto Brasilerio de Geografia e Estatistica). These 
I-O tables are the most updated and most detailed available as of 2013.79 We use the 2005 
PNAD (Pesquisa Nacional por Amostra de Domicílios) household survey data and adjust the 
results by the relevant population weights to estimate national-level employment by sectors.80 

Germany

The German I-O data are extracted from the database of the Federal Statistical Office of 
Germany.81 There are 71 sectors in the model, with 2007 as the latest available information at 
such a detailed level. The labor force data used to construct the E/O ratios is extracted from the 
2007 Microcensus data for Germany.82 Adjustments are made, as described above, to match 
the industrial sectors in the survey data with those of the I-O model.

79 IBGE (2013).
80 IBGE (2005).
81 Federal Statistical Office (2011).
82 Federal Statistical Office (2014).
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Indonesia

The Indonesian I-O tables are based on 2008 data and include 66 industrial sectors. Employment 
estimates for Indonesia are derived from the 2008 National Labor Force Survey. Both the I-O 
tables and the labor force survey data are from Statistics Indonesia (Badan Pusat Statistik).83

The Republic of Korea 

The I-O table for the ROK case comes from the Bank of Korea.84 The I-O model used is based on 
2008 data and contains 77 industrial sectors. Employment estimates are based on 2008 data 
from the Household Survey on Employment Established by Region. This data set was chosen to 
provide employment estimates that would correspond to the industrial sectors in the I-O model 
for the same year and which would allow us to generate disaggregated employment estimates 
on the basis of such categories as sex of the employed and employment status.

South Africa

The I-O table we used for the calculations in this report is derived from supply- and use- tables 
developed by Statistics South Africa (as detailed in the 2010 publication, Final Supply and Use 
Table, 2005).85 The I-O matrix based on the supply- and use- tables is comprised of 95 distinct 
sectors. Data from the 2005 South Africa Labor Force Survey (September) were used to produce 
the employment estimates.86

General discussion of differences in employment multipliers 
The employment impacts of energy investments are largely determined by the labor intensity 
of the production process. The labor intensity of an industry can be measured by the 
employment/output ratio, which is the number of workers per $1 million of output (in this report 
we have converted the output of each country in its local currency to output per $1 million). 
Industries such as agriculture and education tend to have high E/O ratios while those such as 
manufacturing have lower ratios. The employment multipliers derived through the I-O model 
are not, however, just the E/O ratio of a given industry, but rather are the result of the E/O 
ratios of all the industries in a supply chain. Thus the employment multiplier for wind power, 
for example, is a function of the labor intensities of steel, hardware, construction, and all the 
industries directly and indirectly involved in wind power production. 

Across the countries in this report, we note the trend that the bioenergy industry tends to have high 
employment multipliers (due mainly to the agricultural component) while renewable energy industries 
with manufactured components tend to have lower employment multipliers. Each country will have 
its unique set of employment multipliers. This is due both to the fact that production processes differ 
across countries (so for example manufacturing metal products is more labor intensive in Brazil than 
in Germany), and also that the size and presence of various industries differ across countries. 

83 Statistics Indonesia (2013) for I-O tables and (2008) for labor force survey.
84 Bank of Korea (2010).
85 Statistics South Africa (2010).
86 Statistics South Africa (2006).
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APPENDIX 4: EMPLOYMENT 
DECOMPOSITIONS BASED ON 
LABOR FORCE SURVEY DATA

Data and Methodology for Employment Decompositions
Aggregate employment numbers were disaggregated into specific subcategories using data 
from household and labor force surveys. The surveys used for each of the five countries are 
listed in Table A4.1. In each case, the survey year was chosen to match the year of the I-O model 
used in the employment analysis. The subcategories of employment included employment by 
sex, employment status (self-employment and wage employment), employment by educational 
attainment, and employment by enterprise size (micro and non-micro enterprises).

