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Executive Summary 

Low-carbon energy innovation and implementation is essential to combat climate change, 
promote economic competitiveness, and achieve energy security.  Our study of clean 
energy patenting in the United States is undertaken to elicit fundamental trends and 
implications that can inform public and private innovation investment, resulting in greater 
efficiency of research and development programs. Using U.S. patent data and additional 
patent-relevant data collected from the Internet, we map the landscape of low-carbon 
energy innovation in the United States since 1975.  We isolate 10,603 renewable and 
10,442 traditional energy patents and develop a database that characterizes proxy 
measures for technical and commercial impact, as measured by patent citations and Web 
presence, respectively. Regression models and multivariate simulations are used to 
compare the social, institutional, and geographic drivers of breakthrough clean energy 
innovation.  Results indicate statistically significant effects of social, institutional, and 
geographic variables on technical and commercial impacts of patents and unique 
innovation trends between different energy technologies.  We observe important 
differences between patent citations and Web presence of licensed and unlicensed patents 
indicating the potential utility of using screened Web hits as a measure of commercial 
importance. We offer hypotheses for these revealed differences and suggest a research 
agenda with which to test these hypotheses.  These preliminary findings indicate that 
leveraging empirical insights to better target research expenditures could augment the 
speed and scale of innovation and deployment of clean energy technologies. 
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1 Introduction 

Development and implementation of low-carbon electricity generation technologies are 
important for several reasons.  To name a few, moving away from fossil-based electricity 
generation can help increase energy security [1], promote the diversification of energy 
sources [2], stimulate economic growth [3] and national competitiveness [4], reduce 
pollution [5], and reduce local water demand [6].  Also, large-scale movement away from 
practices that create greenhouse gases will help combat climate change. 

The scientific consensus on the implications of climate change is serious [7, 8].  
Anthropogenic greenhouse gas emissions from energy production and industry sources 
are causing an “unequivocal … warming of the climate system” [9].  This warming trend 
will affect important earth systems that affect global health and prosperity [9, 10].  While 
the case has been made that we “already possess the fundamental scientific, technical, 
and industrial know-how to solve the carbon and climate problem for the next half 
century” [5], the diffusion of low-carbon technologies continues to face significant 
economic, technical, and political obstacles.  Low-carbon technologies can assist in the 
avoidance and reduction of greenhouse gases and other emissions that have been linked 
to climate change.  Sustained energy technology innovation and market development 
policies are essential to overcoming these implementation obstacles and are increasingly 
recognized as a national policy priority for developed and emerging economies alike [11, 
12].1

Innovation relies upon a complex ecosystem of fundamental capabilities, an “industrial 
commons” [13], that serves as a vital source of breakthrough, evolutionary, and 
incremental innovation [14] and is particularly important for the maturation of new 
alternative energy products [15].  However, for the past several decades, observers have 
noted persistent underinvestment in the U.S. energy infrastructure [16], manufacturing 
[17], and research and development innovation bases [18–20].  While there are 
indications that some recent research investments are accelerating the development of 
new technologies [21], several studies indicate insufficient investment [18, 20] to achieve 
the necessary performance for market adoption [22], to support new technology 
development [23], and to support the U.S. leadership position in the global economy [24].  
For all these reasons, current economic leaders recently called for a massive increase in 
public renewable energy research and development spending [23].  

  In this context, the need for rigorous investigation of innovation dynamics of low-
carbon technologies is essential to crafting effective innovation and technology transfer 
policy.   

In recent years, corporate research, development, and deployment dollars have also been 
important for advancement of the renewable energy economy [25].  However, the 
recession over the last two years has further hampered domestic corporate research 
investments [26].  Simultaneously, massive investment in industrial innovative capacity 
is occurring in other countries, with a specific focus on renewable energy innovation [16, 
27].  Because of global competition for market share in alternative energy, innovation in 

                                                 
1 Useful resources to determine national and regional policies are 
http://www.iea.org/textbase/pm/?mode=re and http://www.dsireusa.org/.  

http://www.iea.org/textbase/pm/?mode=re�
http://www.dsireusa.org/�
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energy will be a major contributor to national economic competitiveness in the coming 
decades.  For the United States to establish and maintain a leadership position in the 
energy economy, new investments are needed to effectively and efficiently stimulate, 
commercialize, and deploy new energy innovations within our borders and abroad.  If 
this does not occur, the United States runs a risk of falling short of its ability to 
effectively compete and lead in the global marketplace. 

The potential financial opportunities and the opportunity to lead in the global economy 
have elicited a surge in patenting and investment in clean energy technologies. A leading 
barometer of inventive activity, the Clean Energy Patent Growth Index [28], shows 
continuing increases in clean energy patenting activity, yet we currently lack an 
empirically grounded understanding of how these technologies are invented and enter the 
market. Policy prescriptions that are a mixture of technology and market stimulation 
activities may accelerate invention in one industry yet might be ineffectual or even 
counterproductive in another.  For example, if breakthroughs have historically arisen 
from understanding basic science in one field, and more of these types of innovations are 
required, then the optimal allocation of funds would be to support early-stage research at 
universities, national laboratories, or some other similar organization that has previously 
performed this type of work. On the other hand, if the technology is mature and 
development of breakthroughs needs to be focused on commercialization and the market, 
then applied research in government laboratories (most national research facilities 
increasingly perform a mixture of basic and applied research) or market development 
activities targeted at private firms might be preferred. Alternatively, fundamental science 
and understanding may play a far less important role in the development of new 
technologies.  This could manifest if independent inventors were the sources of technical 
breakthroughs [29] because commercially important innovations could be made without 
sophisticated experimental facilities (e.g., solar thermal versus photovoltaics).  In this 
case, facilitating commercial deployment of technologies may only require helping 
functional breakthroughs get to market by providing small business and entrepreneurship 
loans, incentives for private investment, or other prescriptions to facilitate robust markets 
for technology [30, 31].   

Managing a portfolio of research, development, and deployment investments in the 
constantly and rapidly evolving energy landscape is a great challenge to public and 
private research managers.  The ultimate aim of this paper is to suggest a line of inquiry 
to inform research investment decisions across all clean energy technologies and the 
whole market, ultimately allowing more efficient and effective technology and market 
investments.  This report and its recommendations are preliminary and dependent on the 
new techniques developed as a part of this work; we expect the scope and specificity of 
recommendations to continue to evolve as our methodology improves. 

