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Energy use and life cycle greenhouse gas emissions
of drones for commercial package delivery
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The use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is

poised to become a new industry, significantly shifting energy use in the freight sector. Here

we find the current practical range of multi-copters to be about 4 km with current battery

technology, requiring a new network of urban warehouses or waystations as support. We

show that, although drones consume less energy per package-km than delivery trucks, the

additional warehouse energy required and the longer distances traveled by drones per

package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of

package delivery by small drone are lower than ground-based delivery. Results suggest that, if

carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy

use in the freight sector. To realize the environmental benefits of drone delivery, regulators

and firms should focus on minimizing extra warehousing and limiting the size of drones.
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The technological advancement of unmanned aerial vehicles
(UAVs), commonly referred to as drones, enables novel
applications in industry, government, and research1.

Drones have long been used in military applications, but the use
of drones for commercial package delivery is poised to become a
new industry. Several companies are developing programs for
package delivery using drones, including Amazon2, Google3,
UPS4, and Deutsche Post DHL5. Some of these firms have
registered patents ranging from new delivery drone designs to
flying warehouses6,7. Although commercial use is currently lim-
ited in the United States and much of the world, the U.S. Federal
Aviation Administration and European Aviation Safety Agency
are developing regulations to allow more commercial uses8–10.
Much of the previous criticism of commercial drones has focused
on privacy concerns and safety issues, both of which are sig-
nificant11,12. Yet widespread adoption of drones to replace some
truck deliveries could reshape the energy system by changing total
demand and by shifting a portion of the demand for fuel, for
example, from diesel used by trucks to electricity used by drones.
Truck transport is responsible for 24% of transportation-related
greenhouse gas emissions and comprises 23% of transportation
energy use in the USA13, hence changes to the industry are
important to the environment and the energy system14. While
power grids are evolving, the scale of environmental benefits from
charging drones with electricity depend on the life-cycle envir-
onmental characteristics of electricity, vehicle use, battery mate-
rials, and enabling infrastructure. Drones are coming to the
transportation sector, and stakeholders need to be prepared to
encourage positive environmental outcomes during this transi-
tion. Understanding these issues can inform public and private
decision makers facing energy and environmental choices in the
infancy of the commercial drone age.

Previous studies have shown that transport of goods per
tonne-km by conventional aircraft is about four times more
carbon-intensive than transport by truck, which is in turn
about 10 times more carbon-intensive than transport by rail15.
A delivery system based on drones carrying single packages
promises a new class of delivery speed—Amazon has claimed
30 min from time of purchase2. If it follows the trend set by
other modes, this large increase in speed could come at the cost
of another order-of-magnitude increase in energy intensity and
carbon emissions. However, small, battery-powered drones can
be considerably more efficient than the fossil-fueled vehicles
they replace.

Most drones for military and government applications have
been larger, fixed-wing (airplane-style), fossil-fueled designs.
Fixed-wing aircraft are inherently more energy efficient and can
have much longer ranges than rotary wing copters, and this holds
true for small drones1. However, these fixed-wing drones are
physically much larger than copters of comparable payload
capacity, they require runways for takeoff and landing, are more
constrained in the weight and size of packages they can carry, and
can only deliver packages from an altitude, while moving, which
is not as suitable for precise urban deliveries. Drone deliveries
have also been considered for places with poor road networks, for
example delivering supplies to villages in rural Africa3,16. This
would require longer-range fossil-fueled drones, and fixed-wing
drones making airdrops of larger payloads are more plausible for
this application. However, drone deliveries are also likely to
appear in urban developed markets.

In most prototypes and media depictions so far, drones for
package delivery have appeared as four- or eight-rotor, battery-
powered copters capable of carrying up to 4.5 kg (10 lbs). The
multicopter models currently available typically have flight times
of 10–15 min before draining the onboard batteries, leading to
very limited delivery ranges. Larger batteries, new battery

technologies, and other energy storage methods would affect the
range and energy efficiency of these drones. Google
has announced a novel hybrid design, capable of both hovering
and fixed-wing flight3. Although not meant for package delivery,
another hybrid prototype has been revealed by Sony17. However,
to date, information about this type of drone is limited and
commercial models are not available.

