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Glossary  
 

Active safety systems: Safety systems that are activated by a human operator, an automatic –

computer system or mechanically.  

Capacity factor: The ratio of the actual output of a power plant over a period of time, over the 

potential output of the power plant had it operated at full nameplate capacity, expressed as a 

percentage. 

Fissile material: Material capable of sustaining a chain reaction of nuclear fission. 

Fuel rods: Long, slender, zirconium metal tubes containing pellets of fissionable material, which 

provide fuel for nuclear reactors. 

Generation III+:  Reactors that have evolutionary improvements over currently operating 

reactors such as passive safety systems, increased thermal efficiency and standardized design.  

NRC design certification: Approval of a nuclear power plant design, independent of an 

application to construct or operate a plant. 

Nuclear material proliferation:  The diversion or undeclared production of nuclear material, or 

misuse of technology, by states in order to acquire nuclear weapons or other nuclear explosive 

devices.  

Operating factor: The ratio of the number of hours a unit was on-line to the total number of 

hours in a reference period, expressed as a percentage. It is a measure of the unit time 

availability on the grid and does not depend on the operating power level.   

Passive safety systems:  Safety systems that rely on the laws of nature such as gravity and 

natural circulation, to provide cooling for reactor in case of a power loss.  

Uprate: The process of increasing the maximum power level at which a commercial nuclear 

power plant may operate.  

Particulate matter: A complex mixture of extremely small particles and liquid droplets. It is 

made up of a number of components, including acids (such as nitrates and sulfates), organic 

chemicals, metals, and soil or dust particles.    
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Foreword  
 
This report provides background on the current state of nuclear energy and consists of seven 
sections. Section one provides an overview of nuclear power generation in the U.S. and around 
the world. Section two offers an explanation of how nuclear power reactors are able to 
generate heat from the nuclear fission process, describes the two types of reactors, and 
describes the process of fabricating, using, and disposing of the nuclear fuel, which is a process 
known as the nuclear fuel cycle. Section three gives a description of the nuclear reactors that 
are currently operating both in the U.S. and around the world, a description of the new 
generation of reactors that are currently starting to be built, a description of a new concept for 
nuclear power generation, which is based on small modular reactors, and a brief description of 
the theoretical reactors that are expected to be built in the future. Section four discusses the 
costs of building a nuclear power plant and the economic competitiveness of nuclear power 
compared with other sources of generation. Section five gives a description of the licensing 
process for a nuclear plant and government incentives for the construction of nuclear plants. 
Section six describes the safety mechanisms that the nuclear industry uses to reduce the 
possibility of accidents and operate safely and lists some of the major commercial nuclear 
accidents. Section seven describes the final stage of a nuclear power plant, when it is 
decommissioned at the end of its generating life. A reference list, appearing the end of each 
section provides sources for more detail on the particular subject.   
 
This report was prepared by the State Utility Forecasting Group. The information contained in it 
should not be construed as advocating or reflecting any organization’s views or policy position.  
 
For further information, contact SUFG at: 
 
 State Utility Forecasting Group 
 203 South Martin Jischke Drive 
 Mann Hall, Suite 154 
 West Lafayette, IN 47907-1971 
 Phone: 765-494-4223 
 Email: sufg@ecn.purdue.edu 
 https://www.purdue.edu/dp/energy/SUFG
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Overview 
 
1.1 Current state of nuclear power generation in the U.S. 
 
Currently in the U.S. there are 65 nuclear power plants operating 104 nuclear reactors (see Figure 
1-1).  The last reactor to come into service was the Tennessee Valley Authority's (TVA) Watts Bar 
1 in 1996. There is currently one nuclear reactor under construction that is projected to come 
into service by 2013 which is the Watts Bar 2 reactor in Tennessee [1]. The Watts Bar 2 reactor 
was a partially built reactor whose construction was stopped in 1988 due to a decrease in 
projected power demand [2]. 

 

                 

 
Figure 1-1: Location and years of operation for U.S. commercial power reactors   
(Source: Nuclear Regulatory Commission [15]) 
 
In the U.S. there are only 2 kinds of nuclear reactors in commercial operation, the pressurized 
water reactor (PWR) and the boiling water reactor (BWR). Of the 104 operating reactors 69 are 
PWRs and 35 are BWRs [8]. 
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Nuclear power plants represent 10 percent of the U.S. installed generating capacity yet they 
account for 20 percent of total U.S. electricity generation (see Figure 1-2). This is because nuclear 
power plants in the U.S are used much more intensively with very high capacity factors. The 
capacity factor of a generating unit is defined by the amount of electricity generated over a 
period of time divided by the amount the plant would have generated over that same period of 
time at its maximum rated capacity. Nuclear power plants have capacity factors of over 90 
percent, a rate much higher than any other generation source [3]. Increased operating 
efficiencies and improved maintenance have resulted in increases in capacity factors from 56.3 
percent in 1980, to 66 percent in 1990, to 91.1 percent in 2008 [3]. Another reason for the high 
capacity factors is that nuclear power plants have relative low fuel costs (per unit of energy 
generated) compared to other sources of generation, therefore it makes economic sense to 
operate them at high capacity factors [4]. Since 1990, output from nuclear plants has increased 
from 577 billion to 809 billion kilowatt hours (kWh), a 40 percent increase, despite very little new 
capacity having been installed [3]. 
 

                         Capacity, 2009                                                   Generation, 2009 
                         Total = 1,025,400                                       Total = 3,950 Million  
             Megawatts (MW)             Megawatt hours (MWh) 

 
 
 
Figure 1-2: Capacity and generation of U.S. nuclear power plants (Data Source: EIA [1]) 
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Output from nuclear power plants is expected to increase further due to the implementation of 
power uprates. When the Nuclear Regulatory Commission (NRC)1 issues an operating license, it 
sets a limit on the maximum heat output, or power level, for the reactor core. This limit is set 
because many of the safety analyses are demonstrated for a specific power level. If an operator 
wants to increase the amount of heat output of the reactor core, a power uprate, it can do so 
only after approval of the NRC [5]. As of April 2011 the NRC had approved 139 uprates that 
collectively represent approximately 6,020 MW, roughly equivalent to the capacity of 6 nuclear 
power reactors [5].  

Most of the operating nuclear power reactors were constructed during the late 1970s and 1980s, 
and their 40 year operating licenses were due to expire before 2020.  The NRC has been granting 
20 year operating license extensions to increase the operational life of nuclear reactors to 60 
years. So far 71 reactor license extensions have been granted, 13 reactors have filed for 
extensions, and 19 more reactors are expected to file for extensions. The NRC has approved all of 
the applications for license extensions for which the review has been completed [17]. Only two 
reactors are expected to end their service before 2020; the Kewaunee Power Station in 
Wisconsin is scheduled to be shut down in 2013 and the Oyster Creek Generation station in New 
Jersey is expected to operate until the end 2019 [6, 22]. The Kewaunee plant, which consists of a 
single 556 MW unit, is being decommissioned due a combination of low wholesale electricity 
prices in the region and a lack of economies of scale [22]. The San Onofre Nuclear Generating 
Station in California was shut down in January 2012 due to equipment problems. The NRC has 
placed the plant in an enhanced regulatory status and the future status of the station is unknown 
[23]. 

Since 2007 and as of October 2011 there have been 17 applications to the NRC for new nuclear 
power plants (see Table 1-1) [21]. Several have been suspended by the utilities that submitted 
the applications and two have had completed reviews and have construction well under way 
(Vogtle in Georgia and Summer in South Carolina) [3, 7]. A Combined Operating License (COL) and 
Limited Work Authorization (LWA) were issued for the Vogtle site on February 10, 2012.  A COL 
was issued for the Summer site on March 30, 2012.  

                                                            
1 The NRC is the government agency that formulates policies, regulates, issues licenses and 
adjudicates legal matters in the nuclear power industry.   
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Table 1-1: Nuclear Power Plant Applications (Data source: NRC [21]) 

1.2 Nuclear power around the world  

There are 440 nuclear reactors in commercial operation in 31 countries, providing 14 percent of 
the world’s electricity (see Figure 1-3) [9]. The U.S. generates the largest amount of electricity 
from nuclear power in the world, about one-third of the world’s generation, followed by France 
with approximately half of the U.S. output. However, some other countries are far more 
dependent on nuclear power such as France which relies on nuclear power for about 80 percent 
of its electricity needs (see Figure 1-4) [9].  There are currently 60 reactors under construction in 
15 countries. Construction is particularly significant in China with 27 reactors under construction 
and several more expected in 2012. Russia has 10 reactors under construction, South Korea has 5 
and India has 6 [10].  

Company Site Design Units
Application

status

Southern Nuclear
Operating Company Vogtle,GA AP1000 2 Review Complete
South Carolina
Electric and Gas Summer, SC AP1000 2 Review Complete
Duke Energy Levy County, FL AP1000 2 Under Review 
Duke Energy Lee, SC AP1000 2 Under Review 
Duke Energy Harris, NH AP1000 2 Under Review 
Florida Power 
& Light Turkey Point, FL AP1000 2 Under Review 
TVA Bellafonte, AL AP1000 2 Suspended
Dominion North Anna, VA US APWR 1 Under Review 
Luminant Comanche Peak, TX US APWR 2 Under Review 

STP Nuclear 
Operating Company

South Texas
Project, TX ABWR 2 Under Review 

TVA, TN Clinch river mPower 6 Expected in 2016
Union Electric
Company Callaway, MO US EPR 1 Suspended
Unistar Nuclear
Operating Services Calvert Cliffs, MD US PR 1 Under Review 
Entergy Operations Grand Gulf, MS ESBWR 1 Suspended
Detroit Edison 
Company Fermi, MI ESBWR 1 Under Review 
Entergy Operations River Bend, LA ESBWR 1 Suspended
Unistar Nuclear
Operating Services Nine Mile Point, NY US EPR 1 Under Review 
PPL Bell Bend Bell Bend, PA US EPR 1 Under Review 
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Before the 2011 Fukushima nuclear accident, Japan’s plans were to increase nuclear power’s 
share of electricity from 30 percent to over 40 percent before 2020 [17]. Following the accident 
the Japanese government announced plans for a new energy policy that aimed to reduce Japan’s 
dependency on nuclear energy as much as possible. On September 2012, an advisory Cabinet 
panel endorsed a policy that would see nuclear energy completely phased out sometime in the 
2030s. However, the Japanese Cabinet has not fully committed to the panel’s recommendation. 
The future of Japan’s nuclear energy is still subject to ongoing political debate [20]. Following the 
Fukushima accident all of Japan’s 50 reactors were shut down for safety checks and only two 
were restarted in July 2012 in order to prevent possible power outages [18, 19].  
 