This analysis began by asking the question, where do breakthrough innovations in energy 
originate?  While certainly omitting some other potential measures of the advancement of 
knowledge, such as publications, this investigation uses the patent record as a proxy for 
innovation [32] and analyzes the sources of breakthrough patents using cutting-edge 
analytical techniques. This analysis begins by determining patenting trends in biofuel, 
geothermal, hydro, solar, and wind technologies and continues by mapping the 
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geographical distribution of patenting activity and illustrating the social networks of each 
field from co-authorship relationships. While observing gross innovation trends in clean 
technologies, we also focus our analysis on the source of commercial and technical 
breakthrough innovations.  In particular, it is important to focus on these valuable 
innovations as unique from bulk patenting trends because most patents are useless or of 
moderate value [33], as opposed to breakthroughs that significantly change the landscape 
of technological or business practice. The impact of inventions is then measured in each 
technology field through two proxy measurements of each patent, technical impact (as 
measured by future citations) [34], and societal and commercial influence (as quantified 
by a novel measure of Web presence introduced in this manuscript).  These dependent 
variables enable estimations of the impact of social, institutional, and geographical 
influences upon the processes of invention for each technology.  In the final section of 
this paper, we provide hypotheses to explain these differences along with a research 
agenda that we hope can inform policy suggestions. 
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2 Analytical Approach 

2.1 Patent Search 
Lai et al. [35] developed a disambiguated database of granted U.S. patents (1975–2008).  
Using a software text search tool (available at the Harvard Dataverse Network Patent 
Project [35]) designed to interrogate the U.S. Patent and Trademark (USPTO) database 
(http://patft.uspto.gov/), patent abstracts were searched using energy keyword search 
terms [18, 20, 36].  We focused our search on technology areas for which search 
ontologies were already developed and therefore omit other possible areas of important 
carbon-reduction innovations, such as carbon capture and sequestration (CCS).  We 
experimented with searching only patent titles and the entire patent body for our 
keywords and found that searching abstracts provided the best mixture of inclusion and 
accuracy.  The resultant lists were cleaned using text analysis functions and by hand to 
ensure their accuracy.  Patents were organized and analyzed by application date to best 
position the patent within the appropriate inventive context [37] because there is a 
variable and increasing time lag between patent application and issuance [38]. 

Our keyword-based search of energy patent titles and abstracts, while effective at 
identifying patents related to energy technologies, favors patents focused on later-stage 
innovations that include mention of the production of energy or fuels.  For example, 
when comparing patents that the U.S. Department of Energy (DOE) funded (which 
presumably are parts of the energy knowledge space) with our keyword-search-driven 
energy patent list, we observe an overlap of less than 3%.  Presumably, this is because the 
DOE funds very early-stage research (such as algal strains or materials chemistry) that 
does not lend itself solely to energy generation or fuel applications and may not 
uniformly include applications to energy in the language of their patent applications.  
However, while limited to later-stage technologies, our energy list is accurate and 
includes only energy patents.  The accuracy of the keyword search methodology was 
robust (average of 3.0% initial patent results were determined to not be energy patents 
after manual inspection) except for nuclear (20.7%) and wind (34.6%) technology areas. 
The errors in nuclear and wind technology areas were by-in-large a result of patents that 
included homographic keywords (e.g., “nuclear” in reference to genetic techniques and 
“turbine” in reference to aeronautic applications, respectively).  However, we 
acknowledge that we are likely omitting many earlier-stage energy technologies because 
of the keyword selection.  We intend to develop a more sophisticated ontology that will 
combine a more inclusive keyword set while assuring accuracy by using patent 
classification codes in combination.   

Because energy technologies draw heavily upon proceeding innovations (e.g., solar 
draws upon semiconductor manufacturing), this improved ontology will allow interesting 
investigations of knowledge flow [39] and the organic development of new technology 
areas [37].  Although this investigation would be interesting, it is beyond the scope of this 
manuscript.  All analyses include only energy patents and not other patents that may have 
been invented by the included authors. This artificial boundary around the energy patents 
creates rigid and deterministic barriers for our investigation and limits the determination 
of the role of the entire inventive career and collaborations therein but is necessary for 
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this first exploratory work.  Follow-on work will provide more comprehensive 
investigation of the historic social variables involved in energy innovation. 

2.2 Patent Interrogation 
Three independent variables were developed to provide insight into the structural origins 
of inventive activity: “Government Interest,” “Assignee Organization Type,” and 
“References to Science.”  Government interest patents are those that the government 
retains a right to, usually because they funded the work.  Patents with government 
interests were identified using a USPTO search tool [35] to search the government 
interest field for identifying terms such as “defense” or “energy.”  The search terms could 
not be as rigid as “Department of Defense” because often the patents cited the “Dept. of 
Defense,” so search terms were developed to be inclusionary. Assignee organization type 
defines what kind of organization patented the invention. Text search algorithms were 
developed to search the patent assignee field for terms (e.g., “university,” “corporation,” 
and “LLC”) that identified the organizational type of the inventing institution.  Assignees 
were classified into five types: Private, University, Government, Independent (i.e., no 
assignee), and Other.  The results of the automated text classification system were then 
manually reviewed for accuracy.  References to science were identified if at least one 
other non-patent reference in the “Other References” field was coded as referencing 
science (these references are mostly to scientific publications [40]).  While the variable 
for references to science was included as a covariate control in our model, its influence 
was not simulated for this investigation.  

Three independent variables were developed to provide insight into the social origins of 
inventive activity: “Team Size,” “Mentorship,” and “Dispersion.”  Team size counted the 
number of inventors listed on the patent application.  Patents with two or more inventors 
were classified as team patents.  This variable was included in our simulation results.  
Mentorship compared the time-in-field of inventors on a patent.  If a difference of 10 
years or greater existed between any two inventors, the patent was classified as arising 
from a mentorship relationship. Time-in-field was derived by subtracting the application 
year of each inventor’s first patent from the application year of the patent in question. 
Dispersion measured the maximum distance between any two inventors on a single 
patent, with a distance greater than 100 miles classified as dispersed.  Distance between 
inventors was calculated using the zip code values corresponding to the Inventor City 
field and so returned values only for patents with two or more U.S. inventors. Mentorship 
and dispersion variables were included as covariate controls but were not simulated for 
this manuscript. We also performed qualitative analysis of U.S. inventor patent co-
authorship with collaborators in other countries for work unrelated to this manuscript and 
demonstrated the ability to map collaboration between the United States and other 
countries.  Further research should include work to understand the impact of non-U.S. 
innovations on domestic innovation, both from the perspective of contribution to the 
collective knowledge as well as more direct individual collaboration effects.   

2.3 Patent Value Definition 
2.3.1 Technical Importance: Citation Analytics 
Citations have a long history in the bibliometric literature and the first application to 
patents identified was by Trajtenberg [34].  Heretofore, patent citations are the dominant 



 6 

means by which differences in patent quality were accessed, especially in large datasets 
where in-depth qualitative evaluation of individual patents is not possible.  Citations to 
prior patents are submitted as part of a new patent application in order to establish “prior 
art.”  The applicant is required to disclose the prior art to the examiner and must then 
establish how their invention goes beyond that prior art.  The examiner often adds 
citations they are aware of, such that half of the citations come, on average, from the 
examiner [41].  While it is not incumbent upon the applicant or the examiner to be 
exhaustive in their citation inclusion, important patents do on average receive more 
citations [34].  Similar to publications [42], inventors (authors) often cite their own work 
in part to show the evolution of knowledge but also, perhaps, to influence their citation 
relevance [43, 44] or Eigenfactor [45], which are used as the basis of tenure and other 
promotion decisions [46].  Therefore, for all analysis herein, patent technology value is 
defined by citations from future patents less inventor self-citations, henceforth denoted 
simply as citations (γ).  Patents that are more highly cited are thought to provide the basis 
for future technical advance and often change the bases of competition between firms and 
industries.  Hence, we might consider highly cited patents as technical breakthroughs.  
Besides measuring the impact of individual patents, citations have also been used to 
measure status and deference [47], knowledge flow [48], and to disambiguate inventor 
careers [35].  They have also been shown to correlate weakly with financial value as 
reported by a survey of patent holders [49].   

