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Abstract 

The price of solar PV systems has declined rapidly, yet there are some much lower-priced systems 
than others. This study explores the factors leading some systems to be so much lower priced than 
others. Using a data set of 42,611 residential-scale PV systems installed in the U.S. in 2013, we use 
quantile regressions to estimate the importance of factors affecting the installed prices for low-
priced (LP) systems (those at the 10th percentile) in comparison to median-priced systems.  We 
find that the value of solar to consumers–a variable that accounts for subsidies, electric rates, and 
PV generation levels–is associated with lower prices for LP systems but higher prices for median 
priced systems.  Conversely, systems installed in new home construction are associated with lower 
prices at the median but higher prices for LP.  Other variables have larger cost-reducing effects on 
LP than on median priced systems: systems installed in Arizona and Florida, as well as commercial 
and thin film systems.  In contrast, the following have a smaller effect on prices for LP systems than 
median priced systems: tracking systems, self-installations, systems installed in Massachusetts, the 
system size, and installer experience. These results highlight the complex factors at play that lead 
to LP systems and shed light into how such LP systems can come about. 
 
Keywords: subsidies; solar; PV; price dispersion; technological change  
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1. Introduction 

The global deployment of solar photovoltaics (PV) is on the rise, motivated by a variety of policy 
interventions and by the dropping cost of solar (Baker et al. 2013, Bazilian et al. 2013, REN21 2016).  
But the degree to which solar continues its rapid pace of deployment and its resulting role in climate 
mitigation will depend on future cost reductions (IPCC 2011, Luderer et al. 2014, Pietzcker et al. 2014). 
Increasingly lower costs will be important to help overcome the inherent grid-integration limitations to 
time-variable PV output and to counteract declining incentives and compensation rates(Mills and Wiser 
2013, Hirth 2015, Denholm et al. 2016, Sivaram and Kann 2016). As such, a key goal for the solar 
industry, policymakers, and other decision makers—as exemplified by the U.S. Department of Energy’s 
SunShot Initiative—is to foster continued, dramatic declines in solar costs, in order to ensure a sizable 
future role for this technology in meeting energy supply needs under carbon constraints. 
 
A surprising feature of the solar market is that while the mean installed price has been decreasing 
rapidly, there is also considerable heterogeneity in the prices of installed systems, both across and 
within markets. For example, in Germany, the average installed price of a residential system in 2014 
was $1.75/W (Wirth 2016); in the U.S., meanwhile, the average installed price for residential systems in 
2014 was much higher, above $4/W.  Seel et al. (2014) explore some of the drivers for these installed 
price variations across markets.  Even within the United States, however, we see a large number of 
much lower priced systems than others.  Barbose and Darghouth (2015), for example, show a spread in 
the installed prices of smaller residential PV systems in the U.S. in 2014 of $3.50/W (20th percentile) to 
$5.30/W (80th percentile). 
 
Researchers have begun exploring some of the reasons for this heterogeneity in PV pricing in the U.S., 
focusing on factors that influence prices at the median.  Gillingham et al. (2016), for example, broadly 
assess factors influencing PV system price differences, including search costs, market competition, 
installer experience and market share, incentive levels, market characteristics, solar policy design, and 
PV system characteristics.  Burkhardt et al. (2015) and Dong and Wiser (2014), meanwhile, evaluate the 
influence of local permitting and regulatory processes on PV system prices. Still other work has 
investigated the impact of solar incentives on prices (Podolefsky 2013, Shrimali and Jenner 2013, Dong 
et al. 2014) and the influence of third-party ownership (TPO) (Davidson and Steinberg 2013). All of this 
previous work has focused on understanding trends for mean or median PV systems. Most recently, 
however, research has begun to specifically explore the characteristics of low-priced (LP) systems. In 
particular, Nemet et al. (2016) provide a first assessment of LP PV systems, finding that system 
characteristics, location, and policies have significant effects on whether the systems are priced below 
the 10th percentile of the price distribution. 
 