It is expected that the 2011 Fukushima accident will slow construction of new nuclear reactors, 
especially in Europe and Japan, but in other places it is expected to only temporarily delay 
construction due to safety reappraisals [11]. Nonetheless two countries have decided to end their 
nuclear energy programs after the Fukushima accident. Germany plans to shut down all of its 17 
nuclear reactors by 2022, and the Swiss cabinet ruled that replacements for their aging reactors 
would not be built, effectively ending the country’s nuclear program by 2034 [12]. Belgium’s 
Government is also considering ending their nuclear power program but has not agreed to a date 
to end operations. This is not related to the Fukushima accident as Belgium’s government has 
been planning the closures since 2003 [13].  
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Figure 1-3: Number of reactors in operation worldwide (Source: IAEA [14]) 
 

 

 

 

Figure 1-4: Share of nuclear power generation in countries with nuclear power 
(Source: World Nuclear Association [9]) 
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2.   Nuclear Energy 

2.1 How nuclear power plants generate electricity  

Nuclear power plants generate electricity in much the same way that other thermal power plants 
generate electricity. The combustion of a fuel is used to generate heat, the heat is used to create 
steam, and the steam is used to spin turbines, which in turn generate electricity. The difference 
with nuclear power plants is that instead of using the combustion of a fuel to generate heat, they 
use nuclear fission to generate heat. Nuclear fission in simple terms is the splitting of large atoms 
into smaller atoms; this process releases vast amounts of energy.  

2.2 Radioactive decay  

Nuclear fission can occur either naturally or be induced. When it happens naturally the process is 
known as radioactive decay, and it is a common process. The elements in which this process 
occurs naturally are known as radioactive isotopes. These radioactive isotopes are atoms that 
have an unstable nucleus because the nucleus has an excess amount of energy. This instability 
will cause them to spontaneously decay or “split” into two smaller atoms. These newly formed 
atoms will be of different elements from the original radioactive isotope and their nuclei will be 
more stable. It is not possible to predict when a specific radioactive isotope will decay, however 
the average rate at which it will decay is known; this rate is referred to as the “half-life”. Half-life 
refers to the amount of time for a specific quantity of a decaying substance to be reduced by half. 
Half-lives can vary greatly and range from mere seconds to millions of years. One example of 
naturally occurring radioactive decay is that of carbon-14. Cabon-14 occurs naturally in the 
atmosphere, and it is present in living things at a very specific proportion. Carbon-14 is used to 
estimate the age of organic remains by measuring the amount of carbon-14 remaining in a fossil 
and comparing it to the amount that it would have had at the time of death. Since the half-life of 
carbon-14 is known, by knowing how much carbon-14 has decayed, an estimate of how much 
time it would have taken for that to happen can be made.  

2.3 Nuclear reaction 

The other type of nuclear decay called fission is a manmade nuclear reaction. This reaction occurs 
inside the nuclear reactor and generates the heat to produce electricity. A nuclear reactor is the 
steel vessel where the nuclear fuel is contained. A nuclear reaction occurs when an atom is 
induced to split or “fission”, and as a consequence, it releases a large amount of energy. 
Substances that are able to be induced to split are known as fissile materials, and it is out of 
fissile materials that nuclear fuel is made. The nuclear fuel most commonly used for commercial 
nuclear power plants is uranium (denoted by the chemical symbol U). Uranium is a metallic 
chemical element commonly found on the earth’s crust. Naturally occurring uranium comes in 
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three different varieties or isotopes. All uranium isotopes contain 92 protons in their nucleus 
(which is what makes them uranium); the difference between the isotopes is the number of 
neutrons in the nucleus. Naturally occurring uranium include U-234, with 142 neutrons, U-235 
with 143 neutrons and U-238 with 146 neutrons. In nature 99.3 percent of the uranium is U-238, 
0.7 percent is U-235 and less that .01 percent is U-234 [18]. U-235 is the only fissile, naturally 
occurring uranium isotope, and it is therefore the most commonly used nuclear fuel.  

 A nuclear reaction starts with a U-235 atom that is induced to split by shooting a neutron at it. 
When the U-235 atom absorbs the neutron it momentarily becomes a U-236 atom. The nucleus 
of the U-236 atom is relatively unstable, and it quickly breaks up into two different atoms and 
releases two to three free neutrons in the process (see Figure 2-1). The newly formed atoms are 
known as fission products and they will be roughly half the size of the original atom. Fission 
products will vary with each fission reaction and will range from elements with atomic number 30 
(Zinc), to atomic number 71 (lutetium).  

  

 

 

Figure 2-1: Nuclear fission (Source: atomicarchive.com [22]) 

The free neutrons that are released are very important for the continuation of the nuclear 
reaction or what is known as a nuclear chain reaction. A chain reaction occurs when the neutrons 
released by the fission of a U-235 atom are absorbed by other U-235 atoms, causing further 
fission reactions, which in turn release more neutrons and cause further fission reactions (see 
Figure 2-2).   
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Figure 2-2: Nuclear chain reaction (Source: atomicarchive.com [22]) 

Even though two to three neutrons are released by every fission reaction, not all of them will 
cause another reaction. If it happens to be the case that the rate at which the neutrons are being 
lost is greater than the rate at which they are being released, the reaction will not be self-
sustaining. When these two rates are equal and the reaction becomes self-sustaining, the 
reaction is said to have reached criticality [20].   

A situation where the rate at which neutrons are being released is greater than the rate at which 
they are being lost can also occur. This could lead to an uncontrolled reaction. In order for the 
reaction to become self-sustained at a leveled point, only one neutron of the two to three 
released must be allowed to hit another U-235 atom. To accomplish this, control rods, made of 
neutron absorbing materials, are used to control the rate of the reaction, or to halt it, by inserting 
or removing them from the reactor core [1]. When the control rods are inserted, they absorb 
more neutrons, so fewer neutrons are available for absorption into the fuel; thus, there are fewer 
reactions and the power generated is reduced. Similarly, withdrawing the control rods increases 
the power output. There are two types of nuclear reactors, thermal or slow neutron reactors and 
fast reactors.  
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2.4 Thermal reactors 

Thermal reactors use slow neutrons to sustain the nuclear chain reaction. The speed at which the 
neutrons are released by the fission reaction is too fast to be absorbed by other U-235 atoms. In 
order to slow down the neutrons the fuel is contained within a “moderator” so that a continuous 
chain reaction can be maintained. The moderator is usually water, but heavy water (water whose 
hydrogen atoms contain both a proton and a neutron as opposed to just one proton) and 
graphite are also used. In addition to serving as the moderator, water in thermal reactors also 
serves as the coolant. Water inside the reactor is constantly flowing to both cool the reactor and 
capture the thermal energy to produce electricity. Both thermal and fast reactors must constantly 
be cooled, even when shutdown, because of the heat generated by the radioactive decay of the 
fission products. Thermal reactors are the ones that are currently being used for commercial 
operations since the technology to make fast reactors economically viable is not yet available.  

2.5 Fast reactors  

As opposed to thermal reactors, fast reactors can sustain a nuclear chain reaction using the fast 
neutrons, thus they have no need for a moderator. However in order to maintain the nuclear 
chain reaction using fast neutrons a fuel that is richer in fissile materials is needed. Fast reactors 
can use either a fuel that has a higher concentration of U- 235 (20 percent or higher as opposed 
to 3-5 percent for thermal reactors) or plutonium-239 (Pu-239). Pu-239 is more suitable for fast 
reactors because it releases 25 percent more neutrons per fission than U-235. Even though there 
is less neutron absorption because of the higher speed of the neutrons, this is compensated by 
the higher amount of neutrons released and the nuclear reaction is able to be maintained. Since 
fast reactors depend on fast neutrons, in order to avoid any type of moderation, a liquid metal 
(usually sodium) is used as the coolant instead of water. A liquid metal is also a more efficient 
medium for transferring heat [19].   

Pu-239 is one of the three isotopes that can be used as nuclear fuel (U-233 is the other one). Pu-
239 is not a naturally occurring isotope but rather it is created in either special plutonium 
producing reactors or as a byproduct of thermal reactors. Plutonium producing reactors use the 
fission of U-235 to convert U-238 into Pu-239. This occurs when one of the neutrons given off by 
the fission of U-235 is absorbed by an atom of U-238 and it becomes a Pu-239 atom. In 
commercial thermal reactors this same process occurs with the U-238 in the nuclear fuel but at a 
much lower level. Fast reactors are also used to produce or “breed” Pu-239 by placing a “fertile 
blanket” of depleted U-238 around the core. The U-238 absorbs some of the free neutrons given 
off by the Pu-239, and it eventually turns into Pu-239. This blanket is then removed from the 
reactor and processed to make more fuel for either the reactor itself, or for other fast reactors.  
Fast reactors that are able to produce (breed) more Pu-239 than they consume are known as Fast 
Breeder Reactors (FBRs) [19].  
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Because fast reactors use Pu-239 as their main fuel they are being considered as a means of 
dealing with the nuclear waste generated by thermal reactors. When spent nuclear fuel is 
removed from thermal reactors about one percent is Pu-239. Since Pu-239 is highly radioactive 
and has a half-life of 24,000 years [21], storing it safely is very expensive. The idea is to remove 
the Pu-239 from the spent fuel and use it as fuel for fast reactors. This is seen as beneficial not 
only because it gets rid of the most hazardous waste, but it also lowers the cost of storing the 
remaining fuel and reduces the possibility of nuclear materials proliferation [19].  

2.6 Nuclear fuel cycle 

Nuclear power plants use uranium as fuel to generate electricity. Uranium is a mildly radioactive 
metal that is very common on the earth’s crust. Before it can be used as nuclear fuel uranium 
must be extensively processed. The various stages that uranium goes through in the process of 
generating electricity are known as the nuclear fuel cycle. At the front end of the cycle are the 
activities related to the production of nuclear fuel; the service period is when the nuclear fuel is 
being used to generate electricity; and the back end of the cycle refers to the storage, 
reprocessing and final disposition of the spent nuclear fuel.  

2.7 Front end 

• Mining:  Uranium mining is done with either traditional mining techniques, such as 
underground or open pit, or more commonly using a mining technique known as in situ 
leaching (ISL). ISL involves circulating oxygenated ground water through the porous ore 
deposit; dissolving the uranium oxide and bringing it to the surface (see Figure 2-3). The 
solution is then extracted and taken to a mill for further processing [1]. In 2010, U.S. 
operators of civilian nuclear reactors purchased the equivalent of 47 million pounds of 
uranium, most of which was imported. Eight percent came from the U.S.; 41 percent came 
from Kazakhstan, Russia and Uzbekistan; 37 percent came from Australia and Canada; and 
14 percent came from Namibia, Niger and other countries [2]. While the U.S. has 
sufficient uranium resources to increase domestic production, deposits in other countries 
are larger and cheaper to mine. 

 
 
 



14 

 
                                                           
Figure 2-3: Mining via in situ leaching (Source: Nuclear Regulatory Commission [12]) 
 

• Milling:  The ore or solution is then taken to a mill to be processed into uranium oxide 
concentrate, known as ‘yellow cake’ (U3O8) (see Figure 2-4), which contains more than 80 
percent uranium. Yellow cake is packed into 200- liter drums and shipped to a conversion 
facility. The milling process creates a waste byproduct known as uranium tailings, which is 
the residual ore material. These tailings contain radium, which decays into the radioactive 
gas radon, and other toxic materials such as heavy metals [3].  Tailings pose a potential 
safety and public health hazard, and for that reason they are isolated in engineered 
facilities near the mine (usually the open pit) [1].    

 
 

 
 
Figure 2-4: Uranium oxide concentrate (U3O8) (Source: World nuclear news [13]) 
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• Conversion:   At the conversion facility yellow cake uranium is turned into uranium 
hexafluoride (UF6) gas. This is necessary in order to enrich the uranium. During the 
conversion process impurities are removed and the uranium is combined with fluorine to 
produce the UF6 gas. The gas is then pressurized, cooled to a liquid, and drained into 14-
ton cylinders where it solidifies. The cylinder is then shipped to an enrichment facility. 
Currently in the U.S. the only conversion facility is in Metropolis, Illinois [4].   