While very popular, we recognize that patent citations are an imprecise and flawed 
measure of technological importance and breakthrough [50].  Selecting a like patent set 
for comparison and evaluation of anomalies is essential because it has been observed that 
different industries have different citation patterns and norms [42] (e.g., the 
pharmaceutical industry is a highly collaborative and citing industry).  Also, since 
citations accrue to a patent over a period of several years after it issues, citation counts 
for recent patents are disadvantaged compared to older patents, an effect known 
as “truncation” [42], and this is true with energy patents as well (Figure 1).  In this figure, 
traditional energy (10,442 patents) and renewable energy (10,603 patents) patent sets 
were identified by keyword search; the random baseline includes 10,000 randomly 
selected patents from the entire U.S. patent dataset. 
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Figure 1.  Average patent citations 

 

γ ( ) per patent by year  

 
Citations also do not strictly measure non-technical or commercial impact, and 
correlations with these measures likely reflect some underlying but omitted variable.  In 
short, citations measure the impact of invention on future technological trajectories but 
neglect the commercial and non-technical impact of the technology.  However, as a proxy 
for technological “breakthroughness,” patent citations previously have been used 
effectively [51] and are currently the best measure available for very large datasets [32].  
Given these inherent limitations of citation analysis, this work aims to enrich the measure 
of patent impact via novel proxies. 

2.3.2 Commercial Importance: Web Presence Analytics  
We developed and tested a new quantitative measure of Web presence on several patent 
sets in an attempt to develop a novel proxy measure for quantifying the commercial 
impact of patents.  A count of Web hits (ω) was collected by searching for each patent 
using the search terms “patent <patent number>,” aggregating the resultant URLs,2 and 
applying an evaluative algorithm to screen the root domains.  The evaluative screening 
algorithm compares URLs to a manually created list of "aggregator" website URLs that 
essentially replicate information from the USPTO.  Those URLs were defined as 
aggregator URLs (ωagg), while the remaining were defined as potential signal URLs 
(ωsig

                                                 
2 In computing, a Uniform Resource Locator (URL) specifies where an identified resource is available and 
the mechanism for retrieving it.  The best known example of the use of URLs is for the addresses of Web 
pages on the World Wide Web. Accessed December 31, 2010. 

).  Taken together, these new quantifiable variables for a single or a population of 
patents can be effectively used to estimate commercial importance. 
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2.4 Regressions 
To determine the effect of factors of interest (§2.2) on the commercial and technical 
impact of patents, we estimated long-tailed [33] Poisson models of citation counts and 
Web hits to clean energy patents.  In essence, we determine the statistical likelihood (p 
value) and difference (∆b-a

 

) between two populations (a and b) of patents (Figure 2).  We 
use comprehensive pair-wise comparison of like patents to estimate the differences 
between any two unique factors of interest (e.g., biofuels patents from Colorado versus 
California or biofuels patents from corporate versus university assignees).  An observed 
and statistically relevant simulated difference indicates that there is an important 
divergence (positive or negative) between the populations of patents and that the factor of 
interest is causing some modification in the distribution of the patents’ values and may 
cause or hamper the production of breakthroughs. 

Figure 2.  Stylized schematic of regression comparison of two related populations (a and 
b) of patents or Web hits to identify the significance and simulated difference (∆b-a

 

) 

This model uses robust [52] and quasi-maximum-likelihood [53] estimation. Because 
interactions in non-linear models depend upon the value of other variables in the model 
[54] as well as the covariance matrix of coefficient estimates in the model [55, 56], we do 
not interpret marginal effects alone.  Instead, we simulate the count at specific levels of 
the independent variable of interest, holding all other covariates at a reasonable value, 
such as the mean.3

We evaluated the data in several ways in order to ensure the robustness of results.  First, 
only the patents within each field were considered.  Second, we ran a full model with all 
fields that included field-specific interactions. Third, we checked to see if the results held 
up for a more recent sample of the data.  Finally, we ran models with and without 
controls for yearly fixed effects, such as citation truncation (Figure 1) to remove yearly 
variation in citation patterns, across all fields.  In all models, we coded a focal 

  We assess whether the interaction effects are statistically significantly 
different by determining the probability that the magnitude of each simulated difference 
is different from zero [57, 58].   

                                                 
3 All discussion of “simulated results” in the paper refers to this alternative method of estimating effect 
size. 
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comparison of interest [59] (e.g., between California and Colorado) so that we could 
examine whether the predicted difference between two different levels was statistically 
significant.  If we saw similar results across multiple models of the data, we flagged this 
as an opportunity for investigation and performed a qualitative inspection of the patent 
populations to determine what may be the root causes of the differences.   
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3 Analytical Insights 

This report examines the sources of drivers for renewable energy innovations.  In 
particular, it compares data across clean technology fields to determine the observed 
historical differences between the fields and the opportunities for tailored innovation 
policies and strategies that are specific to the energy technology of interest. It describes 
the revealed sources of energy innovations from a variety of perspectives and then 
identifies the morphologies of innovation in each technology area that have historically 
led to breakthrough technical and commercial innovations.   

3.1 Historical Macro Sources of Clean Energy Inventive Activity 
Starting with the U.S. patent database of over 3.7 million patents, energy patents were 
identified by keyword search of the USPTO database as belonging to one of nine 
technology areas: biofuels, coal, geothermal, hydro, natural gas, nuclear, oil, solar 
(photovoltaics and solar thermal), and wind (Figure 3).  Given the low amount of 
identified patenting in geothermal, hydro, and nuclear technologies, there was little signal 
in the count models, and we have focused our analysis of renewable energy patents in the 
wind, biofuels, and solar renewable technology areas.   

In response to the 1970s oil crisis, the United States rallied the largest investment in 
energy in the last several decades [11] that resulted in a peak in energy patenting in the 
late 1970s (Figure 1 and Figure 3).  Since then, funding steadily declined and reached a 
low point in the mid-1990s.  A second surge has recently occurred likely due to the 
perceived growing economic opportunity and resultant corporate investment, particularly 
in wind and solar technologies (the very recent fall-off in all technologies is likely an 
artifact of application and granting delay at the USPTO [37]).   

 
Figure 3. Annual granted U.S. energy patents (1975–2008) by technology area 
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3.1.1 Geographic Sources 
In the United States, we observe increasing inventive activity in the clean energy sector 
over the last several decades along with increasing geographic concentration (Table 1).  
California is a dominant geography for energy inventive activity across all technology 
areas, especially solar, which is likely based on the concentration of the semiconductor 
and venture capital industries there.  High patenting activity is also observed in Texas, 
Massachusetts, Colorado, and New York.  Pennsylvania shows active patenting across all 
traditional energy technologies, perhaps due to geographic choices in the early oil 
industry.  And not surprisingly, Texas shows strong oil-related patenting activity due to 
the strength of the industry there.  Because of the dominance of California, 
Massachusetts, New York, and Texas and the high levels of activity in Colorado, we 
focus our analysis on breakthroughs in those states.  In the future, we can extend this 
analysis for all states—and similarly, any feature of interest that we identified—and run 
comparisons between them. 
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Table 1.  Domestic Sources by State for Granted U.S. Energy Patents (1975–2008)  
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We observe that bulk energy patenting activity is increasingly coming from non-U.S. 
sources; the U.S. share of issued clean energy patents has been declining by about 1% per 
year since 1975 (Figure 4).  The recent observed increase in percentage of patents granted 
to U.S. institutions is likely a mathematical artifact created by comparing the largely 
declining granted patent trends (Figure 1, Figure 3, and Figure 4). Different countries are 
responsible for the majority of international patenting, but in general we observe 
significant activity from Germany, Japan, Canada, and France.  Interestingly, three major 
sources of clean energy activity—India, China, and Brazil [60, 61]—are not even in the 
top 10 most active patenting countries, although this may be an artifact of their recent 
entry into the field and USPTO granting delays. In keeping with general features of 
foreign patents, foreign energy patents have a lower citation count than their U.S. 
counterparts, presumably because foreign firms build upon their domestic knowledge 
base and do not spend as much time and effort tracking the U.S. intellectual property 
landscape [62].  This makes evaluating their impact using patent citations challenging.  
Future work should include evaluation of a disambiguated global intellectual property 
database as well as publications to truly measure the innovative capacity of the global 
economy. 