Table A4.1: Data sources for employment decomposition estimates

Country Survey

Brazil Pesquisa National por Amostra dos Domicílios (National Household Survey), 2005

Germany Microcensus, 2007

ROK Household Survey on Employment Established by Region, 2008

Indonesia National Labor Force Survey, 2008

South Africa Labour Force Survey, September 2005

 
The industrial sectors used to classify employment in the labor force and household surveys do 
not always correspond to the industrial categories of the corresponding I-O models. Therefore, 
the first step in the analysis is to map the industrial categories in each of the surveys to the 
relevant I-O model. Once this is done, aggregate employment estimates for each of the I-O 
industrial sectors are generated using the labor force or household survey data and the 
relevant population weights to produce national-level estimates. In each case, the employment 
estimates are based on the working age population only (i.e. estimates of child labor and those 
individuals below the bottom age threshold of the working age population are not included).

The aggregate population numbers are disaggregated into the relevant subcategories using 
the relevant variables contained in the household surveys. These subcategories are expressed 
as percentages of the total employment numbers. The definitions of each of the subcategories 
are as follows:

Employment by Sex – total employment of men and women in each of the I-O model’s industrial 
sectors is estimated.

Employment Status – total wage employment and total self-employment in each of the I-O 
model’s industrial sectors is estimated. Wage employment consists of all paid employees. 
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Self-employment consists of own-account workers, employers, and unpaid contributing family 
workers. In the case of Indonesia, employment in more detailed categories is estimated: 
wage employment, unpaid contributing family workers, employers with regular paid workers, 
employers with nonregular/unpaid workers, and own-account workers.

Enterprise Size - Enterprise size estimates are available for Brazil, Germany, and South Africa. 
Micro-enterprises are defined as those with fewer than 5 paid employees (South Africa and 
Germany) or 5 or fewer paid employees (Brazil).

Educational Attainment – Educational attainment is measured as a highest level of education 
completed, based on each country’s own education system. For Brazil, the ROK, Indonesia, 
and South Africa, educational attainment is classified as “less than primary”, “primary”, 
“secondary”, and “tertiary” (i.e. post-secondary). For Germany, categories based on official 
ISCED (International Standard Classification of Education, version of 1997) are used.87 

Within the ISCED, education is broken down into seven educational levels:

Level 0:  Pre-primary education: nursery school

Level 1:  Primary education: primary school

Level 2:    Lower secondary education, including secondary general school, 
intermediate school, grammar school, vocational extension school and pre-
vocational training year.

Level 3:  Upper secondary education, including vocational training.

Level 4:  Post-secondary non-tertiary education.

Level 5:  Undergraduate/masters level tertiary education

Level 6:    Advanced tertiary education: doctor’s degree and post-doctoral lecturing 
qualifications

The educational attainment estimates for Germany use the following three categories:

Low educational attainment: ISCED levels 0, 1 and 2

Medium educational attainment: ISCED levels 3 and 4

High educational attainment: ISCED levels 5 and 6

Once the estimates for each of the subcategories are developed, the proportions that each 
category represents of total employment are used to disaggregate the I-O employment estimates 
into the relevant labor market categories. This is done at the level of each of the I-O industrial 
sectors. For instance, the proportion of men and women employed is determined for each of 
the individual industrial sectors in the I-O model. This allows an I-O analysis to be performed 
87 ISCED tables produced by UNESCO (n.d.).
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for each of the employment subcategories. In effect, this involves calculating employment to 
output ratios for the I-O sectors in which employment refers to a specific subcategory. The 
employment estimates for the composite sectors used in the energy analysis (e.g. wind or 
biofuels) in this report are simply the weighted sum of the employment effects of each of the 
component industrial sectors – disaggregated by the relevant subcategory of employment (e.g. 
employment status, enterprise size, sex, and educational attainment).

Comparing Energy-related Employment Characteristics to 
National Averages
 
The five countries in this report differ in terms of the average earnings from employment. 
Table A4.2 shows average monthly earnings (2012) for the five countries in local currency 
units. Earnings were converted into U.S. dollar equivalents using market exchange rates and a 
purchasing power parity (PPP) conversion factor. The dollar earnings calculated using market 
exchange rates are useful for comparing labor costs internationally (e.g. to compare levels of 
competitiveness). Earnings adjusted for PPP are better for comparing average living standards. 
The PPP adjustment is meant to show how much a given level of earnings can purchase if prices 
were equivalent to those in the U.S. economy. Since domestic prices of goods and services are 
often lower than their equivalent in the U.S., PPP-adjusted earnings tend to be higher than 
dollar earnings calculated using market exchange rates.