In addition to the energy efficiency of the drone designs, the
impacts of drone delivery depend on the structure of the logistics
system in which they are employed. Several visions have been
offered, and these include a drone flying directly from the retai-
ler’s warehouse to the consumer, a package transported by mul-
tiple drones in relay through a series of waypoint stations3, or the
drone taking packages from a truck to the consumer and back
while the truck travels near a series of delivery locations5. The
advantage of drone delivery for consumers in developed markets
has mainly been represented as speed. Several logistics scenarios
can offer near-immediate delivery if coupled with a network of
local warehouses of available commercial goods. Thus, the energy
use and impacts of any additional product warehousing must also
be considered.

Here we develop scenarios for truck and drone delivery to
compare impacts among drones and traditional delivery methods.
We focus the analysis on copters, by far the better-known and
more widely depicted format for package delivery, but also
include an initial estimate for a fixed-wing (non-hybrid) drone for
comparison. To assess these issues, we develop a flexible energy
use model for multi-rotor drones that is calibrated to measure-
ments from representative quadcopter flights. We characterize the
life-cycle greenhouse gas (GHG) emissions and energy impacts of
commercial package delivery by drone compared with current
systems. We show that while drones could consume less energy
per package than diesel-powered delivery trucks, the additional
warehouse energy required greatly increases life-cycle GHG
impacts. Still, in most cases examined, we show the life-cycle
GHG emissions and energy use of package delivery by small
drone are lower than ground-based delivery. Minimizing extra
warehousing and continued reductions in electricity carbon
intensity are of critical importance to realizing the environmental
benefits of drone delivery.

Results
Drone sizes and ranges. To estimate the energy use and envir-
onmental impacts of drone delivery, we first model the energy use
and performance of multicopter drones. The use case consists of a
single drone carrying a single package from warehouse to desti-
nation, and then returning empty to the warehouse. We base the
analysis on two representative commercial drones: a small
quadcopter (3D Robotics’ Iris), designed to carry up to 0.5 kg, and
a large octocopter (Turbo Ace’s Infinity 9) designed to carry up to
8.1 kg. These provide useful bounds in the performance of current
commercial designs. To estimate the energy used by a drone on a
delivery trip, we extend a known analytical model, based on
conservation of momentum, of the theoretical minimum power
demand by copters. The model includes two empirical para-
meters: an overall power efficiency, η (compared to the theoretical
minimum), and effective drag coefficient for the drone body and
rotors, CD,body. These are derived from measurements of 1073
flight segments of the quadcopter in several outdoor test cam-
paigns (see Methods for model details and flight conditions).
Parameters thus account for moderate wind (0–7 m/s) at random
orientation to the direction of travel.

The energy used by the drone to deliver a package depends on
the speed of travel. Figure 1a shows the measured energy use per
distance traveled over a range of velocities for our test unit
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quadcopter. Comparable results from the analytical model
are shown with two different power efficiencies. At low
velocities, a power efficiency, η, of about 50% fits the data
well (also with different payload masses, see Supplementary
Figs. 1 and 2). At higher speeds, the power efficiency appears to
increase to about 70% (likely due to translational lift, a well-
known effect in helicopter dynamics18). We use the higher value
in further analysis. The effective drag coefficient, CD,body, also
varies with velocity (Supplementary Fig. 3). We use the best-fit
value at higher velocities, CD,body = 1.5, in further analysis.
Figure 1b shows the model results for the quadcopter and
octocopter in the two relevant flight conditions (with and without
a package).