 
Figure 4. A comparison of renewable energy patents generated by U.S. and non-U.S. 

inventors 
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3.1.2 Institutional Patenting Trends 
To illustrate the institutional bases of this patenting effort over time, we categorize 
institutional sources of invention as private firms, government agencies, universities, and 
independent inventors (the latter are patents without an assignee and are typically owned 
by the listed inventors) and characterize whence the innovations came (Table 2). 

Table 2. Market Sources of Patents 

 
 
As an example of why this analysis is useful, one might think that wind power is the 
province of mechanically inclined tinkerers in their garage, while biofuels innovations 
come from large corporations because of the technical complexity and experimental 
requirements for discovery. This theory appears to hold true with independent inventors 
responsible for 54.5% of patents in wind and only 22.1% in biofuels.  Hence, independent 
inventors appear to be a substantial source of technology in wind power and firms in 
biofuels. A modest proportion of solar patents (33%) also appear to come from 
independent inventors, which may be counter-intuitive considering the advanced 
materials chemistry required with most photovoltaic technologies.  However, the time 
series of bulk patenting activity also shows high levels of independent invention during 
periods when entrepreneurial semiconductor activity was on the rise (1985–1995), and 
our definition of solar also includes solar thermal technologies that do not require 
advanced laboratories to fabricate.  The technology with the lowest proportion of 
technologies coming from independent inventors is nuclear (11.9%), which may be due 
to (1) the inherent dangers of the technology, (2) the lack of market for new innovations 
because of diminished new construction since the 1980s [63], or (3) the dependence on a 
limited pool of large corporations for essential equipment manufacturing [64]. 

Before the early 1980s in solar, independent inventors and corporations were equally 
dominant patent producers.  Since then, however, corporations have produced the 
majority of patents, with independent inventors contributing only about 25% of patents. 
From 1995–2008, corporations have extended their dominance, responsible for up to 
three quarters of the granted solar patents.  This transition may be due to the transition of 
technology dominance from solar thermal to photovoltaics, which are much more 
experimentally complicated technologies and more the provenance of corporations than 
of independent inventors.  

Wind energy demonstrates a somewhat similar pattern.  Independent inventors 
contributed the most patents in the late 1970s and early 1980s, after which large firms 
supplanted them.  Since then, corporations and independent inventors have contributed 
about equally to the patent pool.  In terms of gross number of patents, universities and 
national laboratories never figure prominently in prolifically producing wind energy 
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patents, although we will demonstrate later that universities may, on average, produce 
more patents with technical breakthroughs. 

Patenting in biofuels has been steadily increasing over the time period, and this increase 
appears to have come mainly from large firms, which maintain a dominant role in 
patenting activity.  This raises the question of whether independent inventors are 
inventing poor quality technology or whether other issues, such as commercialization 
challenges or a lack of social networks that diffuse knowledge, are the cause.  

3.1.3 Funding Sources 
We do not observe broad variability over time in the role of government funding in 
producing inventive activity.  Broadly speaking, in solar, both DOE and the National 
Aeronautics and Space Administration (NASA) historically account for about one-third 
of the patents with government rights associated with them.  A similar trend is observed 
in wind and biofuels.  The Department of Defense (DOD) and National Science 
Foundation (NSF) both play a small role in funding patents (< %5 each).  It would be 
interesting to attempt to correlate government technology funding (e.g., Anadon et al. 
[11]) with patent output.  With sufficient data resolution, bibliometric scholars could 
make some significant evaluations of the effectiveness of funding agencies on stimulating 
innovation and the efficiency of research and development organizations in converting 
public funding into public good [65, 66]. 

3.1.4 Social Features 
We also performed preliminary analysis of social networks of patenting.  Unfortunately, 
our keyword-driven search approach creates artificial boundaries around social networks 
of invention, and for this reason, we do not calculate a unique social influence variable 
for each inventor since their true social influence should be derived from their entire 
inventive career, which is typically much broader than this dataset would indicate (Figure 
5).  In this figure, an NREL innovator is identified (circled), and their energy patents 
identified in our database are mapped (A).  However, that analytical method may 
underestimate the actual network of collaborators that the inventor has previously worked 
with (B) and the total network of their inventive sphere (C). The inventor’s inventive 
career likely has spanned other disciplines besides energy, and identifying formative 
collaborations that lead to energy innovations is essential. Each node is an inventor 
connected by lines to their collaborators (distance is a network plotting artifact and does 
not indicate closeness), colors indicate different patent assignees, and square nodes and 
red lines indicate energy patents versus black lines an circles for non-energy patents. 
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Figure 5. Example collaboration networks for a selected biofuel inventor (dashed circle) 

 
However, we are able to make some preliminary observations about the social features of 
clean energy patenting.  For example, consistent with Wuchty et al. [67], we observe a 
changing collaborative structure of energy innovation over the time period of study with 
the typical number of inventors per patent increasing (Figure 6).  While the linear trends 
are not significantly correlated, in the aggregate, we observe team size growing at 2%–
3% per year since 1975 for all renewable energy and wind patents.   

 
Figure 6.  Average collaboration and inventing team size is increasing in energy 
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Figure 7 shows network dynamics and representations of collaborative networks for all of 
the energy technologies. For each technology area, we show the complete inventive 
network (excluding non-collaborating inventors), the largest component of each network, 
and the network of the most highly cited inventor (node and line coloring is described in 
Figure 5).  As noted above, accurate quantitative descriptions of inventive social 
networks demand a level of technology-specific boundary robustness that is beyond the 
scope of this preliminary examination.  Additionally, inventor-level social influence can 
only be accurately characterized by analyzing the social network signature across the full 
USPTO dataset.  But even though our datasets exhibit artificial social network 
boundaries, preliminary results suggest significant collaborative network differences 
between the technology fields at both the macro and micro levels.  At the macro level, 
biofuels patenting activity is more islanded with few inter-organizational linkages 
connecting network components.  Wind patenting activity sees moderate levels of inter-
organizational linkage, and solar sees by far the highest level of the three technology 
areas.  