Table A4.2: Average monthly earnings in local currency units, 2012

Country  Local currency Dollars (market exchange rate) PPP dollars

Brazil 1,342.7 687.0 882.0

Germany 3,749.0 4,952.0 4,964.0

Indonesia 1,580,882.0 168.0 427.0

ROK 2,566,585.0 2,278.0 3,027.0

South Africa 6,744.0 821.0 1,363.0

Sources: ILOStat: “Mean Nominal Monthly Earnings of Employees,” (Accessed July 2014); The World Bank: World Development Indicators “PPP 
conversion factor, GDP (LCU per international $),” (Accessed July 2014).

 
To get a sense of the relative earnings of jobs in different sectors within a country, we identified 
the industrial sectors that would experience the largest employment gains for a given level 
of spending on clean energy technologies and spending on nuclear, coal, natural gas, and 
petroleum. The average characteristics of workers, jobs, and firms were then determined 
– wage versus self-employment, micro-enterprises versus larger enterprises, and the 
level of educational attainment. Each of the industrial sectors was then compared to the 
national average to determine whether the sector had above- or below-average educational 
attainment, self-employment, or share of microenterprises. We expect wages to be lower in 
micro-enterprises, in many forms of self-employment, and for workers with lower educational 
attainment. Wages increase with educational attainment, size of the firm, and, often, with the 
prevalence of wage employment. Given these broad trends, we can estimate whether we would 
expect wages to be lower than average, average, or higher than average in each of the sectors 
associated with the largest employment effects. This analysis is summarized in Table A4.3.
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Table A4.3: Comparison of energy-related employment characteristics to national averages

Brazil
  Self-employment Microenterprise Education Estimated 

earnings
Clean energy investments

Agriculture & forestry Above average Above average Below average Lower

Construction Above average Above average Below average Lower

Machinery Below average Below average Above average Higher

Metal products Below average Below average Above average Higher

Cement Below average Below average Below average Average

Non-metallic mineral products Below average Below average Below average Average

Trade Above average Above average Above average Lower-Average

Transport services Below average Average Average Average

Business/prof services Below average Below average Above average Higher

Nuclear, coal, petroleum, and natural gas

Mining Below average Average Below average Lower-Average

Utilities Below average Below average Above average Higher

Transport services Below average Average Average Average

Trade Above average Above average Above average Lower-Average

Business/prof services Below average Below average Above average Higher

Germany
Self-Employment Microenterprise Education Estimated 

Earnings
Clean energy investments

Agriculture & forestry Above average Above average Below average Lower

Construction Above average Above average Below average Lower

Machinery Below average Below average Average Average-Higher

Metal products Below average Below average Below average Lower-Average

Non-metallic mineral products Below average Below average Below average Lower-Average

Electrical machinery Below average Below average Average Average-Higher

Research and development Below average Below average Above average Higher

Business services Above average Above average Above average Average-Higher

Nuclear, coal, petroleum, and natural gas

Coal mining Below average Below average Average Average-Higher

Utilities Below average Below average Above average Higher

Auxiliary transportation Below average Below average Average Average-Higher

Business services Above average Above average Above average Average-Higher
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Indonesia