 

• Enrichment:  The UF6 gas coming from the conversion facilities is known as natural UF6 

because it still contains the natural concentration of uranium isotopes, which is about 
99.27 percent uranium-238 (U-238), 0.72 percent uranium-235 (U-235) and less than .01 
percent uranium-234 (U-234). The fuel for most nuclear reactors must have a higher 
concentration of the fissionable U-235 in order to start and sustain a nuclear reaction.2 
The UF6 gas can be enriched by three different processes: gaseous diffusion, gas 
centrifuge, or laser separation. The final product is an ‘enriched’ UF6 gas with a U-235 
concentration of 4 to 5 percent, which is stored in a canister, allowed to cool and solidify, 
and shipped to a fuel fabrication facility. The only operating fuel enrichment facility in the 
U.S. is in Paducah, Kentucky; however, two gas centrifuge enrichment facilities are 
currently under construction [5].     

 
Fuel fabrication:   The fuel fabrication facilities receive the UF6 gas in solid form; they then heat it 
to a gaseous form, and chemically process it to turn it into uranium dioxide (UO2) powder. The 
powder is then compressed into pellets and sintered to a ceramic form. Sintering is the process of 
bonding metal particles by using heat and pressure. The pellets are then stacked and sealed into 
long zirconium alloy tubes about 1 centimeter in diameter to form a fuel rod. Fuel rods are then 
bundled into fuel assemblies, which depending on the reactor design, can have between 179 and 
264 fuel rods per fuel assembly (see Figure 2-5). A typical reactor core can hold 121 to 193 fuel 
assemblies. The U.S currently has five fuel fabrication facilities [6, 7].          
 

                                                            
2 Heavy water reactors are capable of sustaining reactions at naturally occurring concentrations of U-235.  See 
section 3 for a discussion of reactors types, including heavy water reactors. 
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Figure 2-5: Fuel assembly (Source: Nuclear Fuel Industries, Ltd [14]) 
 
2.8 Service period 
 
The fuel assemblies are shipped by truck to the reactor sites where they are stored in “fresh fuel” 
storage bins until needed by the reactor operator. At this stage the fuel assemblies are only 
mildly radioactive; all the radiation is contained within the tubes. When needed for service the 
fuel assemblies are inserted into the reactor core which is itself a cylindrical arrangement of fuel 
bundles. Just by placing the fuel bundles next to other fuel bundles and adding water a nuclear 
reaction is initiated. Typically about one third of the fuel assemblies (40 to 90) in a reactor core 
are replaced every 12 to 24 months [7].  

 
2.9 Back end 
 

• Interim storage:   Fuel assemblies will spend 18 to 36 months inside the reactor core, after 
which they are removed from the reactor and stored in special pools in the reactor 
building (see Figure 2-6). Inside the reactor the fuel assemblies become highly radioactive, 
and even though the fission process has stopped they continue to emit heat from the 
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radioactive elements. It is necessary to store them in pools both to cool the fuel and 
protect the workers from any radiation. The fuel assemblies must be stored at a depth of 
at least 20 feet to provide sufficient radiation protection. The fuel assemblies will typically 
be stored in the spent fuel pools for about five years to allow them to cool. When they 
have cooled enough, the fuel assemblies are moved to a dry cask for further on-site 
storage (see Figure 2-7). Each cask is designed to hold from 24 to 72 spent fuel 
assemblies. When the fuel assemblies are placed in the casks the air and water are 
removed, they are filled with inert gas, and sealed shut by either welding or bolting [1, 7, 
8, and 9].  

 
 

 
 
 
 

Figure 2-6: Spent fuel storage pool (Source: International Atomic Energy Agency [15]) 
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Figure 2-7: Dry cask storage (Source: NRC [16]) 
 

• Reprocessing:   Not all of the U-235 uranium in the fuel rods is consumed in the nuclear 
reactor. The spent fuel rods contain approximately 1 percent U-235 and 1 percent 
plutonium. These can be reprocessed in order to extract the fissionable materials to be 
used in the production of fresh fuel assemblies.  Nuclear fuel reprocessing is done in some 
countries such as France. In the past there has been some nuclear fuel reprocessing in the 
U.S.; however it was banned in 1977 in compliance with nuclear non-proliferation policy. 
There were concerns that the plutonium extracted from the spent fuel could fall into the 
wrong hands and be used to manufacture nuclear bombs [10]. 

  
Reprocessing activities determine if there is an ‘open’ or ‘closed’ fuel cycle. In an open or 
‘once-through’ fuel cycle the spent nuclear fuel is not reprocessed. If the fuel is 
reprocessed and any part of it is reused in a reactor, the cycle is referred to as a closed 
fuel cycle [15].    

• Final disposal:   The final step of the fuel cycle would be the disposal of the spent fuel 
assemblies and any remaining high-level nuclear waste in a permanent underground 
repository. The U.S. does not currently have such a repository, and there is much 
controversy around the issue. The Nuclear Waste Policy Act of 1982 established that the 
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federal government was to take responsibility of all used civilian nuclear fuel and store it 
at two permanent repositories beginning in 1998. The repositories were to be paid for by 
a 0.1 cent/kWh fee charged to the utilities that would go into the Nuclear Waste Fund. 
The Yucca Mountain site in Nevada was chosen in 1997, and a construction license was 
submitted to the NRC in 2008. Some construction was done at the site, but in 2009 the 
project was defunded by the Obama administration on grounds that there might be 
better alternatives to the long-term disposal of nuclear fuel. By the beginning of 2010, 
utilities had contributed over $31 billion (including interest) to the Nuclear Waste Fund, of 
which $24 billion remain after the money that was spent on the Yucca Mountain project. 
Storage alternatives are being considered, but there is still no long-term solution [10]. 
Nuclear power plant operators are resorting to building Independent Spent Fuel Storage 
Installations (ISFSI) at their sites and keeping the spent fuel there until a permanent 
repository is developed (see Figure 2-8). Through the “waste confidence decision,” which 
is a generic action through which the NRC expresses that it found reasonable assurance 
that the waste can be stored safely and with minimal environmental impacts, the NRC has 
determined that the fuel can be stored safely for 60 years beyond the reactor’s licensed 
life in these facilities, which are licensed separately from the nuclear power plant. Taking 
into account 40 years of initial reactor operation and 20 years of extended operation, the 
fuel can be stored for up to 120 years. However, the NRC licenses or certifies the dry cask 
for 20 years with possible renewals for up to 40 years. This means that dry casks are 
inspected to ensure adequate management as they age [11].  

 

 

Figure 2-8: Dry storage at the Connecticut Yankee site (Source: Connecticut Yankee [17]) 
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3. Nuclear Reactors   

3.1 Technologies currently being used in the U.S. 

Currently in the U.S. there are only 2 types of commercial reactors in operation, the pressurized 
water reactor (PWR) and the boiling water reactor (BWR). These two types of reactors fall into 
the broader category of light water reactors (LWRs). LWRs use conventional water as both a 
moderator and a coolant [1]. 

• The pressurized water reactor:   The pressurized water reactor has two separate coolant 
loops that never mix (see Figure 3-1). The primary coolant loop contains pressurized water 
that runs through the reactor core and carries the heat to the steam generator. Inside the 
steam generator heat is exchanged between the two separate loops; steam is created and 
carried through the second coolant loop to the main turbine generator, generating 
electricity.  The exhaust is taken to a condenser where it condenses back to water and is 
pumped back into the steam generator. The primary coolant returns to the reactor to 
complete the cycle [2].     

 

 

 

 

Figure 3-1: Pressurized water reactor (Source: World Nuclear Association [20]) 
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• The boiling water reactor:   The boiling water reactor uses only a single coolant loop (see 
Figure 3-2). Inside the reactor core heat is generated, coolant is pumped into the bottom 
of the reactor, and it absorbs heat as it moves upward through the reactor core. A steam-
water mixture is created, and it leaves the top of the core where it enters a two stage 
moisture separation process where water droplets are removed, and steam is allowed to 
enter the steam line. The steam line then directs the steam to the turbines where 
electricity is generated. The exhaust steam is directed to a condenser where it is 
condensed back into water, and it is pumped through the system again. BWRs are 
typically larger than PWRs and can hold between 370 to 800 fuel assemblies, compared to 
150 to 200 in PWRs [3]. 

 

 

Figure 3-2: Boling water reactor (Source: University of Wyoming GeoWeb [21]) 

3.2 Technologies currently being used around the world  

In addition to PWRs and BWRs there are other nuclear power technologies in commercial 
operation elsewhere including: the CANDU reactor, the advanced gas cooled reactor, and the 
RBMK (Reaktor Bolshoy Moshchnosty Kanalny) reactor.  

• The pressurized heavy water reactor (PHWR) or “CANDU” reactor (short for Canada 
deuterium uranium):   This technology was developed in Canada, and there are 44 units in 
operation [4].  The CANDU Reactor operates much like a PWR, but instead of using 
conventional “light” water as a moderator, it uses heavy water (known as deuterium 
oxide) as a moderator. Deuterium is a form of hydrogen where the nucleus contains both 
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a proton and a neutron as opposed to the more common form which only has a single 
proton. The moderator is used to slow down neutrons so that a sustained nuclear chain 
reaction can occur; with conventional “light” water many of the neutrons are lost as they 
are absorbed by the hydrogen atoms in the water molecules. Since heavy water already 
contains an extra neutron in the hydrogen nuclei, lower neutron absorption occurs, 
allowing more free neutrons to create fission reactions. With fewer neutrons being lost to 
absorption, CANDU reactors can use natural uranium as fuel (which contains 0.07 percent 
U-235), instead of enriched uranium (which contains 2 percent to 4 percent U-235) that is 
used by PWRs and BWRs. This translates into cost savings because the uranium 
enrichment process can be very expensive [5]. CANDU reactors can also use other low-
fissile content fuel, such as spent fuel from light water reactors [6].  

• The advanced gas cooled reactor (AGR):   Developed in the United Kingdom, there are 
currently 14 AGR units operating there, and all are expected to end operations by the end 
of 2023 [7]. AGRs use graphite as a moderator and carbon dioxide as the coolant. The 
carbon dioxide circulates through the reactor core and then past steam generator tubes 
outside of the reactor but inside the concrete pressure vessel (see Figure 3-3). The steam 
is then directed to a turbine generator [8].  

 

    Figure 3-3: Advanced gas cooled reactor (Source: World Nuclear Association [8]) 

• The light water graphite-moderated reactor or reactor Bolshoy Moshchnosty Kanalny 
(RBMK):   Developed in the Soviet Union, this design is a type of pressurized water reactor 
that uses water as the coolant and graphite as the moderator. Each fuel assembly is 
located in its own pressure tube or channel, and each channel is individually cooled by 
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water. It was an RBMK reactor that was involved in the Chernobyl accident; however 
major modifications were made to the reactors to address the safety issues.3 Currently 
there are 11 RBMK reactors in operation in Russia [9].  