This study builds on the past literature by continuing the focus on low-priced systems. We extend the 
work of Nemet et al. (2016) by statistically evaluating what might drive LP systems to be even lower 
priced. This is important since one of the key pathways to a large-scale climate solution would be to 
continue to drive the prices of solar PV lower to allow for widespread adoption.  Our research questions 
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are thus: (1) What factors are associated with lower prices among LP PV systems, and (2) Are those 
factors different from those for median priced systems? 
 
In conducting this work, we analyze 42,611 residential-scale PV systems installed in the United States in 
2013, estimating the factors affecting installed prices for LP systems. We leverage the sizable data set of 
system-level PV prices managed by Lawrence Berkeley National Laboratory (LBNL).1 In order to help 
gauge the possible drivers for achieving even lower prices, as might be needed if solar is to play a major 
role in climate mitigation, we are especially interested in knowing whether these factors are different 
from those affecting PV systems at the middle of the price distribution. As such, we use quantile 
regressions to compare effects for LP to those at the median.   

2. Methods and Data 

Our overall approach in addressing these questions is to apply quantile regressions to data on U.S. 
residential-scale PV installations. 

2.1. Data sources  

We begin with data from LBNL’s Tracking the Sun (TTS) report series (Barbose and Darghouth 
2015). For TTS, individual PV system installation data is collected for over 400,000 systems from 
59 PV incentive programs, accounting for about two thirds of all PV installations in the US since 
1998. The data includes the systems’ total system transaction price, which is the principal variable 
of interest in this analysis, installation date, location (zip codes or street addresses), incentive 
levels, customer segment, third party ownership, installer information, as well as a number of 
other system characteristics. Barbose and Darghouth (2015) contains a comprehensive description 
of the TTS data set. 
 
We extend the TTS dataset for this analysis by constructing new variables from installation dates, 
locations, and installer information. This includes the number of active installers in the county; the 
aggregate, discounted county-level experience for installers; the consumer value of solar (present 
value of all incentives and electricity bill savings over the lifetime of the system, based on 
simulated PV generation, average utility electricity rates, calculated and reported incentive levels); 
module and inverter price indices from SEIA/GTM (2014); and a number of socio-economic and 
demographic variables associated with the zip code or county where the PV system is installed, 
such as household density, income, and wages from the U.S. Census (2014) and the U.S. Bureau of 
Labor Statistics (2014).  We include variable definitions in the Supporting Information (SI). 

2.2. Variables and restrictions 

We restrict this data set by including only systems with the following characteristics: installed in 

                                                             
1 This paper is part of a larger body of research conducted by LBNL, University of Texas—Austin, University 
of 
Wisconsin—Madison, Yale University, and the National Renewable Energy Laboratory that is exploring U.S. PV system price 
variability. 
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2013 (for the most recent data), between 1-15 kWDC (for residential scale), and with installed 
prices between $1 and $25/W (to eliminate outliers).  Further, we drop systems with incomplete 
information, e.g., on county and installer name.  We include Third Party Owned (TPO) systems but 
exclude those with prices based on “appraised” value (n=19,765).  Rather than reflecting actual 
transactions, appraised value prices are based on companies’ idiosyncratic formulae and thus do 
not convey meaningful information about the transacted price of an installation; these are reported 
by vertically integrated solar installers who install and own TPO systems and hence do not have 
transaction prices to report. Exclusion of appraised value systems increases our confidence in the 
modeled results (see SI).  The resulting data set includes complete information on 42,611 installed 
residential-scale systems2, and consists of customer-owned PV systems and TPO systems that do 
not report appraised values but instead report transaction prices between the installer and the 
third-party owner.  Figure 1 shows the probability distribution of installed prices for these 
systems. We include summary statistics for all variables in the SI. 

 
Figure 1. Probability distribution of installed PV prices 2013. 
 

