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Abstract: Integrated Assessment Models (IAMs) require parameterization of both 
economic and climatic processes. The latter include Ocean Heat Uptake (OHU) 
efficiency, which represents the rate of heat exchange between the atmosphere and 
the deep ocean, and Equilibrium Climate Sensitivity (ECS), or the surface 
temperature response to doubling of CO2 levels after adjustment of the deep ocean. 
Due to a lack of adequate data, OHU and ECS parameter distributions in IAMs have 
been based on simulations from climate models. In recent years, new and 
sufficiently long observational data sets have emerged to support a growing body of 
empirical ECS estimates, but the results have not been applied in IAMs. We 
incorporate a recent observational estimate of the ECS distribution conditioned on 
observed OHU efficiency into two widely-used IAMs. The resulting  Social Cost of 
Carbon (SCC) estimates are much smaller than those from models based on 
simulated parameters. In the DICE model the average SCC falls by 30-50% 
depending on the discount rate, while in the FUND model the average SCC falls by 
over 80%. The span of estimates across discount rates also shrinks considerably, 
implying less sensitivity to this parameter choice.  
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EMPIRICALLY-CONSTRAINED CLIMATE 

SENSITIVITY AND THE SOCIAL COST OF CARBON 
 
 

1 INTRODUCTION 
Integrated Assessment Models (IAMs) are central to the analysis of climate policy, especially for 

estimating the social cost of carbon (SCC), i.e. the discounted present value of the marginal damages 

of a tonne of carbon dioxide emissions. IAMs operate at a high level of abstraction and require 

extensive parameterization for both climatic and economic processes. Two key climate parameters 

are the equilibrium climate sensitivity (ECS), representing the long term temperature change from 

doubling atmospheric CO2, and the ocean heat uptake (OHU) efficiency, representing the rate at 

which the ocean sequesters atmospheric heat. Among the economic parameters, the most 

influential are the discount rate and the coefficients of the Marginal Damages function (Marten 

2011).  

Marginal damages are, in turn, strongly influenced by the way ECS is represented. The 

customary way is through use of a probability density function (PDF) parameterized to fit a range 

of estimates from climate modeling simulations, which then gives rise to a PDF of marginal 

damages. The use of an ECS distribution rather than a point estimate can strongly influence the 

average SCC if it has a large upper tail, which pulls up both the median and mean SCC values. A 

commonly-used ECS PDF is taken from a graph in Roe and Baker (2007, herein RB07) which does 

have a long upper tail. RB07 was an exploration of why uncertainties over ECS have not been 
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reduced despite decades of effort, with the explanation centering on the amplified effect of 

uncertainties in the value of the climate feedback parameter f on final temperatures, due to its 

position in the denominator of the equation for ECS. To illustrate the point they fitted a curve to a 

small selection of ECS estimates published between 2003 and 2007, yielding an ECS curve that had 

a long upper tail even though there was no unbounded source of uncertainty in the underlying 

model.  

IAMs have relied heavily on the RB07 graph to characterize ECS, most notably for the purpose 

of the highly-influential reports of the US Interagency Working Group (IWG 2010, 2013) which 

determines the SCC for official US regulatory purposes. But this usage is inappropriate for two 

reasons. First, as Roe himself later pointed out (Roe and Bauman 2013), the distribution in RB07 

was not applicable in the context of IAM simulations because the wideness of the tails is a function 

of the time span to equilibrium, and the time span relevant to IAM simulations is not consistent 

with a fat tailed-ECS distribution. In the real world, CO2 doubling is not instantaneous, the transition 

to a new equilibrium state is exceedingly slow, and the oceans absorb huge amounts of heat along 

the way. In simplified climate models, time-to-equilibrium goes up with the square of ECS, so an 

upward adjustment of the ECS parameter without taking into account the slower time path of 

warming will yield distorted present value damage estimates (Roe and Bauman 2013). In 

particular, the higher the ECS, the slower the adjustment process, making the fat upper tail of 

realized warming physically impossible for even a thousand years into the future (Roe and Bauman 