3.3 New nuclear technology 

Nuclear reactors that are currently being built and nuclear reactors that are expected to be 
deployed in the short to medium-term are part of a new generation of nuclear reactors known as 
Generation III+ reactors. These reactors are based on improved designs from currently operating 
reactors and are characterized by: 

 Standardized designs intended to expedite the licensing process, reduce capital and 
constructions costs, and reduce construction time;                   

 Simpler designs that make them easier to operate and less vulnerable to operational 
interruptions;  

 Digital instrumentation and controls that allow for more accurate and reliable plant 
monitoring, control and diagnostics; 

 Passive safety systems, which rely on gravity, natural circulation and compressed gases to 
keep the core and containment structure from overheating in case of shutdown (these 
differ from active safety systems which rely on pumps and diesel generators in the event 
power is lost); and    

 Expected operational life of 60 years. 

Some of the most prominent Generation III+ designs are the Advanced Boiling Water Reactor, the 
Advanced Passive 1000 reactor, the Economic Simplified Boiling Water Reactor, the U.S. 
Evolutionary Power Reactor, and the Mitsubishi Advanced Pressurized Water Reactor.  A number 
of the Generation III+ designs incorporate the concept of modularity, which allows for smaller 
sized reactors that can be manufactured off-site. 

• The advanced boiling water reactor (ABWR):   The ABWR is offered by GE Hitachi Nuclear 
Energy and Toshiba. The ABWR is a Generation III+ evolutionary reactor based on the 
BWR. It offers improved electronics; computer, turbine, and fuel technology (see Figure 
3-4). Enhancements include the use of internal recirculation pumps, microprocessor-
based digital control and logic systems, and digital safety systems. Safety enhancements 
include protection against over pressurizing the containment vessel, passive core flooding 

                                                            
3 For instance, the Chernobyl reactor did not have a containment structure like other reactor designs have.  See 
section 6 for a more complete discussion of reactor safety and accidents. 



26 

capability, three emergency diesel generators, and a combustion turbine as an alternative 
emergency power source [10]. Vendor figures for the power output are between 1,350 
and 1,460 MW with a capacity factor greater than 90 percent [11].   

 There are currently 4 ABWR reactors in operation in Japan and several others under 
construction in Japan4 and Taiwan. They are the first Generation III+ reactors to be built 
with the first one completed in 1996. There have been reliability issues with the operating 
ABWRs related to technical problems that have caused repeated shutdowns. As a result, 
operating and capacity factors have been rather low (see Table 3-1).     

The ABWR was issued a design certification by the NRC, meaning that the NRC has 
approved the reactor design. This is done to help expedite the construction of new 
nuclear power plants.  

 

 

Table 3-1: Japan’s ABWRs’ operating and capacity factors [12]. 

 

                                                            
4 Construction in Japan has been temporarily halted in the wake of the Fukushima incident, but permission to 
construct has not been withdrawn. 

Reactor
Commercial 

operation date
Operating 
factor (%)

Capacity 
factor (%)

KASHIWAZAKI KARIWA-6 Nov, 1996 72.1 72.8
KASHIWAZAKI KARIWA-7 Jul, 1997 68.5 68.2
SHIKA-2 Mar, 2006 44.9 44.0
HAMAOKA-5 Jan, 2005 43.6 44.6
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Figure 3-4: Advanced boiling water reactor (Source: University of Notre Dame [22]) 

 

• The advanced passive (AP) 1000:   The AP 1000 offered by Westinghouse Electric 
Company is an evolutionary Generation III+ design based on the PWR design.  It offers 
modular construction to reduce costs and construction time; passive safety systems that 
allow the plant to be passively cooled for 72 hours without any operator input; a 
simplified design and plant arrangement that compared with older PWRs uses 50 percent 
fewer safety-related valves, 80 percent less safety-related piping, 85 percent less control 
cable, 35 percent fewer pumps and 45 percent less seismic building volume (see Figure 3-
5). With less infrastructure and equipment to maintain, it is expected that the AP 1000 will 
be safer and have lower operation and maintenance costs [13]. The power output of an 
AP 1000 reactor is 1,117 MW [14]. 

Construction of four AP 1000 reactors is currently underway in China; they are expected 
to become operational in the years 2013-2015. In the U.S. the AP 1000 has been issued 
design certification by the NRC, and site preparations have begun for 4 units to be 
constructed in Georgia (Vogtle) and South Carolina (Summer). Additional applications 
have been submitted to the NRC for another 8 units [15].  
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Figure 3-5: AP 1000 reactor (Source: Institute of Electrical and Electronics Engineers [23]) 

• The economic simplified boiling water reactor (ESBWR):   The ESBWR offered by GE 
Hitachi Nuclear Energy is an evolutionary Generation III+ nuclear reactor based on 
previous BWRs and the ABWR. It offers a simplified design and modular construction that 
reduces costs and construction time. The passive cooling natural circulation design 
eliminates 11 systems, and 25 percent of pumps, valves and motors compared with 
previous BWR designs. The expected power output is 1,520 MW with a capacity factor of 
95 percent [16]. The ESBWR is currently being reviewed for certification by the NRC. There 
is currently one application submitted to the NRC for the construction of an ESBWR in 
Michigan [15]. 

• The U.S evolutionary power reactor (US EPR);   The US EPR is offered by Areva Nuclear 
Power, and it is an evolutionary Generation III+ PWR based on the French N4 model and 
the German Konvoi model. It features improved safety systems that include: 4 
independent safety systems that are able to perform 100 percent of the safety function 
on their own, a leak tight containment structure to prevent radiation leaks, a retention 
area at the bottom of the reactor to prevent leaks in case of a core meltdown, and an 
outer shell capable of resisting a large aircraft impact. It also features increased efficiency 
through an axial economizer inside the steam generators and a heavy neutron reflector 
that lowers uranium consumption. The expected power output is 1,650 MW with a 92 
percent capacity factor [17]. There are currently four US EPR reactors under construction, 
one in France, one in Finland and two in China.  The reactors under construction in Finland 
and France have both experienced lengthy construction delays and cost overruns of over 
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50 percent; however it is expected that the reactors being built in China will benefit from 
the experience gained in France and Finland and therefore may incur lower costs and a 
shorter construction period [18]. The US EPR is currently under design certification review 
by the NRC, and there are currently two active applications in the U.S. for the construction 
of two US EPR units.            

• The Mitsubishi advanced pressurized water reactor (US APWR):   The US APWR is offered 
by Mitsubishi Heavy Industries, and it is a Generation III+ PWR. It features advanced safety 
systems and improved reliability through the use of four independent safety systems, a 
neutron reflector, and steam generators with high corrosion resistance. It has an expected 
capacity of 1,700 MW [19]. The US APWR is currently under design certification review by 
the NRC, and there are two active applications in the US for the construction of three US 
APWR units.  

3.4  Small modular reactors  

Recently there has been growing interest around the world in small modular reactors which are 
defined as reactors that have electric power output of less than 300 MW. Small modular reactors 
offer several advantages over traditional nuclear power plants including: the ability to service 
small electricity grids; the ability to provide electricity to remote areas; and simpler, standardized 
designs that may reduce the cost of supplying nuclear power. They would be completely 
fabricated and assembled at a factory and shipped by truck or rail to be installed wherever they 
are needed. They can be operated independently or as modules that would be part of a bigger 
complex. Manufacturing economies of scale with higher production numbers are expected to 
help drive down the cost, making them a more accessible technology [24].   

• NuScale reactor:  The NuScale reactor, offered by NuScale Power Inc. is a modular 
integrated PWR based on the Multi-Application Small Light Water Reactor developed at 
Oregon State University. Each reactor module is integrated with its own steam generator 
in the same containment vessel, and each module has its own designated turbines for 
electricity generation (see Figure 3-6). The reactor containment structure would be 
submerged underground in a safety related pool. The concept is to have scalable NuScale 
power plants that can range from one to twelve reactors with each reactor operating 
independently from the others (see Figure 3-7). Each reactor has a capacity of 45 MW; 
therefore the power plants can range from 45 MW to 540 MW [25, 26]. This concept 
offers several advantages over traditional nuclear power plants including: lower costs 
because of factory manufacturing and assembly of reactor units, lower initial investment 
and project uncertainty because of incremental build, and the ability to increase capacity 
to match demand growth [27]. NuScale Power Inc. expects to submit an application for 
design certification in late 2012 [28].   
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Figure 3-6: NuScale Reactor (Source: NuScale power [15]) 
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Figure 3-7: NuScale multi-unit complex (Source: NuScale power [15]) 

• The Babcock & Wilcox mPower reactor:   The mPower reactor is offered by the Babcock & 
Wilcox Company. It is an integrated PWR, with a modular design that allows for scalability 
in 160 MW increments.  It features passive safety systems, underground containment and 
factory built reactors. Much like the NuScale reactor, the ability to be built incrementally 
would reduce construction time and some of the uncertainty related to the deployment of 
nuclear energy. Utility companies would have the ability to construct a unit, have it 
operating and generating revenue while at the same time expanding capacity at the plant. 
This would contribute to a reduction of front-end costs that could make nuclear energy a 
more attractive option [29]. It is expected that the Babcock and Wilcox Company will 
submit an application for design certification in the fourth quarter of 2013.  TVA signed a 
letter of intent in June 2011 to purchase up to six mPower reactors [46].  

• Toshiba 4S (Super Safe, Small and Simple):   The 4S is being developed by Toshiba, the 
Central Research Institute of Electric Power Industry in Japan, the Lawrence Livermore 
National Laboratory and Westinghouse. The reactor design is a sodium cooled fast 
neutron reactor that features electromagnetic pumps and passive safety systems (see 
Figure 3-8). It has been dubbed the “nuclear battery” system because it requires refueling 
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only every 30 years, has very low maintenance requirements and a power output of 10 
MW. The reactor would be factory built and shipped out as a whole unit where it would 
be installed in an underground containment structure. Its features are appealing for use in 
remote locations for use in electricity generation and heat for industrial uses. In Alaska 
initial approval has been granted for the construction of a 4S unit in the remote town of 
Galena [30, 31]. Toshiba is expected to submit an application to the NRC for design 
certification in 2012.  

 

 

 

Figure 3-8: Toshiba 4S reactor (Source: Nuclear Street [39]) 

• Gen4 Module (G4M):  The G4M previously named the Hyperion Power Module (HPM) is 
offered by the GEN4 ENERGY. It is a similar concept to the Toshiba 4S reactor but uses a 
different technology (see Figure 3-9). It is a liquid metal cooled (Lead Bismuth Eutectic), 
uranium nitride fueled, fast reactor. The reactors would be factory built as standard, self-
contained modules that would be easily transported by rail or truck. On site activities 
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would only include the construction of the reactor vault and the non-nuclear systems, and 
the connection of the G4M to the non-nuclear systems and controls. The G4M has a 10 
year fuel life-cycle, after which it would be replaced by a new module. It would have a 25 
MW power output, making it ideal for remote locations and industrial processes [32]. 
GEN4 ENERGY is expected to submit an application to the NRC for design certification and 
COL.  

 

 

 

 

Figure 3-9: Hyperion power facility (Source: NRC [40]) 

• Westinghouse small modular reactor:   The Westinghouse small modular reactor offered 
by Westinghouse Electric Company is an integrated reactor that features several safety 
systems and components of the AP 1000 reactor and a 225 MW power output. 
Westinghouse is expected to submit an application for design certification to the NRC in 
the near future [33].   
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• Power reactor innovative small module (PRISM) reactor:   The PRISM reactor is being 
developed by GE Hitachi Nuclear Energy and several U.S. national laboratories. It is a 
sodium cooled, fast neutron reactor that would feature a modular design, passive safety 
systems and ground level containment. Each reactor would have a generating capacity of 
311 MW and would be part of a two unit power block. The PRISM reactor could be fueled 
by plutonium that would come from spent fuel from light water reactors [34]. This makes 
them an appealing option because they contribute to a reduction of plutonium stockpiles 
that are expensive to store. GE Hitachi recently proposed the construction of a PRISM 
reactor in the United Kingdom as a way to deal with that country’s plutonium stockpile 
[35]. There are also plans to construct a demonstration PRISM reactor at the Department 
of Energy’s Savannah River site [36].  