 
 

Figure 7. Summary network visualizations for each technology area  

 
As a preliminary test of whether these macro levels of isolation are a genuine network 
feature or an artifact of the bounded dataset, we isolated the immediate inventive 
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networks of the highest cited inventors in each technology-bounded dataset and 
compared these networks to the same inventors’ "second-degree" networks extracted 
from the entire USPTO dataset (Figure 7).  In this way, we can gain a first approximation 
of the full extent of social influence of top inventors (Figure 5).  Comparing the networks 
of the largest components and most highly cited inventors across technology areas 
suggest differences in career connectivity of inventors in the different technology areas 
(Figure 7), hinting at fruitful avenues for future research. Furthermore, we did a 
preliminary comparison of the energy inventive space with that of software and 
pharmaceuticals and observe massive differences in the collaboration networks.  Here we 
focus on energy patents so this thread of inquiry is not continued, but there are lessons to 
be learned from these highly collaborative and innovative industries, which will be the 
focus of future analysis.   

Certainly, the historical sources of innovation, the industrial roots, and the resource 
intensity of these technology areas affect these collaboration norms. Validating these 
disparate network connectivity characteristics and comparing them to other industries 
will require more extensive patent datasets, but we suspect that there are indeed 
substantive differences between the technology fields and important lessons to be 
learned.   

3.2 Sources of Clean Energy Technical and Commercial Breakthroughs 
The count-based methods used in this first analytical effort do not account for patent 
quality, which misses most of the impact of patents, as the distribution of commercial 
value is extremely skewed [68].  It is very difficult to predictively quantify the impact of 
these patents, and this quandary is almost universal for bibliometric scholars of research 
and innovation.  While recent databases of patents and papers [42, 69] have greatly 
facilitated large-scale analyses, they stop short of providing a comprehensive picture of 
the later stages of application and commercialization.   

Breakthrough innovations are fundamentally new technologies or services that change the 
field of practice.  This dramatic shift is relative in comparison to incremental innovations 
that improve existing technologies and relatively useless innovations that do not 
significantly advance the technical or commercial practice. Breakthrough energy 
innovations have been deemed necessary to meaningfully compete with incumbent 
technologies [70], overcome the significant market and political barriers to system 
transformation [71], and play a meaningful role in mitigating climate disruption [72].  At 
the same time, these innovations are likely to be uniquely difficult to achieve from a 
technical perspective [73].  Given the disproportionate impact of breakthroughs on 
technical advance and societal change [33, 34, 42], we now focus on these most 
technically and commercially important patents as measured by citations and Web 
presence, respectively.  As previously mentioned, citations have a long history in the 
bibliometric literature, and we will use them to identify and quantify technical 
breakthroughs.  However, patent citations are a limited measure of technical importance 
and do not necessarily infer commercial relevance or likelihood of deployment.   

Supplementing the use of patent citations, we propose to assess commercial value 
through automated searches of the Web and content analysis of the resulting URLs.  We 
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demonstrate the proof-of-concept herein using energy patents and propose it as a 
candidate tool for general use for the entire patent record.  This variable will add an 
entirely new measure that is systematically calculable across all patents to the toolkits of 
innovation researchers.  This work brings innovation researchers—in clean energy as 
well as other industries—closer to a measure of deployment and commercial impact.   

3.2.1 Web Hit Analysis 
We propose that websites and their content can contain valuable data on the value of 
patents that is supplemental to citation data.  The presence of a description of a patent on 
a non-aggregating website requires qualitative human intervention (i.e., someone needs to 
create original content that elevates the patent's unique Web presence).  This investment 
of time and author’s perceived value of the patent [74] is captured and codified in the 
Web page.  We can then count those Web pages and quantify a perception of unique 
value.   

For example, U.S. Patent 6,852,920, “Nano-architected/assembled solar electricity cell” 
elicits 209 Web hits.  While most of these URLs are patent aggregator results, others 
provide an indication of commercial interest, such as the following4

The company uses copper indium gallium diselenide—which achieves up 
to 19.9% efficiency in laboratory samples

 portion of a 
Wikipedia entry on the firm that owns the patent (italics added): 

[13]—to build their thin film solar 
cells. The company's technology gained early industry recognition with 
the presentation of a Small Times Magazine award at a leading nanotech 
business event in 2005.[14] Nanosolar's solar cells have been verified by 
NREL to be as efficient as 14.6% in 2006[15] and 15.3% in 2009.[6] 
Technical details of Nanosolar's new manufacturing techniques have been 
disclosed in patent applications.[17] Some information about their process 
has become available in a Scientific American article (in German).

Citation number 17 (other citations are Wikipedia references and omitted for brevity) 
cites U.S. Patent 6,852,920 and thus provides the link to evidence that the patent is 
commercially valuable and being actively developed.  This Web page has been “peer 
reviewed” by the open-source community [75]: the page was edited by 147 unique users 
286 times from 2006 to 2010 with the most active contributor providing 12 edits to the 
page.   

[15] 

Conversely, aggregator Web sites generally only replicate the USPTO database 
information, e.g. patent title, abstract, inventors, and application and grant dates, and 
provide no new signal on the value of a patent.  Figure 8 illustrates systematic 
relationships between the number of future prior art citations and the number of Web hits 
for solar patents in 1995 (A) and in 2005 (B).  As can be seen, the relationship between 
citations and Web hits is positive for both aggregator and signal URLs.  In the 1995 
patents (8A) there exists a significant correlation between cites and aggregator URLs  

                                                 
4 Wikipedia. “Nanosolar.” http://en.wikipedia.org/wiki/Nanosolar.  Accessed December 15, 2010. 

http://en.wikipedia.org/wiki/Nanosolar�
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(

 

ω agg  = 4.3±0.1(γ) + 41.1±2.5, p < 0.1), which results from the prior art fields in the 
aggregator websites and provides little new information on the value of the patent even 
though the signal is amplified.   

 
 

Figure 8. Web hits versus future prior art citations from patents in 1995 (A) and 2005 (B) 
solar energy patents 

 
However, signal websites (

 

ω sig = ω −ω agg ) can provide unique information that diverges 
from the predominantly linear correlation observed in aggregator Web hits because their 
Web presence is the result of human intervention and is a measure of market importance 
or commercial interest.  Indeed, the signal Web hits contain significantly more variability 
and do not correlate (

 

ω sig= 1.1±0.2(γ) + 17.4±2.8, p > 0.5).  Interesting outliers can be 
identified when the patents have a significantly higher ratio of signal Web hits to 
citations, such as those patents that are circled by the dotted lines in Figure 8.  These data 
points highlight Web information, which may be unique compared to prior art 
information. Qualitative inspection of the highlighted patents shows that the Web hits 
result from an active description similar to the aforementioned Wikipedia example.  Only 
one of seven highlighted patents has a high signal count that comes from a true error 
wherein the search terms occur in websites; these websites that use the same terms as 
designations for an unrelated company.  These data indicate that while the measure is 
nuanced and requires some manual validation, the signal contained in these Web hits is 
different from the citation data and worth further investigation. 