2013, p. 653). Thus, under even minuscule discount rates, the fatness of the tail in RB07 is not 

relevant for SCC calculations and its usage in probabilistic IAM simulations generates a misleading 

distribution of SCC values. An ECS distribution applicable to the real world must therefore be 
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constrained by a realistic OHU efficiency estimate. Roe and Bauman (2013) illustrate this by 

recalculating the Weitzman (2009) insurance model under the fat-tails ECS assumption, showing 

that applying the relevant physical constraints cuts the value of insuring against catastrophe to 

below 1 percent of GDP.  

Second, RB07 predated a large literature on empirical ECS estimation. As was common at the 

time, they fitted a distribution to a small number of simulated ECS distributions derived from 

climate models. It is only relatively recently that sufficiently long and detailed observational data 

sets have been produced to allow direct estimation of ECS using empirical energy balance models. A 

large number of studies have appeared since 2010 estimating ECS on long term climatic data (Otto 

et al. 2013, Ring et al. 2012, Aldrin et al. 2012, Lewis 2013, Lewis & Curry 2015, Schwartz 2012, 

Skeie et al 2014, Lewis 2016, etc.). This literature has consistently yielded ECS values near or even 

below the low end of the range taken from climate model studies. General circulation models 

(GCMs) historically yielded sensitivities in the range of 2.0 – 4.5 oC, and (based largely on GCMs) 

RB07 yields a central 90 percent range of 1.72 – 7.14 oC with a median of 3.0 oC and a mean of 3.5 oC 

(see comparison table in IWG 2010, p. 13). But the median of recent empirical estimates has 

generally been between 1.5 and 2.0 oC, with 95% uncertainty bounds below the RB07 average. 

While this inconsistency has attracted growing attention in the climatology literature (Kummer and 

Kessler 2014, Marvel et al. 2015)  IAM practitioners have ignored it and use only the older GCM-

based parameterizations in their models.  

Both these concerns point to a potential for existing SCC calculations to be biased too high. We 

investigate this by replicating standard SCC estimates using two leading IAMs (FUND and DICE), 

then re-doing the calculations using an observational ECS distribution from a recent study (Lewis 
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and Curry 2015, herein LC15) that controls for the effect of ocean heat sequestration, thereby 

yielding an empirically-constrained climate sensitivity distribution. We find that the resulting SCC 

values drop dramatically compared to those reported in the IWG (2010, 2013). The model-based 

RB07 ECS distribution at a 3 percent discount rate yields a mean SCC for the year 2020 of $37.73, in 

line with the IWG estimates that currently guide US policymaking. Substituting an empirical ECS 

distribution from LC15 yields a mean 2020 SCC of $19.52, a drop of 48%.  The same exercise for the 

FUND model yields a mean SCC estimate of $19.33 based on RB07 and $3.33 based on the LC15 

parameters—an 83% decline. Furthermore the probability of a negative SCC (implying CO2 

emissions are a positive externality) jumps dramatically using an empirical ECS distribution. Using 

the FUND model, under the RB07 parameterization at a 3% discount rate there is only about a ten 

percent chance of a negative SCC through 2050, but using the LC15 distribution, the probability of a 

negative SCC jumps to about 40%. Remarkably, replacing simulated climate sensitivity values with 

an empirical distribution calls into question whether CO2 is even a negative externality. The lower 

SCC values also cluster more closely together across difference discount rates, diminishing the 

importance of this parameter. 

The paper proceeds as follows. Section 2 explains the roles of ECS and OHU parameterization in 

climate submodels, and reviews the empirical literature over the past half-decade.  Section 3 

presents SCC calculations using DICE and FUND, and Section 4 presents conclusions.  