  Self-employment Microenterprise Education Estimated 
earnings

Clean energy investments

Paddy Above average n.a. Below average Lower

Maize Above average n.a. Below average Lower

Other agriculture Above average n.a. Below average Lower

Wood Average n.a. Below average Lower

Construction Below average n.a. Average Average

Other mining Above average n.a. Below average Lower

Rubber Above average n.a. Below average Lower

Machinery Below average n.a. Above average Higher

Non-metallic mineral products Below average n.a. Below average Lower

Road transportation Below average n.a. Average Average

Trade Average n.a. Above average Ave-higher

Nuclear, coal, petroleum, and natural gas

Coal and metal ore mining Below average NA Above average Higher

Crude oil and natural gas 
extraction Below average NA Above average Higher

Utilities Below average NA Above average Higher

Chemical products Below average NA Above average Higher

Road transportation Below average NA Average Average

Auxiliary transportation Below average NA Average Average

Republic of Korea

 Self-Employment Microenterprise Education Estimated 
Earnings

Clean energy investments

Crops Above average NA Below average Lower

Forestry Above average NA Below average Lower

Construction Below average NA Average Average

Mining (energy) Below average NA Average Average

Machinery Below average NA Above average Higher

Metal products Below average NA Average Average

Electrical equipment Below average NA Above average Higher

Wholesale trade Above average NA Average Average

Research and development Below average NA Above average Higher
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Business services Below average NA Above average Higher

Nuclear, coal, petroleum, and natural gas

Mining (energy) Below average NA Average Average

Electric utilities Below average NA Above average Higher

Gas & water Below average NA Above average Higher

Wholesale trade Above average NA Average Average

Land transport Above average NA Average Average

Other business services Below average NA Below average Lower

South Africa

  Self-employment Microenterprise Education Estimated 
earnings

Clean energy investments

Agriculture Above average Above average Below average Lower

Forestry Below average Below average Below average Lower-Average

Construction Below average Below average Below average Lower-Average

Cement Below average Below average Below average Lower-Average

Structural metal products Below average Below average Average Average

General machinery Below average Below average Above average Higher

Specialized machinery Below average Below average Above average Higher

Electrical equipment Below average Below average Above average Higher

Trade Above average Above average Average Lower-Average

Other business services Below average Below average Average Average

Nuclear, coal, petroleum, and natural gas

Coal mining Below average Below average Average Average

Other mining Below average Below average Below average Lower-Average

Petroleum manufacturing Below average Below average Above average Higher

Electricity and gas Below average Below average Above average Higher

Construction Below average Below average Below average Lower-Average

Other business services Below average Below average Average Average

Source: See Tables A4.1 and A4.2.

 
In general, the employment associated with clean energy investments spans a wider range of 
jobs than that associated with nuclear, coal, natural gas, and petroleum. The clean energy jobs 
include relatively low earnings/low credential employment (e.g. in agriculture), average jobs 
(e.g. trade), and higher-end jobs (machinery manufacturing). In contrast, the jobs associated 
with fossil fuel energy sectors tend to be somewhat higher in earnings and credentials, but 
there is a smaller range of jobs created by spending in these areas. Countries differ somewhat 
in these patterns, as can be seen in Table A4.3.
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APPENDIX 5:  
SCALED EMPLOYMENT EFFECTS
 

Tables A5.1-A5.7 present our employment estimates for Brazil, Germany, Indonesia, South 
Africa, and the ROK scaled according to two sets of calculations. Our first set of calculations 
is our estimates of jobs created per $1 million - the figures on which we focus in our Chapter 6 
methodology discussions as well as the actual figures we report in Chapter 7. We then adjust 
these jobs per $1 million figures through scalars based on each country’s average domestic 
wage level relative to U.S. average wage levels. 

More specifically, in the estimates presented in the main text of this report, the job creation 
effects are measured on the basis of number of jobs per $1 million of in spending in the various 
energy-sector activities. This allows for comparison between industries within a country, but 
makes it difficult to draw comparisons across countries. In order to make some cross-country 
comparisons, we scale the results of each country.

The most straightforward way to scale the results for each country based on their own domestic 
wage levels would be to use average wages in each country and index them to one country (in 
this case, we index to the U.S. = 1). However, we were unable to find adequate data on average 
wages for all five countries in our report. We therefore created a scalar that is an average of 
three types of data:

1. Total compensation/All employed persons in labor force. For this, we use World Bank 
World Development Indicator data on total compensation in the economy, as well as the 
unemployment rate and the size of the labor force (to calculate total number employed). 
This produces the index in column 1 of Table 1.

2. Average wages in manufacturing. For this, we use the BLS International Labor Statistics 
“Average Hourly Compensation Costs In Manufacturing, U.S. Dollars, 2011.”88 This 
produces the index in column 2 of Table 1.