In selecting the velocity, the operator may choose to minimize
energy use (i.e., maximize range) or may choose higher speeds for
faster delivery times (and better capital utilization), or lower

speeds for safety or other practical considerations. The size of the
package also influences the optimum choice of velocity, although
the overall contribution of package drag in our base case is small
(9 and 7% of roundtrip energy use for the quadcopter and
octocopter, respectively). For simplicity, we assume a 10 m/s
velocity for further analysis in all cases, which yields power
demands close to the modeled optimum (at most 14% higher).
Supplementary Tables 1–3 present model parameters and
assumptions.

In our flight tests, the quadcopter flew total distances of 2.6 to
3.7 km on a single charge during the high-speed measurements
(5–12 m/s) and 0.6 km to 1.15 km during low speed measure-
ments (<5 m/s), without a package. For the scenarios below, we
define range as the farthest distance from a warehouse to which a
drone can deliver a package and still return to the warehouse. The
test model configuration is thus not suited to package delivery,
except at very short ranges (about 1 km). However, increasing the
battery size can increase the range. Figure 2 shows the
dependence of range and energy use on battery mass. In
principle, the range increases with battery size with diminishing
returns, up to a maximum where additional battery mass
becomes counter-productive. Although the model accounts for
the increase in drag due to the presence of the additional battery
volume, we find this effect has very little influence on the
result compared with the weight of the battery. The maximum
range with base-case assumptions is about 5 km for both the
quadcopter and octocopter. However, the maximum is achieved
with batteries that are impractically large and well beyond the
thrust capabilities of the test models, likely imposing problems
for flight control, capital cost, and energy efficiency. For further
analysis, we choose battery sizes that provide most of the
range while still within or near the thrust capabilities of our test
units: 1 kg for the quadcopter and 10 kg for the octocopter,
providing ranges of about 3.5 and 4.2 km, respectively. These
ranges are short compared to the distances traveled by
conventional package delivery vehicles and the sizes of most
metropolitan areas.

Powering drones. The choice of battery or energy storage media
substantially affects the delivery range and environmental impact
of a drone. Lithium polymer (LiPo) batteries for electric motors,
and gasoline or glow fuel (a mixture of methanol, oil and nitro-
methane) for combustion engines are currently used to power
drones. To compare, energy densities of relevant energy storage
options are shown in Table 1 based on existing and expected
battery, hydrogen fuel cell, and popular internal combustion
engine technologies and fuels. Practical energy densities are
reported for commercially available devices; most need
improvement to approach their theoretical values. We include a
representative range for hydrogen fuel cells in Table 1 based on
estimates of additional hardware necessary to be comparable to a
battery. Our base case assumes the energy density of the LiPo
batteries used in our test unit, 540 kJ/kg (150Wh/kg), which is on
the high end of current technologies.