2 IAM PARAMETERIZATION 
ECS is defined as the average increase in temperatures around the world as a result of CO2 

doubling, after the deep ocean has adjusted to the increased forcing. While data on historical 
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temperatures and CO2 concentrations are available, it is not straightforward to estimate ECS. Rising 

levels of CO2 and other greenhouse gases must be translated into units of “radiative forcing” which 

maps their effect on radiation into a common measure by which the effects of all types of drivers of 

climate change on temperature change may be compared. The warming effect of CO2 and other 

greenhouse gases is partially offset by the potential cooling effect of aerosols which are sometimes 

released by the same processes responsible for CO2. However, compared to the warming effect of 

CO2, the direct and indirect aerosol cooling effects, and the related negative aerosol forcing, are 

much more uncertain and difficult to quantify, in part because of their interactions with cloud 

formation (IPCC 2013 ch. 8, Kiehl 2007, Schwartz et al 2007). Hence there is a range of possible 

forcing values consistent with the historical CO2 record, based on how strong the offsetting aerosol 

forcing is taken to be.  

If cooling by aerosol forcing is strongly negative, it will offset much of the positive, warming, 

forcing from greenhouse gases; if it is weak it will offset little of it. The net forcing, in turn, affects 

temperature according to the magnitude of ECS. Since the historical temperature record is fixed, 

there must be an offsetting relationship between ECS and estimated forcing: for a given 

temperature change, greater net historical forcing implies lower ECS and vice-versa. This inverse 

relationship is reflected across the suite of climate models. For instance, models that translate 

historical greenhouse gas and aerosol levels into a relatively strong positive forcing must have 

lower ECS, etc. (Kiehl 2007).  

The treatment within a model of OHU efficiency also affects the ECS that corresponds to 

observed warming. The higher OHU efficiency is, and thus the larger the amount of heat 

sequestered in the oceans over the past century, the more the historical climate record understates 
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the total amount of warming that will ultimately occur. However, considering the massive heat 

capacity of the ocean this also implies that future warming will be likewise sequestered relatively 

efficiently, reducing the upper tail of ECS estimates (Roe and Bauman 2013).  

Consequently, estimates of ECS need to make use of information on aerosol forcing and OHU 

efficiency as well as CO2 and temperature records. The problem with calibrating an IAM using an 

ECS curve fitted to data generated by unconstrained climate models is that the range of values is 

not necessarily consistent with the world as represented in the IAM. The spread of model ECS 

measures taken in isolation may be unrealistic and would certainly be misleading if applied in an 

IAM without being conditioned on realistic OHU efficiency estimates. In other words the range of 

ECS values in ensembles of GCM runs is not empirically-constrained. One reason for this is that 

many processes critical to ECS and OHU values in a GCM are sub-grid scale and must be represented 

by crude parameterised approximations that are not themselves constrained by observation. Zhao 

et al (2016), for instance, shows that a wide range of ECS values can emerge in GCMs by altering a 

single cloud microphysics parameter, but since the models all exhibit roughly equal fidelity to 

historical observations there is no way of telling which value is most appropriate. Consequently 

when IWG (2010, p. 13) reports that there is only a 1.3 percent probability that ECS is less than 1.5 

oC, this should be understood as a statement about the ensemble of GCMs they were considering, 

but it is not necessarily a statement about the real world. 

An alternative approach that has a somewhat better chance of yielding statements applicable to 

the real world involves estimating an empirical energy balance model using aerosol forcing and 

historical ocean heat content estimates to condition the ECS distribution. This is the approach taken 

in LC15. They used the 1750-2011 forcing and OHU estimates from the then-most recent IPCC 



[8] 

 

report (IPCC 2014), yielding a median ECS of 1.64 oC and a 5—95 % uncertainty range of 1.05 – 

4.05 oC. This is in line with empirical estimates from Otto et al. (2013), Ring et al. (2012), Aldrin et 

al. (2012) and Lewis (2013), but is in clear contrast to the customary IAM parameterization using 

RB07, since the central value in LC15 falls below the 5% lower bound of the ECS distribution used 

in IWG (2010, 2013). Not surprisingly, this implies that empirically unconstrained SCC estimates 

are skewed high.  