3. GDP (in 2005 PPP) per employed person. From the Penn World Table.89 This produces the 
index in column 3 Table 1.

Finally, we average the three indexes and scale our employment results. The results of these 
calculations are then presented in Tables A5.1-A5.7 below. 

88 BLS (2012).
89 Heston, Summers, and Atten (2012).
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Table A5.1: Indexes to employment estimates scaled by domestic wage levels

 
 

(1) (2) (3) (4)

Total 
compensation/

employed persons

Average 
manufacturing 

wages

GDP per employed 
person Average

Brazil 0.30 0.12 0.18 0.20

Germany 0.42 0.99 0.74 0.72

Indonesia 0.05 0.14 0.10 0.10

South Africa 0.35 0.23 0.21 0.27

ROK 0.28 0.40 0.59 0.43

U.S. 1.00 1.00 1.00 1.00

Source: Authors’ own estimates.

Table A5.2: Brazil. Employment effects of alternative energy investments scaled by domestic 
wage levels

  Jobs per $1 million Scaled by domestic wage levels

  Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs

Renewables            

Bioenergy 73.1 8.7 81.8 14.6 1.7 16.4

Hydro 13.9 11.7 25.5 2.8 2.3 5.1

Wind 18.9 10.3 29.2 3.8 2.1 5.8

Solar 14.0 11.7 25.7 2.8 2.3 5.1

Geothermal 17.7 11.1 28.7 3.5 2.2 5.7

Weighted 
average for 
renewables

27.5 10.7 38.2 5.5 2.1 7.6

Energy 
efficiency            

Building 
retrofits 34.2 12.0 46.2 6.8 2.4 9.2

Industrial 
efficiency 13.6 11.6 25.1 2.7 2.3 5.0

Grid upgrades 13.0 13.2 26.2 2.6 2.6 5.2

Weighted 
average for 
efficiency

23.7 12.2 35.9 4.7 2.4 7.2

Fossil fuels            

Coal 10.0 12.3 22.4 2.0 2.5 4.5
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Oil/natural 
gas 10.6 9.3 20.0 2.1 1.9 4.0

Weighted 
average for 
fossil fuels

10.3 10.8 21.2 2.1 2.2 4.2

Source: Authors’ own estimates and Table 7.1.

Table A5.3: Germany. Employment effects of alternative energy investments scaled by 
domestic wage levels

  Jobs per $1 million Scaled by domestic wage levels

  Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs

Renewables            

Bioenergy 8.3 2.7 11.0 6.0 1.9 7.9

Hydro 5.3 3.5 8.8 3.8 2.5 6.3

Wind 5.5 2.9 8.4 4.0 2.1 6.0

Solar 5.7 3.1 8.8 4.1 2.2 6.3

Geothermal 6.3 3.4 9.7 4.5 2.4 7.0

Weighted 
average for 
renewables

6.2 3.1 9.3 4.5 2.2 6.7

Energy 
efficiency            

Building 
retrofits 8.7 3.1 11.8 6.3 2.2 8.5

Industrial 
efficiency 5.5 3.2 8.6 4.0 2.3 6.2

Grid upgrades 5.3 2.8 8.1 3.8 2.0 5.8

Weighted 
average for 
efficiency

7.0 3.1 10.1 5.0 2.2 7.3

Fossil fuels            

Coal 6.1 3.8 10.0 4.4 2.7 7.2

Oil/natural 
gas 2.8 2.5 5.3 2.0 1.8 3.8

Weighted 
average for 
fossil fuels

4.5 3.2 7.6 3.2 2.3 5.5

Source: Authors’ own estimates and Table 7.5.