2.3. Quantile regression approach  

Because we are particularly interested in understanding the factors that affect systems with the 
lowest prices, we use a quantile regression approach (Koenker 2005).  Rather than estimating a 
model to predict the conditional mean price, this approach weighs positive and negative error 
terms differently to predict outcomes at any quantile.  For example, we can target prices with 
larger negative error terms, such as the 10th percentile.  To represent LP systems, we use the 10th 
percentile, where installed price, P=$3.46/W, and employ the specification used in Nemet et al. 
(2016), which uses regressors for competition variables (COMP), firm (FIRM) and market (MKT) 
characteristics, policies (POL), PV system attributes (SYSTEM), and binary variables (B): 

                                                             
2 Included in the dataset are only systems 1-15 kW in size, typical of residential installations but also including smaller 
commercial installations. 
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Pijst = β0 + β1COMPist + β2FIRMjst + β3MKTist + β4POList + β5SYSTEMist + B + eijst (1) 

for each installation i, installer firm j, state s, and date t. COMP is a vector of competition variables, 
which consists of the number of active installers and county-level concentration Herfindahl-
Hirschman index (HHI). FIRM includes county-level experience, market share, and installer scale. 
MKT includes: household density; whether the customer is residential, commercial, or other; 
whether the system is third-party or customer owned; as well as income for the zip code. POL 
includes four policy variables: the value of solar to consumers (discussed below and in SI), percent 
of incentives coming from solar renewable energy credits (SREC), interconnection score, and sales 
tax.  SYSTEM is a vector of installation characteristics including system size (and size squared), 
average module and inverter hardware costs, a zip-code level wage index, and module efficiency. It 
also includes binary variables for tracking, building integrated PV (BiPV), new construction, 
battery backup, self-installation, micro-inverters, Chinese panels, and thin-film panels. We add 
separate binary variables, B, for the state and the month of application for the installation.  We 
arrange our specifications to avoid including highly collinear pairs, e.g., installer scale and 
experience; zip-code-level education, income, and wages. The supplementary information contains 
further details on the variable definitions. 

3. Results 

3.1.  Descriptive Comparisons 

Before interpreting the quantile regression results, it helps to understand two aspects of the data 
descriptively, the consumer value of solar and third party ownership-the first because it is 
important for the research questions and results, and the second because it bifurcates the data set.  
The following descriptives provide context for interpreting the subsequent regression results. 
1.1.1. Consumer value of solar 

Consumer value of solar (VoS) measures the sum of up-front tax credits and rebates (federal 
investment tax credit [ITC], state ITC, rebates) and lifetime revenue streams (utility bill savings, 
SRECs, performance-based incentives, feed-in tariffs) accruing to a system (Figure 2).  

 
Figure 2.  Components of the consumer value of solar for all systems. 
 
VoS varies geographically according to incentive availability, local retail rates, and local solar 
resources (Figure 3). Utility bill savings are the primary contributor to VoS in most states, 
comprising about 61% of the VoS of an average system—highest in California, lowest in Florida 
(utility bill savings in Florida are replaced by feed-in tariff revenue).  
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Figure 3. Disaggregation of VoS components by state. 
 
The mean VoS of LP systems is about $0.68/W lower than non-LP systems (t=27), due primarily to 
a $0.67/W difference in mean utility bill savings (t=24) (Figure 4). However, previous work has 
found that LP systems are associated with higher VoS when controlling for state fixed effects and 
other covariates (Nemet et al. 2016). This change in effect is driven strongly by dynamics in 
California. Due in part to steeper tiered rate structures in northern California (the PG&E utility 
service area), average utility bill savings are about $2.70/W higher in California than in other 
states (Figure 3). California’s disproportionate representation among non-LP systems (about 68% 
of non-LP systems compared to 34% of LP systems) drives a negative VoS/LP relationship without 
state fixed effects (Nemet et al. 2016), indicating that PV systems with higher VoS are more likely 
to be non-LP. However, within California, utility bill savings are about $0.79/W higher for LP than 
for non-LP systems (t=21), contributing to a sign flip for the VoS/LP relationship when including 
state fixed effects. In the quantile regressions, we assess the VoS/LP relationship further, and in the 
discussion consider differences between northern and southern California. 