3.5 Generation IV reactors 

Generation IV reactors are a set of theoretical revolutionary reactors that are being researched 
and developed under the Generation IV International Forum (GIF). GIF is an international 
agreement of 12 nations that are interested in cooperating in the development of Generation IV 
reactors. The forum is using eight goals that focus on the sustainability, economics, safety and 
reliability of future nuclear power generation.  Generation IV reactors (see Figure 3-10) are 
expected to be safer, more sustainable, more economically competitive, are expected to have 
more applications for nuclear energy (such as hydrogen production) and will have new 
approaches to the management of nuclear materials in order to reduce nuclear waste [42].   
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Figure 3-10: Evolution of nuclear power (Source: Generation IV international forum [45] 

GIF identified six reactor designs with the greatest possibility to reach the performance goals. 
Research resources and collaboration are being focused on the six different reactors that 
encompass very different technologies and reactor sizes. The reactors are: the gas-cooled fast 
reactor, the lead-cooled fast reactor, the molten salt reactor, the sodium-cooled fast reactor, the 
super critical water cooled reactor, and the very high temperature reactor. 

• Gas-cooled fast reactor (GFR):   The GFR is designed to be a fast neutron reactor with a 
closed fuel cycle. In fast neutron reactors the nuclear chain reaction is sustained by fast 
neutrons, therefore there is no need for a neutron moderator; however because of this it 
needs a more enriched fuel [43]. Fuel reprocessing facilities would be onsite, reducing the 
need to transport nuclear materials. The GFR reactor would be helium-cooled and would 
have an expected output of 288 MW. It would be used for electricity and reduction in 
nuclear waste due to the reprocessing of fuel [44].   

• Lead-cooled fast reactor (LFR):   The LFR is a fast neutron reactor with a closed fuel cycle. 
It would use lead or lead/bismuth eutectic (a type of alloy) as coolant. The coolant choice 
increases the reactor’s safety because of its inert nature. There are several options for the 
size of the reactor, from a 50 MW factory manufactured facility, to a 1,200 MW nuclear 
power plant. The LFR would be primarily used for electricity generation, hydrogen 
production, and nuclear waste management [44].   
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• Molten salt reactor (MSR):   The MSR is a unique reactor design that, unlike all other 
designs, uses a liquid fuel made out of sodium, zirconium and uranium fluorides. The 
reactor can be configured to be either a thermal or fast reactor depending on the liquid 
fuel mixture. The MSR would have a closed fuel cycle, and because it uses a liquid fuel it 
does not require fuel fabrication. The plant is expected to have a 1,000 MW output. The 
MSR would be used for electricity generation and nuclear waste management [44].     

• Sodium-cooled fast reactor (SFR):   The SFR is a fast neutron, closed fuel cycle reactor. The 
liquid sodium coolant allows for high power density with a lower coolant volume fraction 
[43]. There are two sizes planned for the SFR; a 150 to 500 MW reactor, and a larger 500 
to 1,500 MW reactor. The primary uses of the SFR would be electricity generation and 
nuclear waste management [44].   

• Super critical water cooled reactor (SCWR):   The SCWR is a high-temperature, high 
pressure, water-cooled reactor that operates above the critical point of water in order to 
achieve a greater thermal efficiency.  The SCWR can be either a thermal neutron reactor 
with a once-through fuel cycle, or a fast neutron reactor with a closed fuel cycle. The 
expected output is 1,700 MW, and its primary use would be electricity generation [44].  

• Very high temperature reactor (VHTR):   The VHTR design is a thermal neutron reactor 
that uses helium gas as the coolant and graphite as the moderator. The VHTR would have 
coolant outlet temperatures above 1,000° C, which can be used to supply process heat for 
various non-electricity industrial activities including hydrogen production and coal 
gasification. VHTRs would primarily be used for the production of hydrogen and other 
heat intensive industrial processes; however electricity generation as part of a 
cogenerating plant is possible as well [44].       
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4. Economics of Nuclear Power 
 

The future of nuclear power depends on its ability to become a cost competitive source of 
electricity generation. It is an appealing source of generation because it has low fuel costs and no 
direct pollutants or greenhouse gas emissions. However a new nuclear power plant has much 
higher up-front capital costs than competing technologies that make the total generating cost of 
new nuclear higher than alternative sources such as coal and natural gas [1]. 
 
4.1 Costs of new nuclear power 
 
In order to understand the economics of nuclear power it is important to understand its cost 
components and what factors affect them. The costs of generating nuclear power can be 
separated into three broad categories: capital costs, financing costs and operating costs.      
 
Capital costs:   Capital costs are the largest cost component of nuclear power and are typically 
quoted as overnight costs, indicating that financing costs have been excluded. Capital costs are 
comprised of several different costs including engineering-procurement-construction (EPC) costs; 
these are the costs of building the plant itself including physical plant equipment, materials and 
labor. This is the cost figure usually quoted by the reactor’s vendor [2].  Owner’s costs vary 
greatly depending on the construction site and include things such as land, cooling infrastructure, 
administration and associated buildings, site preparation, switch yards, project management, 
licenses, training staff and transmission infrastructure, among others [1]. Contingency costs are 
added by the vendors to cover any unexpected costs.5 These may be negotiated and sometimes 
governments agree to pay these costs [2]. 
 
Historically, many nuclear (and other very large-scale infrastructure) projects have experienced 
significant cost overruns.  Since no nuclear plants have been built in the U.S. for several years 
(Watts Bar Unit 1, whose construction began in 1972, was the last commercial unit in the U.S. to 
come online, it began commercial operation in 1996) the actual cost of building a nuclear power 
plant is unknown. The risk of cost overruns exists but the likelihood and magnitude are uncertain.  
In its August 2012 Semi-Annual Construction Monitoring Report to the Georgia Public Service 
Commission, Georgia Power reported that the most recent cost projection for construction of 
Vogtle Units 3 and 4 (AP 1000 units) was $92 million less than the original certification amount 
but acknowledged that the expected completion dates had been delayed by seven months due to 
Design Control Document approval delays at the NRC [14]. 
                                                            
5 Historically, many nuclear (and other very large-scale infrastructure) projects have experienced significant cost 
overruns.  Since there is no recent experience with nuclear construction in the U.S., the likelihood and potential 
magnitude is uncertain, but the risk of such overruns exists. 
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Table 4-1 is a compilation of the capital cost estimates that have been calculated by utilities on 
their specific projects for submission to regulatory authorities. It can be observed that for the 
same technology different utilities have quoted different capital cost estimates. This is because 
they were quoted in several different years ranging from 2005 to 2011. During that time period 
the cost of constructing a nuclear power plant has increased substantially. This is based on both 
observed construction costs from nuclear power plants built in Japan and Korea and cost 
projections for U.S. nuclear power plants. Additionally these numbers may be reporting different 
costs, because some utilities chose to include owner’s cost while some did not. For example, the 
estimate for the Florida Power & Light total project cost includes the financing costs. 
Furthermore, it should be noted that costs for U.S. nuclear power plants built in the 1980s and 
1990s were far higher than projected, and construction experienced long delays. Currently the 
constructions of an EPR in Finland and another in France have run into significant cost overruns 
and long construction delays [4].   

 

Table 4-1: Compilation of capital cost estimates  

Sources: 
[10] The Cost of New Generating Capacity in Perspective. NEI September 2011 
[11] Update on the Cost of Nuclear Power .Yangbo Du. and John E. Parsons. May 2009. MIT 
[12] Updated Capital Cost Estimates for Electricity Generation Plants. EIA November 2010   
[13] Tennessee Valley Authority (2005), pp. 1-6 
 
Financing costs:   Financing costs can vary greatly on a project by project basis and depend on 
several factors including: the interest rate on the debt, the risk premium, the debt-equity ratio, 
whether the retail electricity market in which the plant is located is regulated and the 
construction time. By the time a nuclear power plant starts generating electricity, financing cost 
can be as much as 25 to 80 percent of the overnight capital costs [2].  

Operating costs:   Nuclear power plants have lower variable operating costs as a result of lower 
fuel cost. Uranium fuel has a very high energy density (one kilogram of natural uranium will yield 
20,000 times as much energy as one kilogram of coal); therefore it has much lower transportation 

Owner Technology
Plant capacity 

(MW)

Overnight 
capital cost 
($/kW) 2010 

Total project cost 
(Billion $)

2010 dollars
SCE&G/Santee Cooper 4152[11] 9.27[11]

Florida Power & Light 3483-5063[10] 12.1 - 18[10]

Progress Energy 4611[11] 10.2[11]

Georgia Power 5202[11] 11.44[11]

NA 2236[12] 5339[12] 11.9[12]

Tennesse Valley Authority 2835[13] 3212[11] 9.1[11]

NRG Energy 2660[11] 3815[11] 10.1[11]

AP 1000
2 units

ABWR

2200[10]
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cost than coal and natural gas [1]. Fixed operation and maintenance (O&M) costs include 
worker’s wages, equipment maintenance costs, administrative expenses, etc. Variable O&M costs 
include the nuclear fuel and other consumable materials and supplies. Table 4-2 displays the 
O&M cost for nuclear and other sources of generation.   

 

 

Table 4-2: Operating and overnight capital costs for new sources of generation (Source: Energy 
Information Administration [3])  

4.2 Economic competitiveness   

When considering economic competitiveness, the distinction between existing nuclear power 
plants and new nuclear power plants must be made. Nuclear power plants that were built 
decades ago are highly cost competitive because their capital costs have largely been recovered. 
Variable costs, such as fuel and O&M, are relatively low for nuclear units when compared to 
fossil-fueled generators. New nuclear power plants on the other hand, are less competitive 
economically due to the high upfront costs. Currently the economic viability is affected by: 

 High capital costs;  

Technology
Nominal capacity 

(MW)
Fixed O&M cost

 (2010 $/kW)

Variable O&M 
cost 

(2010 $/MWh)

Overnight capital 
cost (2010 $/kW)

Nuclear
2,236 88.75 2.04 5,339

Coal
Dual unit advanced PC 1,300 29.67 4.25 2,844
Dual unit advanced PC with CCS 1,300 63.21 9.05 4,579
Dual unit IGCC 1,200 48.90 6.87 3,221
Single unit IGCC with CCS 520 69.30 8.04 5,348
Natural Gas
Conventional NGCC 540 14.39 3.43 978
Advanced NGCC 400 14.62 3.11 1,003
Advanced NGCC with CCS 340 30.25 6.45 2,060
Conventional combustion turbine 85 6.98 14.70 974
Advanced combustion turbine 210 6.70 9.87 665
Wind
Onshore Wind 100 28.07 0.00 2,438
Solar
Solar thermal 100 64.00 0.00 4,692
Large photovoltaic 150 16.70 0.00 4,755
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 Lengthy construction periods, because of interruptions by engineering and management   
problems, regulatory delays and public opposition; 

 Market deregulation; 

 Extended period of time without nuclear power plant constructions; and 

 Relatively inexpensive electricity generated from other fuel sources.    