To extend this initial investigation, we also compared two populations of patents, those 
that were licensed (n = 81) and those that were not (n = 304).  An assumption is that 
licensed patents are of more commercial or market importance than the unlicensed 
patents [76].  We expect that they may have a different signature of Web hits as a 
measure of that commercial impact.  Each patent received a mixture of aggregator (B) 
and signal (A) Web hits (Figure 9), which appeared to have different signatures for 
licensed versus unlicensed patents. 
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Figure 9. Signal (A, C) and aggregator (B, D) Web hits versus future prior art citations from 

patents for licensed and unlicensed National Renewable Energy Laboratory patents 

 
To determine if there is a significant difference between the citation and Web hit 
signatures of the licensed versus unlicensed patents, the patents were analyzed using a 
simple regression that incorporated a dummy variable to indicate if each patent was 
licensed and determined the effect of being licensed on the correlation between citations 
(γ) and Web hits (ω): 

 

ω agg,sig = k1(γ ) + k2(λ) + k3(γλ) + b  
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where λ defines if the patent is licensed (licensed = 1, unlicensed = 0), b is the y-axis 
intercept, and the k’s are constants.  We observe significant differences in the signals of 
these patent populations—calculated results and stylized representations of the data for 
signal and aggregator Web hits results are presented (Figure 9C and 9D, respectively). 
While both scale linearly with patent citations, licensed patents receive more signal Web 
hits per citation than unlicensed patents.  Licensed patents also appear to accumulate 
aggregator Web hits to a greater degree per citation than unlicensed patents.  This 
acceleration of accumulating Web hits in licensed patents may allow this measure to 
appear more quickly than citations because of the delay in patent issuance [42], thus 
representing a harbinger of technical importance.   

Scholars use patent citation analysis to retrospectively assess the patent record to 
understand modes of collaboration, analogous to the work done in this study.  However, 
this Web presence indicator may allow innovators, scholars, and research managers to 
obtain more dynamic and real-time intelligence regarding the commercial value of 
patents.  For example, two unique patents—one commercially used and the other not—
are indiscernible in terms of vintage and number of citations but can exhibit significantly 
different Web presence signatures.  Since the mechanics of Web presence accumulation 
are materially different from those underlying citations, this novel measure provides new 
information on the value of a patent.  Populations of licensed and unlicensed patents are 
known to be different given the ex post information about whether they have generated 
commercial interest, and we demonstrate that the populations exhibit different signatures 
in the aggregator and signal Web hits that are statistically different.  The differences in 
the signal Web hits are the expected differences in the commercial impact of the patents 
while the aggregator Web hits are likely an amplified measure of the technical impact of 
the patents, typically measured by citations.  With further refinement, aggregator Web 
hits may be able to mirror analysis that currently uses citations to predict technical 
impact, while adding signal Web hits as a measure of commercial importance.  
Combination of these metrics may allow for easier and faster assessment of patent 
impact.  While this measure is noisy and requires refinement, these preliminary data 
indicate that Web presence analysis may be able to help determine or predict commercial 
value of patents as distinguished from technical merit.   

In an attempt to extend these observations that signal Web hits are a measure of 
commercial importance, we performed the same Poisson regressions using signal hits that 
we performed on the patent citations to test differences between the factors producing 
commercially relevant, rather than technically relevant, innovations.  

3.3 Breakthrough Sources 
Technology importance (citation based) and commercial importance (Web presence 
based) findings are summarized by technology in the following sections.  Effect sizes are 
expressed in terms of absolute citation or Web hit count differences, and we report both 
observed and simulated variance of like patents.  Observed mean values for the patent 
group of interest (b) are compared against all available control groups (a) for the contrast 
variable of interest.  We report all significant findings (regressed or simulated p < 0.1); 
greater coefficient size and agreement between the two statistical methods indicates 
increased certainty.  For each reported effect, there is an unreported significant finding in 
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the opposite direction (a - b).  For example, a simulated difference of +1.5 for Texas 
biofuels patents over New York patents (Table 5, line 2) denotes that we expect that 
patents from Texas receive 1.5 more citations than patents from New York (i.e., patents 
from Texas are on average 30% more highly cited).  Inversely, New York biofuels 
patents are 24% less highly cited and therefore less technologically important than 
patents from Texas.  Data herein is preliminary and represents a limited set of identified 
energy patents.  However, it does provide interesting evidence of differences between 
technology areas and paths for future exploration in clean energy patenting and 
innovation.  In the following sections, we provide descriptions of the sources of technical 
and commercial breakthrough patents in the solar, wind, and biofuels technology areas. 

3.3.1 Solar  
For technical importance, unassigned solar patents from independent inventors are 
significantly less cited than patents owned by universities, national labs, and corporations 
[29] (Table 3 for all solar data).  Drawing on the previous discussion (§3.1.2.), while 
most solar patents came from corporations compared to independent inventors, it appears 
that those patents from corporations were more technically important.  There likely may 
be some data artifacts here due to the technological differences between photovoltaics 
and solar thermal innovations, but the differences between sources of total patents 
compared to breakthrough patents is still relevant.  Solar patents owned by corporations 
and universities are the most highly cited patents, with an insignificant citation increase 
to university patents.  We do not observe any strong relationship to funding sources.  
Increasing team size correlates with increasing technical breakthroughs.  In terms of 
geographic effects, patents from California and Massachusetts are both highly cited.  The 
effect in California is likely due to the predominance of the semiconductor industry and 
resultant solar-applicable technologies that are heavily concentrated there, [77] while the 
effect in Massachusetts is more likely driven by universities and a few highly innovative 
solar firms (e.g., Konarka and Evergreen Solar).  Colorado patents are less highly cited 
relative to patents from other states.  This observation may be due to the higher 
percentage of solar patents in Colorado originating from independent inventors than in 
the whole solar dataset (46% versus 33%, respectively).  Singh and Fleming [29] have 
previously demonstrated that independent inventors often face challenges in bringing 
their technologies to fruition.  However, the patents from these independent inventors 
enjoy an average citation count higher than the patents from the national laboratories (6.7 
versus 6.1, respectively), indicating that perhaps these patents are more technically 
relevant.   
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Table 3.  Regressed and Simulated Determination of Sources for Solar Technical and 
Commercial Breakthrough Innovation 

 
1 

 

State designations: According to convention except Misc, which is all states excluding CA, MA, NY, TX, 
and CO.  Funding designations: DOE, Department of Energy; NASA, National Aeronautic and Space 
Administration; DOD, Department of Defense; O-Govt, Other government agencies, (e.g., National 
Science Foundation); Other, All patents that did not have government rights identified in the patent.  
Assignee designations: Univ, Academia; Prvt, Corporations; Govt, Government and National Laboratories; 
None, Independent.  Inventor designation: One Inv, a single named inventor; Two Inv, Two named 
inventors; Three+, Three or more named inventors.   

In solar, we generally observe weak signal significance for all findings of commercial 
importance.  Colorado creates more commercially relevant solar patents than all other 
states.  We observe a higher ratio of Web hits to citations from government patents than 
these independent patents (8.9 versus 6.0, respectively), which may be the result of truly 
higher commercial importance.  However, the National Renewable Energy Laboratory 
advertises its available intellectual property on a website, the Energy Innovation Portal,5

                                                 
5 DOE. “Energy Information Portal.” 

 
which may skew the results.  Determining the sources of these differences in signal 
patterns warrants further investigation and again is essential for validating this 
methodology. 

http://techportal.eere.energy.gov/. Accessed February 16, 2011. 

http://techportal.eere.energy.gov/�
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Texas appears to produce more commercially relevant solar patents than most other 
states.  NASA appears to fund commercially important research, while no other 
government agencies do in this dataset.  Universities dominantly produce more 
commercially impactful solar innovations.  Again, increasing team size appears to 
produce more commercially impactful patents. 