 
Figure 4. VoS disaggregation by system price decile. 
 
Spatially variable factors, such as VoS, can drive geographic price variability.  In general, system 
prices are higher in California, especially southern California, and relatively lower in other major 
markets such as Arizona and New Jersey (Figure 5). Low prices in Arizona and New Jersey, which 
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also happen to be relatively low VoS states, further drive a negative VoS/LP correlation at the 
national level. However, our quantile regression models, which include state fixed effects to control 
for unobserved state differences, effectively measure state-level relationships between VoS and 
installed prices. The most prominent state-level VoS/price relationship is in California, a 
relationship we discuss in the concluding section. 

 
Figure 5. County-level mean system prices ($/W).  Left panel shows 5 western states and 
right panel shows 8 eastern states. 
 
1.1.2. Third party ownership 

System ownership (host-owned vs. TPO) is another spatially heterogeneous factor that could 
explain geographic price variation. System ownership trends vary considerably across states, from 
six states with no TPO (due in part to restrictive state policies) to as high as 87% TPO in New 
Jersey (Figure 6).  Of the five states with at least 100 TPO systems in the data, TPO systems are less 
likely to be LP in two states (CA, NY) and more likely to be LP in three states (AZ, MA, NJ). As noted 
above, these data exclude appraised value TPO systems. 
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Figure 6. Percentage of TPO systems by state (percentage of TPO systems that are LP in 
parentheses). 
 

3.2. Quantile regressions 

Applying quantile regressions to equation 1 and our data, we obtain estimates for the effect of 
determinants of installed prices at several quantiles of the price distribution.  We first compare the 
results across percentiles for our preferred model specification and then assess the robustness of 
these results to alternative specifications.  For all of these results, the dependent variable is the 
installed price per watt.  To address our research questions, we focus throughout on changes in the 
sizes and signs of the significant results in comparing LP systems to non-LP systems.   
 
In addressing research question 1 (which factors are associated with lower prices among LP 
systems?), Figure 7 below summarizes the results for our preferred specification.  On the left side 
are all variables for which the coefficients are significant at the 95% level using quantile 
regressions targeting the 10th percentile of the price distribution.  The variables above the dashed 
line are continuous and those below are binary.  The x-axis shows the effect on prices at the 10th 
percentile of the price distribution ($3.46/W) as blue bars and at the median ($4.68/W) as white 
bars.  We use the median to represent other (non-LP) systems.  The magnitudes on the x-axis are 
the effects on prices of moving from the 5th percentile to the 95th percentile for continuous 
variables.  For example, at the 10th percentile, increasing system size from 3kW (the 5th percentile) 
to 10kW (the 95th percentile) reduces price by $0.27/W.  The effect shown for system size 
combines both linear and quadratic terms for size.  For the binary variables the values show the 
effect of shifting the variable from null to positive. For example, at the 10th percentile, third party 
ownership increases prices by $0.25/W compared to customer ownership.  We include the 
coefficients for our preferred specifications at the 10th, 25th, 50th, 75th, and 90th percentiles in the SI.  
Among the continuous variables we see the largest effects on 10th percentiles prices from system 
size, value of solar, and share of value coming from solar renewable energy credits (SRECs), as well 
as inverter and module prices.  We note that inverter prices were more dynamic than modules 
prices during 2013.  For the binary variables, the largest factors increasing prices were tracking 
systems, building integrated PV, and being installed in Massachusetts.  The largest price-reducing 
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effects were from commercial, self-installations, and thin film, as well as being installed in Arizona, 
Nevada, and Florida. 
 