Figure 2 also shows the calculated range with a future battery
technology with 900 kJ/kg (250Wh/kg), the U.S. Department of
Energy target for the specific energy of ground vehicle batteries by
the year 202219. We can see from Table 1 that such a target is
possible with a variety of battery chemistries, which would enable
factor increases in range. We can also see that fuel cell
technologies, like combustion fuels, offer significantly higher
energy densities and potential ranges compared to current
batteries. As electric drones are likely to be the first type of
urban delivery drones in widespread use, we focus the primary
efforts of this paper on electric drones.
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Fig. 1 Energy use of a drone per distance traveled at various velocities.
a Comparison of measured data with several models for the unloaded
quadcopter. The theoretical minimum (theoretical min.), represented by
the solid blue line, is calculated by Eqs. 6 and 7. The dashed blue line shows
the power efficiency curve at 70% and the dotted blue line the power
efficiency at 50%. These are calculated by Eq. 8 with the values of η (power
efficiency) noted. The red line shows results incorporating the
manufacturer-supplied rotor properties (see Methods for rotor model).
Black crosses denote measured data for 1073 flight segments. b Base-case
model results for quadcopter (Quad) and octocopter (Octo), with and
without a package
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Comparing emissions. In the near-term, it is likely the use of
drones for retail package delivery will only be for short distance,
same-day deliveries, and will build upon the existing freight
logistics network. Manufacturers produce goods, which are
delivered via marine transport (for imports), air, rail, and/or truck
to regional warehouses. Once purchased by consumers online, the
goods are shipped to local package collection and distribution
centers via air transport (for express deliveries) and/or truck, and
then shipped along with many other packages by a ground
delivery vehicle to the customer’s address. Drone delivery would
shift the energy and GHG emissions in this supply chain in two
major ways. First, delivery by drone shifts energy use and GHG
emissions from the main ground vehicle fuels of diesel, gasoline,
and natural gas to the regionally varying sources of electricity
used to charge drones. Second, same-day delivery by drone likely
requires additional warehouses to store packages in locations
close to final customers, so the total energy use by package
warehouses could increase. We estimate GHG emissions across
three broad delivery pathways. The first is final delivery by
medium-duty delivery truck, representing the most common
existing logistics pathway. The second pathway is package storage
in additional urban warehouses, with final delivery by electricity-
powered drone or package delivery vans. The final pathway we
assessed is customer pick-up from a retail store or urban ware-
house by a passenger vehicle. An illustration of the estimation
system boundary used in our model is shown in Supplementary
Fig. 4. The total energy and emissions used to deliver packages up
to the start of each pathway are assumed to be similar for either
ground delivery or drone delivery. The analysis here focuses on
the final delivery of the package.

Drone batteries will be charged by the electric grids where they
are operating, which differ by region and over time in their fuel
mixes and corresponding emissions20,21. To account for this
variation, we use the U.S. Environmental Protection Agency’s
(EPA) estimate of regional, non-baseload GHG emissions in the
United States22. To bound the main results, we use emissions
factors for California (a low-carbon region), the U.S. average, and
Missouri (a region with the current highest value). We also report
results for drones used in each of the EPA electricity regions and
each North American Reliability Council regions as shown in
Supplementary Figs. 5 and 6. We use EPA non-baseload power
plant fuel mixes and Argonne National Laboratory values23 to
estimate and include upstream emissions associated with power

plant fuels. Because the emissions intensity of the electric grid is
likely to decrease over the coming decades, we also include a low-
GHG case about half as carbon intensive as California in the
sensitivity analysis. We include values for upstream battery
manufacturing emissions for drone and electric vehicle pathways
(see Methods).

Similar to electric ground vehicles, battery-powered drones
benefit from more efficient motors than combustion engines, and
the ability to shift urban tailpipe emissions and associated
impacts to more remote power plants24,25. Yet because of their
limited range, the use of drones for on-demand package delivery
likely requires additional infrastructure in the form of urban
warehouses. These distributed warehouses would need to store a
range of products to enable rapid delivery to consumers,
increasing the total inventory and floor space required. Another
possibility is combining warehouses with urban waystations,
where packages could be relayed to fully charged drones, thereby
increasing total drone range. In either case, many new ware-
houses or waystations would be required to support a drone-
based delivery system. As an example, Fig. 3 shows a hypothetical
coverage map for the city of San Francisco and for the populated
areas of the greater San Francisco Bay Area. About four urban
warehouses would be needed to provide drone delivery service to
the small, dense city of San Francisco, CA with drones capable of
a 3.5 km range. Dozens of warehouses and waystations would be
required to service a metropolitan area (we estimate 112 for the
San Francisco Bay Area). Increasing drone range can significantly
reduce the number of needed nodes. For example, in a generic,
medium-sized, square city, doubling the drone range reduces the
number of required nodes by a factor of 3.5 (see Supplementary
Fig. 7 and Methods).