TECHNICAL APPENDICES



GLOBAL GREEN GROWTH

278

Table A5.4: Indonesia. Employment effects of alternative energy investments scaled by 
domestic wage levels

  Jobs per $1 million Scaled by domestic wage levels

  Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs

Renewables            

Bioenergy 237.0 73.5 310.5 23.7 7.4 31.1

Hydro 29.4 46.5 75.9 2.9 4.7 7.6

Wind 19.6 60.1 79.7 2.0 6.0 8.0

Solar 18.9 44.5 63.4 1.9 4.5 6.3

Geothermal 18.4 46.2 64.7 1.8 4.6 6.5

Weighted 
average for 
renewables

64.7 54.2 118.8 6.5 5.4 11.9

Energy 
efficiency            

Building 
retrofits 36.3 61.7 97.9 3.6 6.2 9.8

Industrial 
efficiency 12.8 46.8 59.6 1.3 4.7 6.0

Grid upgrades 17.0 45.2 62.2 1.7 4.5 6.2

Weighted 
average for 
efficiency

25.6 53.8 79.4 2.6 5.4 7.9

Fossil fuels            

Coal 7.1 33.5 40.6 0.7 3.4 4.1

Oil/natural 
gas 2.7 0.8 3.5 0.3 0.1 0.4

Weighted 
average for 
fossil fuels

4.9 17.1 22.0 0.5 1.7 2.2

Source: Authors’ own estimates and Table 7.9.
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Table A5.5: South Africa: Employment Effects of Alternative Energy Investments Scaled by 
Domestic Wage Levels

  Jobs per $1 million Scaled by domestic wage levels

  Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs

Renewables            

Bioenergy 50.1 28.1 78.2 13.5 7.6 21.1

Hydro 25.4 36.2 61.6 6.9 9.8 16.6

Wind 29.9 30.6 60.5 8.1 8.3 16.3

Solar 19.6 35.9 55.6 5.3 9.7 15.0

Geothermal 31.2 38.2 69.5 8.4 10.3 18.8

Weighted 
average for 
Renewables

31.3 33.8 65.1 8.5 9.1 17.6

Energy 
efficiency            

Building 
retrofits 56.5 37.5 94.0 15.3 10.1 25.4

Industrial 
efficiency 24.6 35.9 60.5 6.6 9.7 16.3

Grid upgrades 24.3 31.6 55.9 6.6 8.5 15.1

Weighted 
average for 
efficiency

40.5 35.6 76.1 10.9 9.6 20.5

Fossil fuels            

Coal 5.3 24.1 29.4 1.4 6.5 7.9

Oil/natural 
gas 11.7 25.1 36.8 3.2 6.8 9.9

Weighted 
average for 
fossil fuels

8.5 24.6 33.1 2.3 6.6 8.9

Source: Authors’ own estimates and Table 7.13.
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Table A5.6: Republic of Korea: Employment effects of alternative energy investments scaled 
by domestic wage levels

  Jobs per $1 million Scaled by domestic wage levels

  Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs
Renewables            

Bioenergy 23.1 4.8 27.9 9.9 2.1 12.0

Hydro 7.5 7.8 15.2 3.2 3.4 6.5

Wind 5.9 6.5 12.4 2.5 2.8 5.3

Solar 4.7 6.3 11.0 2.0 2.7 4.7

Geothermal 7.2 7.2 14.3 3.1 3.1 6.1

Weighted 
average for 
renewables

9.6 6.5 16.2 4.1 2.8 7.0

Energy 
efficiency            

Building 
retrofits 5.9 8.0 13.9 2.5 3.4 6.0

Industrial 
efficiency 5.3 7.1 12.3 2.3 3.1 5.3

Grid upgrades 5.2 6.7 12.0 2.2 2.9 5.2

Weighted 
average for 
efficiency

5.6 7.5 13.0 2.4 3.2 5.6

Fossil fuels            

Coal 10.1 4.0 14.1 4.3 1.7 6.1
Oil/natural 
gas 9.9 3.3 13.1 4.3 1.4 5.6

Weighted 
average for 
fossil fuels

10.0 3.6 13.6 4.3 1.5 5.8

Source: Authors’ own estimates and Table 7.17.