For research question 2 (are the factors different for LP systems than for median priced systems?) 
we focus on results in which the blue bars and white bars diverge—as evidenced either by 
different signs or large (>50%) differences in magnitude.  One can see in Figure 7 that two 
variables in particular stand out: consumer value of solar and new construction.  For LP systems, 
moving from 5th percentile of value of solar ($3.39/W) to the 95th percentile ($8.32/W) reduces 
installed price by $0.27/W, approximately 8%.  In contrast, value of solar has the opposite effect at 
the median; a higher value of solar increases the prices of systems by $0.23/W at the median.  By 
separating the effects on LP vs. those on non-LP systems, this result reconciles two apparently 
conflicting results in previous work: previous work on mean priced systems found that value of 
solar is associated with increased prices (Gillingham et al. 2016) while work on LP systems found a 
statistically significant effect in the opposite direction (Nemet et al. 2016).  Similarly, new 
construction has opposing effects for LP and non-LP systems.  Installations on new homes make LP 
systems $0.18/W more expensive than installations on existing homes.  For median priced 
systems, prices for installations on new construction are $0.68 less than on existing homes.  Note 
that this is a large effect, reducing the price of median priced systems by 15%.   
 
We also find results with a large change in the absolute value of the effect, without a change in 
direction.  The following variables have effects that are at least $0.25/W larger for LP systems than 
median priced systems: Arizona, Florida, commercial, and thin film modules.  These four variables 
are more important for the prices of LP systems than for non-LP systems and all four have negative 
effects on prices.  Other variables are significant (with directions in parentheses) but are less 
important for LP systems than for median priced systems: tracking (+), self-installations (-), 
Massachusetts (+), system size (-), and installer experience (-).  These five variables all have effects 
that are $0.25/W smaller for LP than for non-LP systems.  They are thus more important for 
median priced systems than for LP systems. 
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Figure 7. Sizes of effects for significant variables in base model. Values indicate change in price 
from moving from 5th percentile to 95th percentile for each variable.  
 
In the SI we include robustness checks that employ alternative model specifications.  We drop the 
state dummy variables, use other variables for competition and installer firm characteristics, add 
module characteristics (which are only available for a subset of the data), and include appraised 
value systems.  We note that the directional change (from 10th to 50th percentile of all systems) in 
value of solar and new construction is robust to dropping the state dummies.  The effects of those 
two variables are also robust to the other alternative specifications, with the exception of adding 
data on module characteristics (module efficiency and whether it was produced in China). Adding 
these additional data to the model, however, requires us to drop 9,500 observations (or 22% of all 
systems in the main model). With module data added to the models, new construction changes 
from positive to negative (for LP systems). This could result from the use of higher efficiency (and 
more expensive) modules in new construction, which we do see in the data.  It could also result 
from a change in the mix of systems involved in dropping one quarter of the observations; these 
drops are not randomly distributed but involve dropping entire incentive programs that do not 
collect these data.  
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4. Summary and Discussion 

We use quantile regression models to regress installed PV system prices on an array of 
characteristics of PV systems, markets, and the industry.  Motivated by societal goals to reduce the 
costs of PV, our quantile regression approach allows us to look at differences in the effects between 
LP and non-LP systems.  Both the consumer value of solar and the new construction variables have 
especially different effects; in fact, both have the opposite effect on prices for LP and for median-
priced systems.  These results have important implications for what can be expected from policy 
given that cost reductions are a goal.  Our results imply that subsidies (the main way value of solar 
can be changed) reduce low-end prices but increase prices at the mid-range.  Evaluating solar 
subsidy programs thus needs to take these differential effects into account.  Subsidies may be 
effective at reducing low-end prices in the near term but one should not expect them to reduce 
median prices.  Conversely, evaluations of programs to install solar on new homes need to consider 
that these programs are likely to be successful in reducing prices for average systems, but not for 
low priced systems.  These results are generally very robust to alternative specifications. One 
minor exception is new construction. Specifically, one alternative model suggests that the higher 
efficiency modules that tend to be used in new construction may explain the result that new 
construction leads to higher prices for LP systems. 
 