Compared with other sources of generation, nuclear power has much higher capital costs that 
require large financial investments over a long period of time. This is due to the high degree of 
engineering complexity of nuclear power plants, numerous safety and security requirements for 
both the design and construction phases, and a lengthy licensing process [5]. Table 4-2 compares 
the overnight cost for AP 1000 reactors and other sources of generation.  

The length of the construction period greatly affects the competitiveness of nuclear power 
because of the impact that it has on the financing costs. While the plant is under construction 
interest on the borrowed capital is being accrued. The longer the construction time and the more 
interruptions there are, the greater the interest cost that will have to be repaid once the plant 
starts generating electricity [2]. In order for nuclear power to be competitive, new nuclear plants 
will have to be built with tighter construction schedules.  

Another factor that affects financing cost related to the construction uncertainty is the risk 
premium that nuclear projects face. The risk premium is a higher interest rate charged by the 
lenders to reflect the uncertainty associated with nuclear projects and the possibility that the 
nuclear power plant will not be completed or that the utility would not be able to repay the loan 
[2].   
 
State regulations can also impact the overall cost of constructing nuclear plants. In a traditionally 
regulated state a utility company may be able to pass on some of the risk associated with 
construction to its consumers by getting pre-approval of some level of cost recovery. This may 
result in a lower risk premium for borrowing money and a lower overall cost. Furthermore, in 
states that have provision for recovery of construction work in progress (CWIP), the utility may be 
able to include some of the costs in its rates prior to project completion, thus reducing the total 
financing costs. In a deregulated market the merchant plant has to sell its power at the 
competitive prices. This places all of the financial risk on the investor creating uncertainty and 
discouraging long-term capital intensive projects [1].  
 
Also, since there have been no major nuclear power projects in the U.S. for several years, the 
infrastructure for nuclear power plant construction has largely eroded. Thus, there are limited 
numbers of qualified engineers, suppliers for nuclear equipment and components, and 
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contractors with the necessary skills and experience to construct a nuclear power plant. This 
shortage has the potential to increase the costs and length of construction.   

• Levelized cost of electricity (LCOE):  To facilitate a more direct comparison of the overall 
cost of various generating technologies, the LCOE is used. The LCOE represents the 
present value of the total costs of constructing and operating a power plant over its 
expected economic life, the costs are then annualized and expressed in real dollars to 
remove the impact of inflation. The LCOE is by no means a perfect measure because it 
often fails to account for whether a generator is dispatchable, makes several assumptions 
regarding aspects like unit capacity factor, and typically does not include things such as 
state or regional production incentives or regional fuel availability [3]. Table 4-3 displays 
the Energy Information Administration’s estimated LCOE of new generating technologies 
entering service in 2016. 

 

 

Table 4-3: U.S. Average Levelized Costs (2009 $/MWh) for plants entering service in 2016 
(Source: Energy Information Administration [6])  
 
 
 Emissions costs:   Nuclear power does not have any direct emissions of air pollutants that 

the U.S. Environmental Protection Agency (EPA) regulates, such as nitrogen oxides (NOx), 
ozone (O3), particulate matter (PM), and sulfur dioxide (SO2). Additionally it does not 

Plant type
Capacity 

factor (%)
Levelized 

capital cost
Fixed 
O&M

Variable 
O&M

Transmission
investment

Total system
levelized cost

Coal
Conventional coal 85.0 65.3 3.9 24.3 1.2 94.8
Avanced coal 85.0 74.6 7.9 25.7 1.2 109.4
Avanced coal with CCS 85.0 92.7 9.2 33.1 1.2 136.2
Natural gas
Conventional NGCC 87.0 17.5 1.9 45.6 1.2 66.1
Advanced NGCC 87.0 17.9 1.9 42.1 1.2 63.1
Advanced NGCC with CCS 87.0 34.6 3.9 49.6 1.2 89.3
Conventional combustion curbine 30.0 45.8 3.7 71.5 3.5 124.5
Advanced combustion turbine 30.0 31.6 5.5 62.9 3.5 103.5
Non-fossil fuel
Nuclear 90.0 90.1 11.1 11.7 1.0 113.9
Wind 34.0 83.9 9.6 0.0 3.5 97.0
Solar thermal 18.0 259.4 46.6 0.0 5.8 311.8
Biomass 83.0 55.3 13.7 42.3 1.3 112.5
Hydro 52.0 74.5 3.8 6.3 1.9 86.4
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directly emit greenhouse gases such as carbon dioxide (CO2). Any regulation or initiative 
that would aim to decrease the emission of any of these pollutants or gases would 
change the generating cost for competing sources of generation. Natural gas and 
especially coal power plants would incur extra costs since these sources emit pollutants 
and greenhouse gases. On the other hand, nuclear, wind, solar and hydroelectric would 
not incur any extra costs because they have no emissions. Any tightening of restrictions 
on emissions would positively affect the economic competitiveness of nuclear power.  

Recently the EPA approved two sets of regulations to limit the emission of pollutants by 
power plants. These are the Mercury and Air Toxics Standards (MATS) and the Cross-
State Air Pollution Rule (CSAPR)6. In the state of Indiana it is projected that the 
implementation of these regulations, along with regulations affecting coal ash disposal 
and cooling water, would increase the price of electricity by 14 percent [7]. In the North 
Eastern U.S., 9 states participate in the regional greenhouse gas initiative (RGGI). It used 
to be 10 states but New Jersey pulled out as of January 1, 2012. The RGGI is a mandatory 
market based regulatory program to reduce greenhouse gas emissions. In this program, 
states auction CO2 emission allowances to electric power plants that can then be traded 
to meet emissions controls. The proceeds of the auctions are invested in clean energy 
technologies [8]. The western climate initiative (WCI) is a similar initiative in the western 
states. In November, 2011, six western U.S. states withdrew from the WCI leaving only 
California and some Canadian provinces participating in the program [9].  The 
development of these types of regulations and initiatives may further reduce the 
economic disadvantage confronting nuclear power. 
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5.   Government Regulations and Incentives 

The NRC is an independent government agency that is in charge of regulating all aspects of the 
U.S. civilian nuclear industry including commercial reactors, fuel processing facilities, and the 
transportation, disposal and storage of spent nuclear fuel for medical, academic and industrial 
uses. 

5.1 Licensing  

One of the main responsibilities of the NRC is the licensing of operating and proposed nuclear 
power plants. The licensing process involves a meticulous review of engineering, safety and 
environmental information, as well as numerous public hearings [1].   

Every currently operating reactor was licensed in a two-step process where the licensee first 
submitted an application for a construction permit, and if approved, a second application for 
operation was submitted as the construction neared completion. This was typically a very lengthy 
and difficult process that created significant financial risk for the investors. As a response to the 
uncertainty that the licensing process created, the NRC developed a more simplified licensing 
process. Utilities now have the option to apply for a combined construction and operating license 
(COL). A COL authorizes construction of the nuclear plant and upon meeting pre-established NRC 
standards and without a final post-construction public hearing, the NRC would authorize the 
operation of the plant. The review for a COL takes 30 months if the application references a 
certified design, and if it references an uncertified design the review process takes 48 to 60 
months. However there are many factors that can affect the schedule of the review process such 
as requests by NRC for additional information and the timely provision of that information by the 
applicant. Concurrently the NRC allows 12 months for the completion of a hearing process. 

Utilities can also apply for an early site permit (ESP). An ESP allows a utility to obtain approval for 
a specific site without having to specify what reactor design it intends to build. This allows for the 
site specific safety, environmental and emergency preparedness details to be resolved regardless 
of the reactor built. The permit is valid for up to 20 years and it reduces site licensing uncertainty 
and siting issues before construction. Utilities that have already applied for a COL or an ESP can 
apply for a limited work authorization (LWA). LWA allow the applicants to perform certain limited 
construction activities at their site and at their own risk as they await a COL approval.  

As another means to expedite construction, the NRC is also issuing design certifications. A design 
certification approves a standard power plant design independent of construction, operating or 
site licenses. Design certifications are valid for 15 years and can be renewed for an additional 15. 
In the design certification process the NRC reviews all the aspects of a complete nuclear power 
plant design at a generic site [2].  
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• Environmental review:    As part of the licensing review process the NRC has to conduct a 
review of the environmental effects of the construction and operation of a nuclear power 
plant at a specific site. The NRC has to prepare an Environmental Impact Statement (EIS) 
in order to fulfill the NRC’s responsibilities under the National Environmental Policy Act of 
1969.  The EIS is an analysis of the foreseeable effects that the proposed activity may 
incur on the environment, including the air, water, animal life, vegetation and natural 
resources, as well as any effect on any property that may have historic, archeological or 
architectural significance. The EIS must be done in a manner that is inclusive of all 
stakeholders, including the public, in order to determine what range of actions, 
alternatives and impacts are to be considered in the review. A draft EIS must be available 
for public review and comment. The NRC is required to respond to the comments and 
conduct further analysis if needed. A final draft includes a discussion of the comments 
made during the public review period.   
 

• The EIS is done in cooperation with several other government agencies including the U.S. 
Army Corps of Engineers, U.S. Fish and Wildlife Service and the National Marine Fisheries 
Service. Additionally the EPA reviews the EIS for adequacy and makes comments during 
the EIS public review period.  
 
The environmental review also includes a Severe Accidents Mitigation Alternatives review 
and a decommissioning review. The Severe Accidents Mitigation Alternatives review is 
done to identify and evaluate possible changes that could improve safety performance 
and reduce the possibility of a severe accident; one that could cause damage to the 
reactor core with potential environmental impacts. Possible changes include hardware 
modifications and changes to procedures and the training program. The decommissioning 
review evaluates the costs and impacts of decommissioning a nuclear power plant. 
Decommissioning involves the safe removal of a nuclear power plant from service and the 
reduction of residual radioactivity at the site to permissible levels. Decommissioning costs 
vary greatly depending on the site but the minimum amount of funds required for 
reasonable assurance is $306 million for a pressurized water reactor and $390 million 
(2011 dollars) for a boiling water reactor [2].  

 

• NRC safety review:    The NRC must also conduct an operational safety review separate 
from the environmental review. The basis for the NRC’s safety review is the Standard 
Review Plan (SRP) for review of safety analysis reports for nuclear power plants. The SRP 
is intended to assure quality and uniformity in all of the NRC’s staff reviews and it makes 
information about regulatory matters available to members of the public and the nuclear 
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power industry. The safety analysis report also specifies the NRC’s acceptable level of 
safety for light-water reactor facilities.   

 
For the safety review the NRC reviews a final safety analysis report submitted by the 
reactor applicant. This report includes detailed information about the design of the 
structures, systems and components of the proposed plant, and detailed data about the 
proposed site. Additionally it must discuss several hypothetical accident situations, safety 
features of the plants to prevent the accidents, and what could be done to mitigate the 
impact of an accident should one occur. It must also include information regarding the 
reactor and fuel design, radioactive waste management, radiation protection, accident 
analysis and quality assurance.  

 
The safety review also includes security issues. After a license is granted the NRC 
periodically reviews, inspects and updates security issues at all of the operating plants. 
These reviews continue as long as the plant is operating. Any issues that are found are to 
be addressed immediately and changes are incorporated into the operating license. Since 
the terrorist attacks of 2001 the NRC has dedicated more attention to terrorist related 
matters including working in cooperation with the Department of Homeland Security. The 
NRC has imposed some enhanced security requirements and updated the security rules 
that apply to nuclear power plants [2].  