Table A5.7: Summary of aggregate job creation estimates by country, scaled to domestic 
wage levels

 
 

Renewable energy
(weighted average)

Energy efficiency
(weighted average)

Direct jobs Indirect jobs Direct + 
indirect jobs Direct jobs Indirect jobs Direct + 

indirect jobs
Brazil 5.5 2.1 7.6 4.7 2.4 7.2

Germany 4.5 2.2 6.7 5.0 2.2 7.3

Indonesia 6.5 5.4 11.9 2.6 5.4 7.9

South Africa 8.5 9.1 17.6 10.9 9.6 20.5

ROK 4.1 2.8 7.0 2.4 3.2 5.6

Source: Authors’ own estimates.
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APPENDIX 6: ALTERNATIVE 
WEIGHTING PROPORTIONS FOR 
AGGREGATE CLEAN ENERGY 
INVESTMENTS: ROBUSTNESS 
TESTS OF CLEAN ENERGY 
EMPLOYMENT ESTIMATES
 

As noted in Chapter 7 of the main text, we use the following weighting scheme in aggregating 
the specific sectors within each energy-producing industry: With renewable energy, all sectors 
- bioenergy, hydro, wind, solar, and geothermal - are weighted equally. With energy efficiency, 
we have assigned a 50 percent weight to building retrofits, to reflect the centrality of this area of 
energy efficiency. We then weighted the other two energy efficiency sectors, building efficiency 
and electrical grid upgrades, at 25 percent each. Finally, in aggregating investment proportions 
for a “clean energy” sector overall, we then assigned a 67 percent weight to renewable energy 
and a 33 percent weight to energy efficiency.

We recognize that, in any given country setting, the actual size of any given sector in all energy-
producing areas, will depend on the specific conditions in each country. But we assigned this 
one basic weighting scheme in the interests of simplicity and clarity across all of our selected 
countries here. In this appendix, we examine what would be the impact on our employment 
estimates that would result through altering the weights of the five renewable technologies. 
Altering these relative weights imply a change in the country’s investment allocation between 
the various clean energy sectors. We present the results of these exercises in Tables A6.1 and 
A6.2.

Altering Renewable Energy Sector Proportions
In Table A6.1, we first present figures with the original weights used in the main text of the 
report, then present three alternative scenarios. The first alternative prioritizes bioenergy, the 
second prioritizes wind and solar, and the third removes geothermal and gives equal weights 
to the other four renewables. We calculate the total employment (direct plus indirect jobs) per 
$1 million and then calculate the percentage difference from the original estimates presented 
in Chapter 7.
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Table A6.1: Alternative weighting proportions for aggregate renewable energy investment

First set of Robustness Tests for Clean Energy Employment Impacts

a) Proportions of total renewable energy investment (percentage)

Energy Type Equal weights Bioenergy 
prioritized

Wind and solar 
prioritized No geothermal

Bioenergy 20% 40% 10% 25%

Hydro 20% 15% 10% 25%

Wind 20% 15% 35% 25%

Solar 20% 15% 35% 25%

Geothermal 20% 15% 10% 0%

b) Weighted average of direct + indirect jobs per $1 million

Country Equal weights Bioenergy 
prioritized

Wind and solar 
prioritized No geothermal

Brazil 38.2 49.1 32.8 40.6 

Germany 9.3 9.8 9.0 9.3 

Indonesia 118.8 166.8 95.2 132.4 

South Africa 65.1 68.4 61.6 64.0 

ROK 16.2 19.1 13.9 16.6 

c) Percentage difference relative to equal weighting for all renewables

Country Equal weights Bioenergy 
prioritized

Wind and solar 
prioritized No geothermal

Brazil - +28.6% -14.1% +6.2%

Germany - +4.4% -4.0% -1.0%

Indonesia - +40.3% -19.9% +11.4%

South Africa - +5.0% -5.4% -1.7%

ROK - +18.2% -13.8% +2.9%

Sources: See Appendix 2.
Note: Employment multipliers in report are presented in tables 7.1, 7.5, 7.9, 7.13, and 7.17. Estimates presented in this research were calculated using 
equal weights.
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As we see in Table A6.1, the effects of the alternative weighting schemes are minimal in some 
countries and significant in others. In Germany and South Africa, employment estimate changes 
by no more than about 5 percent. The biggest difference in all cases results from increasing the 
bioenergy industry in Indonesia, which results in a 40 percent increase in the employment 
multiplier for renewable energy. This highlights the fact that bioenergy is highly labor-intensive 
in Indonesia. There are significant differences in the overall renewable energy employment 
multipliers in Brazil and the ROK as well when bioenergy is prioritized.