These preliminary data hint at a range of potential prescriptive actions that could be taken 
to accelerate the development of breakthrough innovations in solar.  First, public and 
private research could focus on funding teams of researchers rather than individuals.  
Previous research tells us that independent inventors typically produce more failed 
inventions but also can create more disruptive breakthroughs because independent 
innovators do not have collaborators inducing “groupthink” [78, 79].  Despite the 
promise of radical breakthroughs, independent inventors on average produce lower value 
innovations and may hinder efforts to optimize research dollars toward increasing the 
likelihood of major impact.  Alternately, perhaps, independent innovators should 
continue to be allowed to innovate independently but then be provided with better 
mechanisms to support technology commercialization through collaboration with large 
organizations; e.g., the NREL Commercialization Assistance Program (NCAP).6

3.3.2 Wind 

  
Research increasingly shows that breakthrough innovations can be accelerated in 
environmental contexts that maximize cross-pollination and the free flow of ideas [79].  
Our results provide quantitative insight on the effectiveness of particular geographic 
clusters and indicate which of these may be exploited.  The data suggest that California 
may excel at producing important but incremental innovations, while Colorado may 
produce more commercially valuable innovations. While the institutional and social 
sources of these differences merit further investigation, innovation clusters are 
increasingly considered to be path-dependent: accumulated human, physical, and 
financial capital in a particular technology sector predisposes the cluster to future 
innovation in that sector [80, 81].  Building on this observation, universities with 
historically important solar innovations should be looked to as breeding grounds for new 
commercially impactful breakthroughs, while corporations may be better at creating 
technical breakthroughs that incrementally enrich the technological landscape of the 
whole industry.  Finally, on a more qualitative bent requiring further research, it is 
apparent that NASA has effectively sponsored high impact research from both a technical 
and commercial perspective.  Qualitative assessment of their funding priorities, process, 
and management may provide additional insights on how to improve other public 
departments’ efforts.  

DOE- and NASA-funded wind patents are cited more strongly than other government-
funded wind patents (Table 4 for all wind data).  Larger teams are associated with more 
highly cited patents. Texas wind patents are less highly cited than those from other states.  
It appears that this is due to a high percentage of independent inventors (55% versus 49% 
average) that produce uncharacteristically low value patents (average independent Texas 
citations = 4.3 versus average independent citations for all wind patents = 5.9). Wind 

                                                 
6 NREL. “Commercialization Assistance Program,” http://www.nrel.gov/technologytransfer/ncap.html.  
Accessed March 7, 2011. 

http://www.nrel.gov/technologytransfer/ncap.html�
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patents from corporations appear to be the most highly cited.  As previously noted, the 
number of collaborators per patent has been steadily increasing in wind and renewable 
energy [29, 67] (Figure 6), and this trend also appears to positively affect the likelihood 
of breakthroughs in wind.  While we cannot currently extrapolate how multidisciplinary 
the teams are [37], this finding indicates that work to find breakthrough technical 
innovations should be purposefully collaborative. 

For commercial breakthroughs, Colorado produces significantly more commercially 
relevant wind patents.  This effect may be due in part to the presence of the National 
Renewable Energy Laboratory, which has produced 18% of the wind patents in Colorado. 
However, the more commercially impactful wind patents come from independent 
inventors: independent patents receive more than twice as many signal Web hits than the 
average for all wind patents. The wind sector also appears to be unique in that 
independent inventors excel in both technical and commercial impact. 

Table 4. Regressed and Simulated Determination of Sources for Wind Technical and 
Commercial Breakthrough Innovation 

 
1 

 
Contrast Variable definitions: see Table 3. 

3.3.3 Biofuels  
We found that government funding had a significant impact on citations as a measure of 
highly important technical innovations (Table 5 for all biofuels data).  DOE-funded 
research that resulted in biofuels patents was less cited relative to “other” government 
sources.  Similar to DOE, NASA biofuels patents suffered a penalty compared to other 
government funding sources.  Inventor teams did not benefit from greater size in biofuels, 
which runs counter to recent research [29, 67] and our findings in wind; this anomaly 
bears investigation.  This analysis did not observe any strong geographic effect on where 
breakthroughs are coming from, except to note that patents from New York appear to 
have slightly lower citation rates.  More than half of the 40 biofuels patents in the group 
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from New York were invented by two people from Texaco Inc. and were related to fuel 
additives or mixtures.  We cannot rationalize the observed citation penalty from these 
data but suggest that these particular inventions play a role in weighing down the citation 
count in this geography.  Finally, we observe a weakly significant signal for university 
patents being more highly cited than inventions from independent inventors; no other 
significant effects from inventing institutions are observed.   

Table 5.  Regressed and Simulated Determination of Sources for Biofuel Technical and 
Commercial Breakthrough Innovation 

1

  
 Contrast Variable definitions: see Table 3. 

For commercial breakthroughs, the only geographic effect that we observe is that biofuels 
patents from Massachusetts are highly discounted in their commercial impact.  The single 
largest assignee of biofuels patents from Massachusetts is the Massachusetts Institute of 
Technology (MIT) (n = 4) with a single inventor responsible for all these patents.  MIT is 
highly lauded as an innovation and entrepreneurship center, and we observe a strong Web 
hits signal for these patents—in fact, one of these patents is also the most highly cited—
so we expect the observed penalty is not from these patents.  The remaining patents in the 
dataset are for a diverse group of corporations and independent inventors.   

There are some important differences in the intellectual property practices of different 
market players that need to be properly accounted for to improve this measure of Web 
presence.  The observation of a weak Web hit signal from corporations may be the result 
of two related but distinct factors:  (1) Universities must “advertise” their inventions to 
get them licensed and into commercial practice, which could increase their Web hits 
measure, (2) Corporations may purposefully not advertise their innovations and, if they 
are a small company without much outside interest in the blogosphere, may avoid 
detection by the Web community, decreasing their Web hits signal.  Determining which 
of these factors are at play requires further investigation and is essential to the correct use 
of the Web hits measure but is beyond the scope of this paper.  There is a strong but not 
very significant observation that biofuels patents from universities and national 
laboratories are more commercially relevant.  We do not observe any effect of funding or 
team size on the commercial importance of biofuels patents.   
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These empirically derived findings contribute to the dialogue on where and how 
innovations, and energy innovations in particular, originate and how we can create more 
of them.  In particular, it has been widely accepted that collocated communities of 
practice—universities, corporations, and venture capital—are helpful and perhaps 
essential for creating vibrant innovation ecosystems [82, 83].  Indeed, in many industries, 
such as those related to energy including biotechnology (biofuels) and semiconductors 
(solar), the areas of Silicon Valley [84, 85] and Greater Boston [82, 86] are indicated as 
innovation and company hotbeds.  However, these data demonstrate that indentified 
biofuels patents from California are mildly discounted when compared to all other 
patents.  Similarly, the patents from Massachusetts, while perhaps technically important, 
have limited commercial importance.  We realize the limitations of these interpretations 
and hesitate to extend these observations much further without significantly more 
investigation.  However, unique technology development and deployment dynamics exist 
within the energy sector due to the nature of the technologies and markets.  These unique 
differences require us to reevaluate how public and private research, development, and 
deployment capital is used. 