 

• State and local governments:   State and local governments also have an impact on 
nuclear power projects. Some states, such as California, have banned the construction of 
nuclear power plants. Local opposition in the state of Nevada to the Yucca Mountain 
nuclear waste repository led to the cancellation of the project.  
 

5.2 Economic incentives 
 
Given the financing challenges that capital intensive energy projects face, the Energy Policy Act of 
2005 provided several economic incentives for the construction of nuclear power plants as well 
as support for advanced nuclear technology research.  These incentives are meant to assist the 
first few utilities that commit to building a nuclear power plant and are not meant to support the 
nuclear power industry in the long term. The intention is that the first few constructed nuclear 
plants will demonstrate competitive economic performance and henceforth the industry can be 
self-sustaining. The incentives include: 

• Federal loan guarantees:   The federal government allotted 18.5 billion dollars in federal 
loan guarantees to cover 80 percent of a project’s costs. Loan guarantees can significantly 



51 

lower the financing cost for capital intensive projects. Because the federal government 
backs the loans, eliminating the risk premium, the utilities receiving the loans are able to 
get lower financing rates. Originally the DOE received 19 applications for 21 reactors for a 
total requested sum of $122 billion. Currently the DOE has only granted one $9 billion 
dollar loan guarantee for the Vogtle project in Georgia and is seeking further funding for 
other short-listed projects [1, 3].   

• Production tax credits:    A 2.1¢/kWh production tax credit is paid by the federal 
government for the first 6,000 MW of new nuclear capacity in the first 8 years of 
operation. This is comparable to the production tax credits given to renewable sources of 
generation. The credits are to be divided between the eligible facilities and are not to 
exceed $125 million per plant per year.   

• Standby support:    Standby support is a type of insurance that will cover the debt service 
(principal and interest) for regulatory delays, such as licensing and litigation issues. This 
program has $2 billion in funding and only the first six new plants are eligible [3].    

Additional incentives included in the Energy Policy Act of 2005 are:  the extension for 20 years of 
the Price Anderson Act for nuclear liability protection and $1.25 billion for the research and 
construction of an advanced high-temperature reactor. Additionally, the federal government 
provides funds for nuclear research at several U.S. national laboratories and universities.   
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6. Safety 

The safety record for nuclear power plants in the U.S. and around the world as compared with 
other sources of energy has been relatively good. A report by the Organization for Economic Co-
operation and Development (OECD) summarized the number of severe accidents (those with 
more than 5 fatalities) and deaths resulting from those accidents in fossil, hydro, and nuclear 
energy chains from 1969 to 2000 (see Table 6-1). The energy chain refers to every stage of energy 
production including exploration, extraction, refining, storage, distribution and waste disposal. 
What the report found was that nuclear energy had much fewer accidents and deaths compared 
with the other major sources of energy.  

 

Table 6-1: Summary of severe accidents (>5 fatalities) that occurred in fossil, hydro, and nuclear 
energy chains in the period 1969-2000 (Source: OECD) 

Nuclear reactor accidents can be best described as low-probability but high-consequence risks. In 
the 50 year history of the civilian nuclear power industry and after 14,500 cumulative reactor 
years of commercial operation around the world, there have only been 3 major accidents. The 
greatest safety risk posed by nuclear power is an uncontrolled release of nuclear material that 
causes off-site contamination and radiation exposure [1]. Exposure to radiation poses a health 
risk through ionization, which is the process of adding or removing one or more electrons from 
atoms or molecules. Ionization can cause damage within a cell which can lead to cancer, genetic 
material mutation or more immediate physical harm [2]. As with any other industry, safety 
depends on proper planning, design with conservative margins and backup systems, the use of 
high quality components, and a well-established safety culture in operations [1].  

 

 

 

 

 

Energy chain Accidents Fatalities Accidents Fatalities
Coal 75            2,259         1,044        18,017      
Oil 165          3,713         232            16,505      
Natural gas 90            1,043         45              1,000        
LPG 59            1,905         46              2,016        
Hydro 1               14               10              29,924      
Nuclear -           -              1                31              

OECD Non-OECD
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6.1 Accident history 

Since the 1950s, when reactors were first built, there have been several incidents of varying 
levels of severity at nuclear facilities all over the world. In order to communicate the significance 
of radiological events the International Nuclear and Radiological Event Scale (INES) was created 
by the International Atomic Energy Agency (IAEA) (see figure 6-1). The INES scale has seven 
levels; events on levels 1-3 are classified as “incidents”, and events on levels 4-7 are classified as 
“accidents.” To date there have only been 3 major accidents at commercial nuclear power plants. 
These are Three Mile Island in 1979, Chernobyl in 1986 and Fukushima in March 2011. Table 6-1 
lists accidents at nuclear facilities that have been rated at an INES level of 4 or above.  
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Figure 6-1: Description of INES levels (Source: IAEA [17]) 
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Table 6-2: Significant nuclear reactor accidents (Sources: WNA & the Guardian [1, 18]  

 

• Three Mile Island (INES level 5):   This accident occurred on March 28, 1979, in Middleton, 
Pennsylvania at the Three Mile Island site. It has been the most serious accident of a 
commercial nuclear power plant in the U.S., but it did not cause any deaths or injuries to 
any plant worker or member of the nearby community. The accident was caused by a 
combination of operator error, design deficiencies and component failures. The accident 
began as a relatively minor incident when one of the secondary coolant systems stopped 
working, causing the reactor to automatically shut down. The pressure in the primary 
coolant system began to increase and in order to prevent an excessive buildup, an 
automatic relief valve opened. It failed to close after a safe pressure level had been 
reached. Inadequate instrumentation in the control room did not allow operators to know 
that the valve was open and as a result coolant water drained out of the open valve. Lack 

Country Facility Type of facility Year INES level Event description

Canada Chalk river
Experimental 

reactor
1952 5 Core meltdown

United 
Kingdom

Windscale-1 Military reactor 1957 5
Release of radioactive material 
following a fire

Soviet Union Kyshtym
Nuclear fuel 
reprocessing 

plant
1957 6

Significant release of 
radioactive material to the 
environment from the 
explosion of a waste tank

Czechoslovakia
Jasovské
Bohunice

Commercial 
reactor

1977 4
Damage to fuel rods, corrosion 
damage, and release of 
radioactivity

USA
Three-Mile 

Island-2
Commercial 

reactor
1979 5

Severe damage to the reactor 
core

France
Saint Laurent-

A2
Commercial 

reactor
1980 4 Fuel channel meltdown

Ukraine Chernobyl-4
Commercial 

reactor
1986 7

Significant release of 
radioactive material due to 
explosion

Russia tomsk
Nuclear fuel 
reprocessing 

plant
1993 4

Significant release of 
radioactive material due to 
explosion

Japan Tokaimura
Nuclear fuel 
reprocessing 

plant
1999 4

Fatal overexposure to workers 
following an accidental 
criticality event

Japan Fukushima 1-3
Commercial 

reactor
2011 7

Reactor explosion after loss of 
cooling
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of coolant caused the reactor to overheat leading to a partial meltdown of the reactor 
core.   

There were small releases of radioactive gases that had authorities concerned about 
health impacts on the surrounding population. Several detailed studies about the 
radiological consequences of the accident by various agencies including the NRC, EPA, 
DOE, and several others, concluded that the exposure to radiation of the surrounding 
community was minimal – about one-sixth of the radiation that a person would get from a 
chest x-ray. Several different organizations and groups took thousands of samples of air, 
water, soil, vegetation, animals and foodstuff from the monitored area, but only very 
small levels of radiation could be attributed to releases from the accident. Despite severe 
damage to the reactor most of the radiation was contained and the actual releases had a 
negligible effect on individuals and the environment.       

The Three Mile Island accident had a profound effect on both the U.S. nuclear industry 
and the way that the NRC operated. There were comprehensive changes regarding 
emergency response planning, reactor operator training, human factors engineering, 
radiation protection and several other areas of nuclear power plant operations. After a 
careful analysis of the accident the NRC drastically changed the way that it regulates its 
licensees. Regulations and oversight became broader and more robust and management 
of the plants has been more closely monitored [3].  

• Chernobyl (INES level 7):   On April 26, 1986, an accident occurred at the Chernobyl power 
plant in Ukraine, and it has been the only commercial nuclear power plant accident where 
radiation-related fatalities have occurred. The cause of the accident was related to 
specific design characteristics of the reactor, a RBMK-1000, which was only built in the 
Soviet eastern bloc. Two very important characteristics of this reactor significantly 
contributed to the accident. One was that it possessed what is known as a ‘positive void 
coefficient’, where an increase in steam bubbles (voids) inside the reactor core, causes 
increased reactivity (an increased amount of nuclear reactions). The other was that when 
the control rods were inserted into the reactor core, they temporarily caused an increase 
in reactivity.  

The day of the accident the operators were conducting a test to determine how long the 
turbines would continue to spin and supply power to the coolant pumps after a loss of 
main electrical power supply. After a series of improper operator actions and 
miscommunications between different staff workers, the reactor became very unstable. 
As the flow of the coolant water slowed down, caused by the run-down of the turbines 
that powered the pumps, steam started to build at the bottom of the reactor. Because of 
the positive void coefficient the reactivity of the reactor increased. Additionally when the 
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operators inserted the control rods this had the effect of further increasing the reactivity 
of the reactor. The increased temperature caused fuel fragmentation and rapid steam 
generation, leading to an over pressurization of the reactor. The immense pressure 
caused the 1,000 ton cover plate of the reactor to become detached, jamming the half 
way inserted control rods and rupturing the fuel channels. This created even more steam 
which caused a steam explosion that dispersed nuclear material into the atmosphere 
followed by a second explosion that resulted from the buildup of hydrogen [4].               

In order to put out the subsequent fires and prevent the further spread of nuclear 
materials, boron and sand were poured from helicopters flying above over top of the 
reactor.  The reactor was then entombed in a concrete sarcophagus.  Two workers were 
killed in the initial explosions and a further 28 people died, firemen and plant staff, in the 
following 3 months as the result of acute radiation poisoning.  The accident released 
massive amounts of nuclear material over Russia, Belarus and Ukraine. It was estimated 
that about one million people could have been affected by the radiation. By the year 2000 
about 4,000 cases of thyroid cancer had been diagnosed in children that had been 
exposed to the radiation. Because of rapid detection only a few turned out to be fatal.  A 
Chernobyl Forum established by the IAEA in cooperation with several other UN 
organizations and the authorities in Russia, Belarus and Ukraine found that apart from the 
thyroid cancers, there was no evidence of other major public health impacts that could be 
attributed to the radiation [5].   

Given that the design of the Chernobyl reactor was unique to the Soviet Union, the 
accident had little relevance to the nuclear industry outside of the Soviet Union. A report 
by the NRC regarding the implications of the Chernobyl accident on the U.S. nuclear 
industry found that no immediate changes were needed in the way that the NRC 
regulated both the design and operation of U.S. commercial nuclear reactors [6]. 