One proposal for resolving the discrepancy between model-based and empirical ECS estimates 

is to use so-called “efficacies” to adjust forcing values for different feedback responses (Kummer 

and Dessler, 2014, Marvel et al. 2015). The underlying argument is that two different types of 

climate forcing agents, each with equivalent initial forcing, may still generate different eventual 

temperature impacts, particularly if they are not well-mixed and the spatial variation induces 

differing local feedbacks. Hansen (2005) introduced the term “efficacy” to capture this concept, 

with the unit of measurement a ratio of overall temperature response to that of CO2. If a species of, 

say, greenhouse gas has an efficacy of 1.5 this means that if its atmospheric concentration were to 

increase by an amount corresponding to the same additional effective radiative forcing (ERF) as a 

doubling of CO2 levels, the eventual temperature response would be 1.5 times larger, due to the 

different feedback processes involved. Hansen (2005) found in GCM simulations that most 

efficacies were close to unity so the spatial and other variations did not matter much at the global 

level. Marvel et al. (2015) analyse simulated data from a different model (GISS-E2-R) and found that 

aggregate efficacy of forcings operating over the historical period was below one, due inter alia to 

aerosol forcing (which is negative) having a high efficacy. They argued that this meant empirical 

estimates of ECS were biased down. However, Marvel et al. mistakenly left out land-use forcing, and 
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their revised uncertainty bounds are so wide that most single-forcing efficacies for ERF encompass 

unity (Marvel et al. 2016 Table S1), though the aggregate efficacy remained below unity.  More 

generally, Marvel et al. (2015) is a study of the behavior of a particular GCM, and it has not been 

established whether forcing efficacy differences among climate models translates into empirically-

relevant real-world effects. Otto et al. (2013), for instance, used forcing estimates that implicitly 

incorporated efficacy variations and they obtained an ECS distribution nearly identical to that in 

LC15.  

3 SCC CALCULATIONS USING EMPIRICAL PARAMETERS 
We first replicated the SCC estimates that would have been used in IWG (2013) from both the 

DICE and FUND models based on the RB07 ECS distribution. As we did not include the PAGE model 

in our work (due to the unavailability of the code) we cannot directly compare our results with the 

IWG tables since they are averaged over all three models. IWG (2013) Table A5 lists separate 

results for FUND and DICE for 2020 and we were able to check our results against those. Since the 

calculations are probabilistic it is not guaranteed that we will reproduce the exact SCC estimates as 

shown in IWG (2013), but our replication is quite close.  Table 1 shows the DICE and FUND SCC 

estimates for 2020 compared with our replications (“Repl”) for three discount rates. Apart from a 

slight under-estimation of the FUND results under the lower discount rates  the match is extremely 

good.  

3.1 DICE MODEL 
Table 2 shows the mean SCC estimates for four discount rates, applying the RB07 and LC15 ECS 

distribution to the DICE model. The final row shows the percentage change for the 2020 estimates 
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(all years exhibit about the same percentage changes). Under the widely-used RB07 distribution, 

the SCC ranges from $3.88 to $89.26 depending on the discount rate and the future year. Under the 

LC15 parameter distributions the SCC ranges from $2.39 to $46.00. The largest proportional drop—

nearly 50 percent—is observed in the low discount rate case. The high discount rate case yields a 

drop of just under 40 percent.  

These reductions are primarily due to the LC15 distribution containing a smaller upper tail and 

therefore greater probability mass at lower temperatures. Table 3 shows the average standard 

deviations of the two sets of estimates.  The largest reduction, about 24 percent, again occurs at the 

lowest discount rate, compared to only seven percent at the highest discount rate. The LC15 

distribution provides uniformly more certainty for the SCC for all years and all discount rates.  

These results are in line with previous research performing similar computations by applying the 

Otto et al (2013) ECS distribution in the DICE model (Dayaratna and Kreutzer 2013). 