The robustness of the value of solar results is especially interesting in light of previous work 
showing that the signs of the value of solar coefficients are sensitive to the inclusion of state 
dummies (Gillingham et al. 2016, Nemet et al. 2016).  But here, with quantile regressions, we find 
that even in models in which the state dummies are dropped, the results are the same: the value of 
solar coefficient is negative for LP systems and positive at the median (see SI).  This may be due to 
the prevalence of LP systems at both ends of the VoS distribution, as illustrated below.   
 
In particular, differences between California’s two major utility service territories provide an 
explanation for the conflicting value of solar results. Mean utility bill savings in the Pacific Gas & 
Electric (PG&E) service territory (mostly northern California) are about $1.45/W higher than 
utility bill savings in the Southern California Edison (SCE) service territory due to PGE’s steeper 
tiered rate structure, as of 2013. Further, average prices are about $0.06/W lower in PG&E than in 
SCE (t=4.5), and PG&E systems are 60% more likely to be LP (t=9.3).  The contrast between the 
PG&E and SCE service territories establishes a strong positive VoS/LP relationship within 
California, which comprises 65% of the observations. To look at prices and VoS simultaneously we 
calculate net system cost (install price - VoS) for each system. PG&E systems are associated with 
lower net system costs while SCE systems are associated with higher net system costs (Figure 8).  
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Figure 8. Net system cost (install price - VoS) for 25,073 systems in California. High net 
system costs in southern California, especially around Los Angeles, indicate higher 
prices and lower VoS relative to northern California.  Lowest and highest 1% of net 
system costs excluded to enhance 
visual clarity 
 
At the same time, high VoS is simultaneously associated with LP systems and high-priced systems 
in both California service territories. In California, systems with a VoS above $6.00/W (about 46% 
of systems) are about 87% more likely than lower VoS systems to fall into either extreme of the 
California system price distribution (t=26) (Figure 9). While the dynamics between northern and 
southern California explain the positive VoS/LP relationship observed in Nemet et al. (2016), the 
simultaneous relationship between VoS and LP and high-priced systems in California helps explain 
the VoS results of the current study. As posited in our previous work, high VoS environments may 
provide conditions that foster both LP and high-priced systems. 

PG&E 
Mean net system cost= 
-$1.97/W 

SCE 
Mean net system cost= 
-$0.59/W 

Net System Cost ($/W) 
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Figure 9. Installed price distribution of high value of solar systems (VoS>$6/W) in California. The 
uniform distribution should fall along the 10% line; however, the distribution shows clear clustering 
in both tails.  
 
These results show that some of the factors affecting prices are different for low-priced systems 
than for other systems.  Given that cost reductions are a stated policy goal by the federal 
government, as well as by some state incentive programs, this study elucidates the factors that 
might make low-priced systems even less expensive.  This analysis has focused on the 12 months 
of installations in 2013, a period when prices were rather stable.  Ultimately, it will be important to 
identify the effects of policy (e.g. via the value of solar) on the long term evolution of PV prices—
with a special emphasis on the drivers of costs for systems at the low end of the price distribution.  
This will help enable improved assessments of the effects of policy on these longer-term goals and 
thus inform future polices on how most effectively to stimulate further costs reductions in PV. 
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Appendix A. Data set descriptive statistics, variable definitions 

A1.  Variable definitions and summary statistics 
 
The following tables show definitions and summary statistics for all variables.  
 