Biofuels is our smallest dataset, with only 938 patents.  Each of the geographical, social, 
and institutional patent sub-populations is proportionally limited, so finding statistically 
significant correlations between the patent populations is more difficult than in the solar 
and wind sets.  Furthermore, the work of prescribing reliable funding strategies becomes 
more tenuous as the sample size decreases, so we will focus our preliminary prescriptive 
efforts on the richest dataset available—solar patents.  However, we expect to be able to 
add prescriptive detail as patent sample sizes increase through improved search methods. 

3.4 Predicting Breakthroughs 
Through a retrospective analysis of energy patents, we have demonstrated the ability to 
ascertain key drivers of breakthrough technical and commercial impact.  The introduction 
of the new measure of screened Web hits as a predictor of commercial value shows 
significant promise as a tool for bibliometric researchers.  The logical next step is to 
determine if this type of analysis can be used predicatively to anticipate breakthrough or 
commercially impactful innovations.  While we are admittedly a long way from being 
able to do this with any assurance of accuracy, we define the following equation in an 
attempt to begin a thread of inquiry wherein scholars and practitioners alike can 
anticipate the value of a patent.  For the licensed and unlicensed NREL patents, we 
calculate the following ratio for each one: 

( ) ( )aggaggsigsig ωωωωκ −+−=  

where κ is the calculated potential impact of the patent, and the average signal or 
aggregator Web hit value is subtracted from the unique patent Web hit value.  If κ for a 
patent is positive, that patent is more likely to be impactful or commercially relevant.  
Indeed, for our two populations of patents, 62% of the licensed patents are correctly 
tagged positive while only 30% of the unlicensed patents are.  Furthermore, comparing 
the average commercial potential for the licensed 

 

κ lic( ) versus unlicensed 

 

κ unlic( ) patents 
by year shows that the relationship predominantly correctly predicts commercial value 
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for the licensed patents within a given year (Figure 10) while accounting for truncation in 
both citations and Web hits.  For each year, the calculated variable generally correctly 
approximates commercial value of the licensed patents higher than the unlicensed 
patents, i.e. 

 

κ lic -

 

κ unlic  > 0.  Similar to citations (Figure 1), Web presence appears to suffer 
a degree of signal truncation, although less severe than citations: patents from the last 
decade average at least 15–20 signal Web hits.  Hence, albeit with significant future 
refinements, we believe that it is possible to construct a predictive relationship using the 
Web hits metric.  Furthermore, this measure may be a complement to citation analysis 
and may appear earlier than those records due to the delay in citation evolution. 

 
Figure 10.  Predictive commercial value of patents using proposed Web hits relationship 
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4 Suggestions for Further Research 

The data herein rely heavily upon a keyword identification of clean energy patents that 
focus on late-stage innovations.  Future work needs to update and make available 
identification and categorization using a more general and flexible ontology comprised of 
a mixture of keyword, patent classification code, and assignee-based identification that is 
simultaneously inclusive of earlier-stage technologies but still accurate. 

Significant work will need to be undertaken to further validate the Web-presence 
methodology.  It would be extremely difficult to do this for the complete patent dataset 
due to the labor intensity of determining whether each patent has demonstrated 
commercial value.  However, future work could include other institutions’ licensed 
versus unlicensed patents as a method of calibrating this method.  Qualitative surveys 
with active inventors will enrich this line of analysis.  Lines of inquiry may include the 
inventor’s qualitative assessment of the patent’s value, the method of commercialization 
(start-up, license to large firm, license to non-profit, not deployed and why), and the level 
of commercial success.  Additional focus on refining data quality around regional, 
organizational, collaborative, and institutional factors, as well as the funding sources for 
the research (particularly if the research was supported by a government grant) would be 
helpful.  Also, further effort should be expended in the automated analysis of the content 
of each type of website.  A variety of schemes could be investigated [87], including 
simple search term counts, dictionary look-up of appropriate terms, and semi-supervised 
machine learning algorithms (at least for the patents with enough hits apply such methods 
[88]). 

We hope that this work will contribute to an open platform for future research by the 
community of science and policy scholars.  The focus in this proposal on clean energy is 
just one slice of this effort.  We hope to build, through the collaborative work of many 
scholars, a series of integrated databases that would enable the tracing of scientific 
investment from grants all the way to commercialization.  Figure 11 illustrates an 
idealized schematic of this goal.  This effort would help accelerate the development of a 
system where most grants could be traced to papers, papers to papers through citations, 
papers to patents through people and citations, and patents to commercial outcomes 
through people (for example, on boards of directors), licensing agreements, and the 
proposed Web-based measure of commercial impact and deployment.  This would be a 
powerful tool for both DOE and the research community to better assess the value and 
success of research and development investments. This capability will be essential as the 
market quickly evolves, research investments increasingly come from the private sector, 
and there is a call for increased transparency on public research expenditures.  Further 
development of this database and the addition of new datasets outside our control through 
an open-research model will enable this tool to be broadly used to investigate innovation, 
commercialization, and deployment for DOE and the public sector in general. 
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Figure 11. An idealized schematic of how future databases might be built and linked in 
order to understand how science investment influences economic outcomes 
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5 Conclusions 

This work has expanded existing methods of patent analysis, introduced novel methods 
of Web presence analysis, and applied both to the empirical investigation of energy 
innovation.  Preliminary results confirm and provide quantification of the notion that 
different energy technology areas exhibit unique patterns of invention and innovation.  
Generally, all energy sectors exhibit relatively isolated collaboration networks compared 
to the rich collaboration networks observed in other sectors (e.g., software and 
pharmaceuticals).  The macro factors shaping these more collaborative industries help us 
understand the industrial, regulatory, and technical features that limit energy innovation 
and result in policy suggestions to drive richer collaboration in energy.   

For energy as a whole, our results confirm the general notion that policymakers should 
encourage multidisciplinary collaboration, university and national laboratory 
commercialization efforts, and tailored support for regional innovation clusters. These 
insights may be extremely helpful in the development and implementation of two new 
initiatives, the Energy Frontier Research Centers and the Energy Innovation Hubs.  These 
initiatives are focused on discrete technology questions with specific innovation targets.  
The analytical tools now at our disposal could help evaluate what are important social, 
sectoral, market, and geographic considerations.  For example, the Hubs are envisioned 
as “multidisciplinary, multi-investigator, multi-institutional integrated research centers … 
each comprise[d of] a large set of investigators spanning science, engineering, and policy 
disciplines focused on a single critical national need identified by the Department [of 
Energy] [89].”  With enough data resolution, the analytical tools described in this work 
can help evaluate the proposed institutional arrangements and identify structures that can 
improve the likelihood of success.   

Importantly, our results indicate that the dynamics of energy innovation are 
heterogeneous across sectors, and the relative benefits of a particular strategy are unlikely 
to translate smoothly from one technology area to another. Policies to foster innovation 
and the deployment of those innovations need to be tailored to each specific technology 
and its revealed pattern of innovation. This capability is important as the DOE embarks 
on a series of experiments to drive innovation across multiple sectors.   

With further work, we expect to increase the size and interconnectedness of the energy 
patents database, achieve higher resolution on social, geographic, and institutional 
variables, and refine the statistical methods of investigating linkages between 
morphologies of invention and the production of breakthroughs.  Together, these 
objectives will constitute a novel analytic and technical foundation for informing 
innovation policymaking. 
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