The second scenario, prioritizing wind and solar, again results in a small change in employment 
for Germany and South Africa, but a 14-20 percent reduction in employment for Brazil, Indonesia, 
and the ROK relative to equal weighting framework. Since employment multipliers are actually 
fairly similar for wind, solar, and hydro in most countries (see Tables 7.1, 7.5, 7.9, 7.13, and 7.17), 
the difference in the weighted average renewable estimate is less a function of increasing wind 
and solar and more a function of decreasing bioenergy, which has an outsized impact in most 
countries because of the current level of labor intensity in agricultural production.

Removing geothermal has the least impact, mainly because the geothermal multiplier is 
quite similar to the hydro, wind, and solar multipliers in most cases. However it is useful to 
observe these differences particularly since in some countries, such as Brazil, there are limited 
geothermal resources that are economically feasible to develop. 

The results of these alternative specifications show us that our estimates are in fact quite 
robust to changes in the investment allocation for renewable energy, with the exception of 
changing the importance of bioenergy. The other four renewable industries have fairly similar 
multipliers, and thus if a country chose to change the investment allocation among any of 
these four technologies, the employment results would be similar to those we present in the 
main text of the report. 

Weighting Energy Efficiency and Renewables Equally
In Table A6.2 we show the results of altering the investment allocation between renewable 
energy and energy efficiency. That is, we allocate total clean energy investments in equal 
proportions between renewables and energy efficiency in our alternative framework, as 
opposed to the 67 percent for renewables/33 percent weighting that we utilize in the main text 
of the report.
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Table A6.2: Alternative weighting proportions for aggregate clean energy investments 
between renewables and energy efficiency 

Second set of robustness tests for clean energy employment impacts

Clean energy investment allocation
 
  67 percent renewable energy;  

33 percent energy efficiency
(Assumptions for main text)

50 percent renewable energy;  
50 percent energy efficiency Percentage 

difference
Direct + indirect jobs per $1 million

Brazil 37.4 37.1 -1.0%

Germany 9.6 9.7 1.4%

Indonesia 105.7 99.1 -6.2%

South Africa 68.8 70.6 2.7%

ROK 15.1 14.6 -3.5%

Sources: See Appendix 2.
Note: Employment multipliers in report are presented in tables 7.1, 7.5, 7.9, 7.13, and 7.17.

 
As we see in Table A6.2, the results do not vary significantly, ranging from a 6.2 percent lower 
level of total employment in Indonesia to a 7.2 percent higher level in South Africa. As with the 
case of adjusting within renewables, these results on efficiency and renewables investments 
combined show the robustness of the estimates to changes in the clean energy investment 
allocation. 
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fossil fuel exports as share of GDP, 117-119
fossil fuel sector, employment figures for, 147-151
GDP, clean energy investment as share of, 184-188, 247-249
hydro power, 179, 182
indirect job creation, 147-148
input-output tables, 135-137
labor productivity growth rates, 138-140, 187
low-carbon scenarios, 180-183
micro enterprises, 152
one million dollars in spending, jobs resulting from, 147-149
overall job creation, 147-149
pre-salt oil deposits, 29, 180
present energy mix, 178
public benefit “wire-charge” mechanism,104
retrofits, 148–170 passim
self-employment, 152
summary, 188
transportation sector, 182
unique energy infrastructure, 178-180

Brookes study, 92
Business-as-usual model. see BAU model

C
carbon cap or tax, 71 245
carbon capture and sequestration, 21-22, 39, 54-56, 244

cost in expanding clean renewables, as, 70-74
Romm study, 54-55
stabilization wedge, as, 55



295

carbon dioxide (CO2) emissions. see also greenhouse gas emissions
alternative energy sources, emissions from, 49-51
bioenergy, from, 76-77
biomass, from, 76-77
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emissions, 19
emissions per capita, 34-35
energy consumption, 19, 31-33
private energy efficiency financing in, 104

clean energy industrial categories, 129–130
clean energy policy agenda, 28-29. see also industrial policies
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exports as share of GDP, 117-119
South Africa, 223

fossil fuel sector
Brazil, employment figures for, 147-151
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