Table A1. Variable Definitions. 
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Table A2. Summary statistics. 
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A2. Policy Variables 
 
A number of relevant policy variables can be inferred from the location of each PV system. We 
calculate a customer value of solar (VoS) variable reflecting the discounted value of all policy 
instruments and electricity bill savings.  The VoS represents a rough estimation of the full 
economic value of the PV system to the customer and includes the following five components: 
 
1. Tax credits. The federal government and a number of states offer investment tax credits (ITCs) 
for PV systems. Since 2009, the federal ITC has been 30% of system costs. For host-owned 
residential systems, the credit is based on the total system price net of any cash rebates (since the 
cash rebates are not taxable income). For commercial and TPO residential systems, the credit is 
assumed to be based on the total system price (since the cash rebates are taxable income for 
commercial entities). From the states for which we have PV system data, the following states have 
had ITCs over the 2000–2013 period (in addition to the federal ITC): California, Massachusetts, 
New Mexico, New York, North Carolina, Oregon, Texas, Utah, and Vermont. The ITC rules vary by 
state, with different rules for specific customer segments and periods as well as different ITC caps. 
The ITC calculations were based on the ITC descriptions in (DSIRE 2014) and correspondence with 
state programs.  
2. Cash incentives and rebates, from state and local governments. In most cases, the exact amounts 
for the cash incentives and rebates were received directly from the incentive programs. In some 
cases, the incentive programs did not provide incentive data for all systems. For those systems, the 
cash incentive was estimated by using the average known incentive amount (in dollars per watt) 
from other PV systems in a similar size range that had applied for an incentive within 1 month 
from the same incentive program. Because cash incentives are taxable for commercial entities, we 
assumed that commercial and TPO systems were taxed at the appropriate corporate federal and 
state tax rate. 
  
3. Performance-based incentives (PBIs) and feed-in tariffs (FiTs). PBIs and FiTs are tied to actual or 
estimated PV generation and in most cases disbursed annually for a fixed amount of time (5–20 
years, depending on the incentive program). In order to calculate the annual PBI or FiT payment, 
we estimate the PV production using the National Renewable Energy Laboratory’s PVWatts model 
(http://pvwatts.nrel.gov/), unless an estimated lifetime PBI amount is specified by the incentive 
program. In the latter case, we use those data directly, subject to discounting. Inputting system 
location (i.e., zip code) and system size and making a number of assumptions regarding system 
characteristics—such as south-facing panels with a 25-degree tilt and a derate factor of 0.77—the 
model returns the system’s estimated annual generation. We then calculate the annual PBI or FiT 
payment (subject to applicable state and federal income taxes), assuming a system degradation 
rate of 0.5% per year (Jordan and Kurtz 2013) and a discount rate of 7%. The present value of the 
income stream is calculated and included in the customer VoS variable. 
 
4. Solar renewable energy credit (SREC) payments. Seventeen states plus the District of Columbia 
have enacted renewable portfolio standards with solar or distributed generation set-asides, and in 
many of those states compliance with the set-aside is achieved through the purchase and 
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retirement of tradable SRECs. Among the states in our sample, active SREC markets exist in the 
District of Columbia, Delaware, Massachusetts, Maryland, New Hampshire, New Jersey, Ohio, and 
Pennsylvania. Given the uncertainty in future SREC prices, we chose to extrapolate the 2-year 
rolling average price from the state’s SREC market over 5 years, then assumed $100/MWh SREC 
payment for the following 10 years3. As with the PBI calculations, we use estimated PV system 
generation to calculate total SREC payments and sum the present value of all future SREC 
payments (again, with a discount rate of 7% and a system degradation rate of 0.5% per year).  
 
5. Electricity bill savings. We estimate the present value of all electricity bill savings over the 
lifetime of the PV system. We use the National Renewable Energy Laboratory’s OpenEI platform to 
determine each system’s appropriate utility (assuming the default service provider in areas with 
retail competition). We then use the utility’s average retail electricity rates for commercial and 
residential customers for 2013, extracted from the U.S. Energy Information Administration’s Form 
861, and the estimated annual PV system generation to calculate annual electricity bill savings for 
each PV system. To account for inclining block pricing in California investor-owned utilities, we 
multiply the utilities’ average rate by a tiering factor. The tiering factor is based on how much 
higher the average rate is for net-metered customers (based on their gross consumption) than for 
average non-solar customers following work by the consulting company E3. Utilities with inclining 
block pricing in other states have much less steep price tiers, and hence tiered pricing is not 
modeled for utilities outside California. For commercial systems and TPO systems, the bill savings 
are taxed at the applicable state and federal corporate tax rate, to reflect the fact that the utility 
service costs are an expense that reduces taxable income. We assume that rates rise with inflation 
through the lifetime of the system (20 years) and calculate the present value of each year’s bill 
savings from PV. 
 