3.2 FUND MODEL 
Tables 4 and 5 present the same results as Tables 2 and 3, but for the FUND model. A number of 

differences are notable. The mean SCC estimates are lower under both parameterizations, and 

under the empirical LC15 coefficients are, on average, negative at 5 percent or higher discount rates 

out past 2030. This implies that carbon dioxide emissions are a positive externality, so that the 

optimal policy would require subsidizing emissions. Also, in contrast to the DICE model, use of the 

LC15 coefficients increases the average standard deviation, indicating higher uncertainty. The 

increased uncertainty includes a much larger lower tail, implying a larger probability of a negative 

SCC. Table 6 shows that, under the RB07 parameterization, at a three percent discount rate the 
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probability of carbon dioxide emissions being a positive externality is between nine and 12 percent 

out to 2050. But using the LC15 parameters this probability jumps to between 37 and 45 percent.  

These results are in line with previous simulations using other ECS distributions that have 

smaller upper tails than RB07, namely Otto et al (2013) and Lewis (2013); see Dayaratna and 

Kreutzer (2014).   

4 DISCUSSION AND CONCLUSION 
Model-based ECS distributions are misleading for use in SCC calculations because they are 

skewed high relative to abundant empirical evidence and because of their lack of constraint to OHU 

efficiency rates relevant to IAM timelines, which yields a physically-unrealistic upper tail. The 

model-observational mismatch in ECS estimation is not attributable simply to a specific empirical 

methodology, as very similar results have been found by Otto et al. (2013), Ring et al. (2012), Aldrin 

et al. (2012) and others using a variety of methods. Nor is it an artifact of selecting a specific 

estimation period, as LC15 showed their results were robust to numerous variations on the choice 

of base and final periods (LC15, Table 4).  

We incorporated the Lewis and Curry (2015) ECS distribution, which is conditioned on updated 

forcings and OHU data, into the DICE and FUND models. This reduces the estimated Social Cost of 

Carbon in both, regardless of discount rates. Using a 3 percent discount rate and the RB07 ECS 

distribution, DICE yields an average SCC ranging from about $30 to $60 between now and 2050, but 

this falls in half to the $15 to $30 range using the LC15 ECS estimate. The corresponding average 

SCC in FUND falls from the $17 to $27 range to the $3 to $5 range. Moreover FUND, which takes 

more explicit account of potential regional benefits from CO2 fertilization and increased agricultural 
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productivity, yields a substantial (about 40 percent or more) probability of a negative SCC through 

the first half of the 21st century.  

A further way in which use of empirically-constrained parameters reduces uncertainty is the 

shrinking of the SCC range across discount rates. In the DICE model under the RB07 

parameterization, the mean SCC estimates span about $50 as of 2010 depending on choice of 

discount rate, with the span rising to about $80 as of 2050. This span shrinks to the $20 to $40 

range under the LC15 parameterization. Using the FUND model, the uncertainty range associated 

with the choice of discount rate is  from about $30 to $40 under the RB07 parameterization, falling 

to $4 to $8 range under the LC15 parameterization. Thus, use of well-constrained empirical 

parameters makes a substantial contribution also to reducing uncertainty associated with the 

choice of discount rate.  
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7 TABLES 
 

 

 2.5%  3.0%  5.0% 
 IWG Repl  IWG Repl  IWG Repl 
DICE $57 $57  $38 $38  $12 $12 
FUND $36 $33  $21 $19  $3 $3 

Table 1: Replication of IWG (2013) SCC estimates for DICE and FUND models for 2020, under three 
discount rate assumptions. Replications done herein denoted “Repl”.  
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 Mean Social Cost of Carbon – DICE Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 $46.87 $29.96 $8.62 $3.88  $23.72 $15.50 $4.91 $2.39 

2020 $57.34 $37.73 $11.85 $5.66  $29.07 $19.52 $6.70 $3.43 

2030 $67.13 $45.18 $15.04 $7.43  $34.20 $23.45 $8.48 $4.47 

2040 $77.82 $53.45 $18.74 $9.53  $39.86 $27.84 $10.56 $5.71 

2050 $89.26 $62.38 $22.90 $11.94  $46.00 $32.65 $12.90 $7.13 
 
% Chg at 2020     

 
-49.3% -48.3% -43.5% -39.3% 

Table 2: Mean Social Cost of Carbon estimates by year under four discount rates from the DICE 
Model, for both the simulated (RB07) and empirical (LC15) ECS distributions. Last row shows the 
percent change as of 2020.  
 