• Fukushima (INES level 7):   On March 11, 2011 a 9.0-magnitude earthquake struck off the 
coast of Japan. There were 6 reactors at the Fukushima power plant. Units 4-6 were shut 
down for routine maintenance and refueling, and units 1-3 were in operation but 
automatically shut down, as designed, after the earthquake. After the earthquake the 
Fukushima power plant suffered a loss of power, at which point emergency on-site diesel 
generators turned on at all 6 reactors in order to provide power to the cooling systems. 
The generators provided power for about 40 minutes until a 45 foot tsunami struck the 
plant and inundated the site causing extensive damage to the site, including damage to 
the diesel generators. Due to the devastation caused by the tsunami in the area, off-site 
assistance to provide power for the pumps was not available. Only unit 6 retained a 
working generator that was used to operate the pumps to cool units 5 and 6. Units 1-4 did 
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not have any power to operate the cooling pumps and as a result the reactor cores of 
units 1-3 melted. Due to hydrogen build up, there were explosions that released vast 
amounts of radioactive material in all 4 reactor buildings [7]. It took 3 weeks to bring the 
reactors into a stable condition, but it wasn’t until mid-December 2011, that the reactors 
were officially in a ‘cold shutdown’ condition [8].  

Since the Fukushima accident the NRC has been working to understand the events that 
happened in Japan in order to relay important information to U.S. nuclear power plant 
operators. A task force established by the NRC after the accident, concluded that there 
was no imminent risk to the continued operation of U.S. nuclear power plants, however it 
did make several recommendations regarding safety enhancements and emergency 
preparedness. [9].   

6.2 Achieving safety 

There are many ways in which the U.S nuclear industry strives to achieve high levels of safety. 
Everything from the design, siting, construction and operation of the power plants, as well as 
international collaboration contribute to the attainment of safety.  

• Defense-in-Depth:   Nuclear power plants in the U.S. and in western countries have an 
approach to design and operation to prevent and mitigate accidents known as Defense-in-
Depth. The key to this approach is to create multiple independent and redundant safety 
systems in order to compensate for any human or mechanical error and to not rely 
exclusively on any single system. Features of this approach include access controls, 
physical barriers, redundant safety systems and emergency response measures [10].  

• Safety features of reactors:    The three safety functions that are to be performed with 
respect to the nuclear reactor itself are: the control of reactivity, the cooling of the fuel, 
and the containment of radioactive substances. To control the reactivity, control rods are 
inserted into the reactor core. These have neutron absorbing properties that decrease the 
number of nuclear reactions. Additionally, reactors are designed with inherent safety 
features that control the reactivity. For example, all western nuclear reactors are designed 
to have negative void coefficients. This means that if steam builds up in the coolant water, 
as a consequence of overheating, the nuclear reaction actually slows down. This occurs 
because in LWR the coolant water is also the moderator and as water evaporates there is 
a decrease in the moderating effect. For the cooling of the fuel all nuclear reactors have a 
back-up emergency core cooling system to remove excess heat in case of main coolant 
system power loss [1]. 
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The containment of radioactive substances is one of the most important safety features 
that a nuclear reactor has. A typical power plant will have several barriers between 
radioactive material and the environment (see Figure 6-2). These include: the zirconium 
alloy tubes where the enriched uranium pellets are sealed to form the fuel rods; the 
reactor pressure vessel that can have walls up to 30 cm thick, depending on the type of 
reactor; and the reinforced concrete containment structure that has several 
compartments and walls up to 4 feet thick (see Figure 6-3). Containment structures can 
mitigate the severity of a nuclear accident as demonstrated by the Three Mile Island and 
Chernobyl accidents. In the Three Mile Island accident even though half of the reactor 
core melted, there was no significant release of radiation due to the adequacy of the 
containment structures. In contrast the Chernobyl reactor did not have containment 
structures comparable to the ones in western nuclear reactors [1].  
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Figure 6-2: Safety barriers of a boiling water reactor (Source: Nuclear Energy Institute [16]) 
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Figure 6-3: Construction of containment wall (Source: Nuclear Energy Institute [16]) 

Most of the safety systems on currently operating reactors are ‘active’ safety systems in the 
sense that they require mechanical or electrical operation in order to work. In the new reactor 
designs, Generation III and III+, several active safety systems have been replaced with passive 
systems. Passive safety systems depend only on physical phenomena such as gravity, convection 
and resistance to high temperature to function.  

6.3 Siting  

Several safety and design considerations have to be taken into account when choosing the site to 
build a nuclear power plant. Because of cooling requirements nuclear power plants are usually 
built close to bodies of water. This places the plants at risk of being flooded by storms, tides and 
tsunamis. During the site licensing process worst case scenarios are considered in order to build 
proper safety barriers, however there have been several instances where flooding occurred at 
nuclear power plants. This can have catastrophic consequences as demonstrated by the 
Fukushima accident where the flooding of the back-up generators caused a meltdown in 3 
reactor units [1]. 

Another important siting consideration is whether the site is in an area of significant seismic 
activity: 20 percent of the world’s reactors are located in areas of significant seismic activity. 
Reactors in these areas have more stringent criteria for planning, design and construction in 
order to withstand very strong earthquakes. All reactors are designed to automatically shut off in 
case a major seismic event. After the March 2011 earthquake off the coast of Japan, 11 operating 
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nuclear reactors automatically shut off [11]. Similarly, the North Anna, VA nuclear plant shut 
down due to the August 2011 earthquake.  

6.4 Industry organizations 

The Institute of Nuclear Power Operations (INPO) was established in 1979 following the 
recommendation of the Kemeny Commission, which was set up by President Carter to investigate 
the Three Mile Island accident.  INPO’s mission is to promote high levels of safety and reliability in 
the operation of nuclear power plants by establishing performance objectives, conducting regular 
detailed evaluations of nuclear power plants, and by providing assistance to nuclear power plant 
operators [12].  

6.5 International cooperation   

There is a great deal of international cooperation with regards to the safe operation of nuclear 
power plants. Following the Chernobyl accident the World Association of Nuclear Operators 
(WANO) was set up in 1989. There is evidence that many accidents could have been prevented 
had information learned from previous incidents been shared. WANO helps operators to easily 
communicate and share operational experience and information. WANO has helped achieve high 
levels of safety worldwide through its four main programs: peer reviews, operational experience, 
technical support and exchange, and professional and technical development [13]. At the end of 
2009 all of the world’s commercial power plants had been peer-reviewed at least once [1]. 

The IAEA’s Convention on Nuclear Safety (CNS) is another instrument by which international 
nuclear safety is strengthened. The Convention came into effect in 1996 with the aim to legally 
commit participating states operating land-based nuclear power plants to maintain a high level of 
safety by setting international benchmarks to which states would subscribe. Currently there are 
72 contracting parties including all countries that operate nuclear power plants [14]. The NRC 
prepares a U.S. National Report every three years for the CNS and assigns experienced technical 
managers to participate in peer reviewed discussions [15].  

6.6 Terrorism  

Ever since the September 11, 2001 terrorist attacks in the U.S., there has been much concern 
about the possibility of an aircraft being used by terrorists to impact a nuclear facility with the 
intention of releasing radioactive material. Several studies including one by the Electric Power 
Research Institute paid for by the DOE concluded that reactor structures were more than strong 
enough to resist the impact of a large aircraft. Separate computer analysis models were used to 
simulate a fully-fuelled Boeing 767-400 striking the reactor structure, used fuel storage pools and 
dry storage facilities. The model showed that no part of the aircraft or jet fuel penetrated any of 
the containment structures. Nonetheless since 2001 it is estimated that nuclear operators have 
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spent over $2 billion in NRC required security improvements such as new barriers, bullet proof 
security stations and other physical modifications [1].  
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7. Decommissioning 
 
As part of the conditions for receiving an operating license, the NRC requires that the licensee 
make provision for the decommissioning of the nuclear power plant after it permanently ceases 
operations. Decommissioning is the safe removal of a facility from service and the reduction of 
residual radioactivity to levels that allow the termination of the NRC license.  Decommissioning 
involves removing the spent fuel, dismantling any systems and components containing activation 
products (such as reactor vessel and primary loop), and cleaning up and dismantling any 
contaminated materials. All activated materials have to be shipped off-site to a waste processing, 
storage or disposal facility.  Contaminated materials may be either cleaned of contamination or 
shipped off-site.  
 
7.1 Decommissioning process 
 
The decommissioning of a nuclear power plant is a long and expensive process that involves the 
following major steps: 

• Notification:   After an operator decides to permanently cease operation it must inform 
the NRC in writing the exact day when it plans to do so. The operator must also inform the 
NRC when it has permanently removed the fuel from the reactor vessel. 

 

• Post-shutdown decommissioning activities report (PSDAR):   Before or within two years 
following the cessation of operations the operator must submit a PSDAR to the NRC. A 
PSDAR includes a description of the decommissioning activities, a schedule for the 
accomplishment of such activities, an estimate of the expected costs, and document that 
the environmental impacts associated with the decommissioning activities fall within the 
previously submitted environmental impact statement. Upon receipt the NRC will make 
notice of the receipt in the federal register and make the PSDAR available for public 
comment.  In addition, the NRC holds a public meeting near the decommissioning site for 
discussion of the PSDAR. The licensee can begin decommissioning activities 90 days after 
the PDSAR submission.  Decommissioning must take place within 60 years after cessation 
of operations unless otherwise permitted by the NRC. The licensee remains completely 
accountable until the NRC terminates its license. 

 

• License termination plan (LTP):   Two years before the termination date a licensee must 
submit a LTP describing: site characterization, identification of remaining dismantling 
activities, plan for site remediation, plans for final survey of residual contamination on the 
site, a description of the end-use of the site, an updated estimate of the remaining costs, 
and a supplemental environmental report. Upon receipt of the LTP the NRC makes the 
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plan available for public comment and holds a public meeting near the decommissioning 
site. The NRC reviews the LTP, and if everything is in accordance with NRC’s regulations it 
approves the plan.  

 

• Completion of decommission:   At the conclusion of decommissioning activities the 
licensee has to submit a final radiation survey report. The NRC will terminate the license if 
it determines that the dismantling was performed in accordance to the LTP, and that the 
final radiation demonstrates that the facility and site are suitable for release.  If the site is 
released for unrestricted use, any use of the site is permitted including restoring the 
natural habitat, farming, or continued industrial use.  
 

7.2 Decommissioning costs 
 
The decommissioning process is expensive; the NRC estimates that the costs of decommissioning 
a nuclear power plant are in the range of $280 to $612 million. The total cost depends on many 
factors including the sequence and timing of the various stages of the program, location of the 
facility, radioactive waste burial costs, and plans for spent fuel storage. The NRC ensures that the 
licensee will be able to pay for the decommissioning cost through three different means: 
prepayment, external sinking fund or surety method or insurance.  
 

• Prepayment:   At the start of operations the licensee deposits into an account the funds 
necessary to pay for the decommissioning costs. This account is not to be under the 
licensee’s control. Forms of prepayment include an escrow account, trust, government 
fund, certificate of deposit, or deposit of government securities. 

 

• External sinking fund:   The external sinking fund is established and maintained by setting 
funds aside periodically in an account outside of the licensee’s control. The funds have to 
be sufficient for the decommissioning costs at the anticipated time when the plant goes 
out of service. The sinking fund may be in the form of a trust, certificate of deposit, 
escrow account, government fund or deposit of government securities.   

 

• Surety method or insurance:   The surety method may be in the form of a surety bond, 
letter of credit or line of credit. Any surety method or insurance must be open ended, 
provide the full face amount, payable to a trust fund established for decommissioning 
costs and remain in effect until the commission has terminated the license.   
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