In addition, we construct a variable that reflects the percentage of the total customer VoS that 
comes from SRECs, which are more uncertain than other elements constituting the total customer 
VoS.  We also include a state-level interconnection score, which evaluates the ease of 
interconnecting a PV system onto the grid (IREC 2013). 
 

  

                                                             
3 For reference, the average SREC prices for 2013 were $290/MWh in DC, $53/MWh in DE, $310/MWh in MA, $170/MWh in 
MD, $50/MWh in NH, $170/MWh in NJ, $170/MWh in OH, and $30/MWh in PA. 
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Appendix B. Supplemental Analysis 

B1. Appraised value systems 
 
The dependent variable price in $/W is derived from installed system prices. Inaccurate system 
price reporting would therefore weaken the certainty of modeled relationships of the independent 
variables with prices. Appraised value systems (n=19,765) were excluded from the analysis 
because such systems do not convey meaningful price information. Unlike real value system 
installers that report the actual installed price of systems to incentive programs, appraised value 
system installers report prices based on appraised value formulae that do not correspond to 
specific system costs. Appraised value reporting results in system price binning, where large 
numbers of systems are reported with identical prices Figure B1. About 76% of appraised value 
systems fall into a bin of at least 100 identically-priced systems, compared to about 2% of real-
value systems. This suggests that well over half of appraised values do not reflect a true system 
price.  

 
Figure B1. Comparison of appraised value and non-appraised value (real value) systems. 
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Table B1. Appraised value and non-appraised value systems by state. 
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B2. Value of Solar 

 
Figure B2. Components of value of solar, by decile. 
 
 
Value of solar and prices.  The reason for this relationship remains unclear, however it is possible 
that high-VoS markets are fundamentally different. The data suggest that VoS has a positive effect 
on prices up to a VoS of about $6.82/W, and a negative effect on prices beyond $6.82/W. High VoS 
systems (>$6.82/W) are associated with more competitive markets. On average, high VoS systems 
are located in the same zip code as 76 other systems, compared to 60 other systems for low-VoS 
systems (t=19.3). Further, the average county-level HHI associated with high-VoS systems is about 
15% lower than other systems (t=17.6). These data suggest that high-VoS markets may be 
fundamentally different from low-VoS markets in such a way that alters the relationship between 
VoS and system pricing. It is plausible that value-based pricing drives a positive relationship 
between VoS and system pricing in less competitive low-VoS markets, while opposing forces such 
as economies of scale and market competition drive a negative relationship between VoS and 
system pricing in more competitive high-VoS markets. 
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Appendix C. Detail on Regression Analyses 

C1. Tables of regression results. 
 
Table C1 provides coefficients and standard errors for quantile regressions discussed in the main 
text. 
 
Table C1. Estimates from quantile regressions for base model.  Columns indicate quantiles 
estimated. 
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C2. Figures of regression results 

 
Figure C1. Coefficients from quantile regressions of base model at 5 quantiles.  Blue indicates 
significance at 95% level. 
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C3. Alternative specifications 
 

In Table C2 we show results for quantile regressions for model dropping state dummies.  In 
Table C3, we show quantile regression estimates of y=price/W at 10th percentile for 2013 
installs using five alternative specifications.  

Table C2. Quantile regression estimates of y=price/W at multiple quantiles, for 2013 installs. Model 
dropping state dummies.  
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Table C3. Quantile regression estimates of y=price/W at 10th percentile for 2013 installs. Five 
alternative specifications. 
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