 

 Average Standard Deviation – DICE Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 $25.73 $14.88 $3.28 $1.15  $19.34 $11.36 $2.72 $1.09 

2020 $31.29 $18.74 $4.59 $1.75  $23.74 $14.32 $3.78 $1.62 

2030 $36.64 $22.62 $6.00 $2.41  $27.97 $17.17 $4.83 $2.17 

2040 $42.22 $27.00 $7.79 $3.25  $32.61 $20.26 $6.06 $2.86 

2050 $47.71 $31.00 $9.82 $4.25  $37.51 $23.64 $7.50 $3.64 
 
% Chg at 2020     

 
-24.2% -23.6% -17.6% -7.4% 

Table 3: Average standard deviation of SCC estimates by year under four discount rates from the 
DICE Model, for both the simulated (RB07) and empirical (LC15) ECS distributions.  Last row shows 
the percent change as of 2020.   
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 Mean Social Cost of Carbon – FUND Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 $29.69 $16.98 $1.87 -$0.53  $5.25 $2.78 -$0.87 -$1.12 

2020 $32.90 $19.33 $2.54 -$0.37  $5.86 $3.33 -$0.75 -$1.10 

2030 $36.16 $21.78 $3.31 -$0.13  $6.45 $3.90 -$0.55 -$1.01 

2040 $39.53 $24.36 $4.21 $0.19  $7.02 $4.49 -$0.26 -$0.82 

2050 $42.98 $27.06 $5.25 $0.63  $7.53 $5.09 $0.14 -$0.53 
 
% Chg at 2020     

 
-82.2% -82.8% -129.5% -197.3%* 

Table 4: Mean Social Cost of Carbon estimates by year under four discount rates from the FUND 
Model, for both the simulated (RB07) and empirical (LC15) ECS distributions. Last row shows the 
percent change as of 2020. * Change from -$0.37 to -$1.10 is, arithmetically, a positive number, but 
is shown here as negative to indicate that it is a change to a larger negative magnitude. 

 

 

 Average Standard Deviation – FUND Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 $64.24 $31.45 $5.19 $2.24  $67.60 $42.54 $7.62 $2.52 

2020 $32.90 $35.68 $6.28 $2.79  $80.17 $52.61 $10.75 $3.51 

2030 $36.16 $40.24 $7.48 $3.40  $93.86 $64.26 $15.11 $5.02 

2040 $39.53 $45.14 $8.78 $4.05  $108.03 $77.23 $21.12 $7.37 

2050 $42.98 $50.31 $10.22 $4.76  $121.20 $90.55 $29.08 $11.04 
 
% Chg at 2020     

 
+143.7% +47.4% +71.2% +25.8% 

Table 5: Average standard deviation of SCC estimates by year under four discount rates from the 
FUND Model, for both the simulated (RB07) and empirical (LC15) ECS distributions. Last row 
shows the percent change as of 2020.   
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 Probability of Negative Social Cost of Carbon – FUND Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 0.087 0.121 0.372 0.642  0.416 0.450 0.601 0.730 

2020 0.084 0.115 0.344 0.601  0.402 0.432 0.570 0.690 

2030 0.080 0.108 0.312 0.555  0.388 0.414 0.536 0.646 

2040 0.075 0.101 0.282 0.507  0.371 0.394 0.496 0.597 

2050 0.071 0.093 0.251 0.455  0.354 0.372 0.456 0.542 
Table 6: Probability of a negative Social Cost of Carbon under four discount rates in the FUND 
Model. 
 
 
 
 