If drones are restricted to designated airways, the warehousing
requirements would be higher. On the other hand, modifying
existing retail locations to store goods and charge drones could
reduce some warehouse impacts. Overall, the warehouse needs
represent a large source of uncertainty in estimating emissions
from drone delivery. All product delivery pathways require
electricity and natural gas to light, operate, heat, and cool package
warehouses and distribution centers26,27, but any additional
warehousing space needed to enable drone delivery results in
additional energy use. We quantify this warehousing penalty as a
multiple of existing warehouse needs for package delivery. We
include emissions for warehouse energy for all pathways, and
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Fig. 2 Range and energy use as a function of battery size for model copters. a Quadcopter results. b Octocopter results. Range (solid black lines) is the sum
of a loaded and unloaded trip of the distance shown. The future battery technology (future battery tech.) curves (black dashed lines) reflect batteries with
higher energy density than currently available (DOE target for 202219). Red lines show the energy use as a function of battery mass, which is the same for
the base case and future battery technology cases. The design battery sizes for the quadcopter and octocopter test models are 0.26 and 4.2 kg,
respectively
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include emissions for one additional warehouse stage for the
drone and delivery van pathways. Although the specific ware-
house needs and impacts per package are uncertain, it is likely
that the total warehouse area used in a future with widespread
drone delivery is higher than the status quo. Although we did not
specifically evaluate flying warehouses as patented by Amazon7,
we consider different ground warehousing multipliers in the
sensitivity analysis, which enables a comparison across a range of
warehouse energy assumptions.

Because of their small size, when solely comparing the energy use
required per km of distance traveled, we find that electric drones are
far more efficient than trucks, vans, larger gasoline drones, and
passenger cars. The results are shown in Fig. 4. For cases comparing
a drone and a vehicle carrying a single package over similar
distances, for example a customer picking up a package from a
retail store, the drone is clearly a lower-impact solution. However,
delivery trucks carry many packages, delivering on average 0.94
packages per km (1.51 per mile), and their impacts need to be
allocated per package. Our base case estimate of energy per package
shows drones, electric and gasoline vans, and electric trucks with
the lowest values (see Supplementary Table 4). In turn, the
greenhouse gas impacts per unit of energy vary by type of fuel. The
direct and life-cycle emissions factors are shown in Supplementary
Table 5. Taking these factors together with the warehousing impacts
described above, we estimate the life-cycle energy use and
greenhouse gas emissions (in CO2-equivalents) per package
delivered by drone, truck (diesel, natural gas, and electric), van,
and picked up in a passenger car (gasoline and electricity). The
main results are shown in Fig. 5. Electric delivery van results across
a range of carbon intensities are shown in Supplementary Fig. 8,
and a sensitivity analysis showing how the results change under
alternate assumptions is presented in Fig. 6. The assumptions used
in the sensitivity analysis are shown in Table 2.

In the base case, delivery of a small (0.5 kg) package with the
small quadrotor drone has lower impacts than delivery by diesel
truck, ranging from a 59% reduction in GHGs in California, to a
17% reduction in Missouri. Small drones also have lower impacts
across every other delivery method in the same geographical
region: natural gas trucks, electric trucks, gasoline vans, and

electric vans. Results for the larger octocopter are mixed and less
favorable for drones. In the base case, delivery of a medium-sized
(8 kg) package has 17% lower GHGs than delivery by truck in
California, is about equivalent to delivery trucks for the U.S.
average electricity mix, but has 77% higher GHGs than truck
delivery in Missouri, which has a carbon-intensive electricity grid.
Large drones only have lower impacts than the other delivery
modes when charged with relatively low-carbon electricity, and
still in low-carbon regions such as California, electric trucks and
electric vans are better than large drones. Both small drones and
large drones have lower GHGs per package than using a personal
gasoline or electric car for a single item shopping trip, as shown in
Fig. 5.

These results are sensitive to a number of uncertain
parameters, as summarized in Fig. 6. For small drones, the
number of warehouses needed, the electricity intensity of
warehousing, and the carbon intensity of electricity dominates
the total impacts. Reducing the number of warehouses, increasing
their energy efficiency, or increasing the range of small drones
through more energy-dense storage technologies or waystations
could reduce overall impacts by reducing warehousing demands.

For the larger and heavier octocopter, the electricity used for
flying is more important, and is approximately equivalent to
impacts of warehousing in the base case. Therefore, increasing the
range through waystations is likely to increase emissions from
electricity use more than the corresponding savings in ware-
housing demand in the near-term. Because of the importance of
electricity used to power the octocopter, charging with low-
carbon electricity of 200 g CO2e/kWh can reduce delivered
package GHGs by 34% compared to diesel trucks.

For the truck delivery pathways, the most important parameter
is the delivered packages per unit of distance. This is a function of
urban density, geography, logistics, and customer orders. Our
base case uses average numbers from UPS (Methods), and while
deliveries in dense cities could be much higher, additional
uncertainties, such as allocating packages across residential,
commercial, and institutional customers, pickups, and various
package weights, would affect the results. We test a best case
where delivery trucks achieve four times as many deliveries per

Table 1 Key characteristics of potential energy storage technologies for drones

Battery chemistry/fuel
cell/combustion fuel

Theoretical maximum
energy density (Wh per
kg/Wh per l)

Practical energy
density (Wh per
kg/Wh per l)

Proposed
maximum # of
cycles

Depth of
discharge (%)

Representative rangea

(km)

Metal battery technology
Nickel metal hydride 800/194071 8072/190b 200,00071 8073 1.8
Zinc-air 70074/NA 40074/NA 20073 8073 9.1
Lithium-air 5000/100075 100075/200b 175 4076 23
Li-ion battery technology
Lithium polymer 890/144073 150/17077 30073 8073 3.5
Lithium iron phosphate
(LFP)/carbon

580/208078 130/25079 300079 10079 3

Fuel cell technology fuels
Hydrogen (200 bar) 33,300/53080 16,65081/270b 9000c 100d 11
Methanol 5550/439080 222081/1760b 9000e 100d 20
Hydrocarbon combustion fuels
Gasoline 12,400/910081 4710e/3450e 80,470f 100d —
Glow fuelg 4310h/3930h 1640e/1500e 80,470f 100d —

a Representative range is calculated by Eq. 11
b Calculated from density determined from theoretical values
c Calculated from 2500 h maximum lifetime82, with a cycle consisting of 16.6 min
d Considering full use of a fuel tank
e Calculated from efficiency of internal combustion engine83
f Calculated from 250,000 mile maximum lifetime, with a cycle consisting of 5 km
g Composed of 50% methanol, 30% nitromethane and 20% synthetic oil
h Calculated from mixture characteristics
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mile as our base case, and only then would diesel trucks start to
approach the GHG impacts of small drones in California.
However, as technology improves in the future, delivery trucks
and vans will get more efficient, reducing emissions per package.
Overall efficiency of the logistics system may also improve, due to
factors including greater application of information technology
and automation, growing horizontal cooperation among compa-
nies, or standardization of shipping containers28,29. However,
multi-rotor drones are already close to the limits of efficiency, and
any benefits of improved logistics are likely to accrue upstream of
drone operation. Technological advances are more likely to
improve energy storage technologies, allowing the drones to go
farther and carry heavier packages, ultimately leading to higher
emissions per package. Over time then, large drone delivery could
become the progressively worse option for package delivery. A

major exception to this case is if electricity generation
decarbonizes faster than delivery vehicles. If charged with low-
carbon electricity, drones offer a distinct advantage over diesel
and CNG delivery trucks or vans. In recent years in the U.S.,
transportation and electricity production have both modestly
decreased in carbon intensity30.

Another possibility for drones to become more attractive is if
hybrid hovering/fixed-wing drones become commercially viable
and have significantly improved energy efficiency over copters. As
discussed above, prototype hybrids have appeared, but informa-
tion is currently too limited to evaluate these designs. However,
we can fairly expect the performance of a hybrid to fall between
that of a copter and a classic fixed-wing sized for a similar
payload. Using manufacturer data and measurements from a
short flight campaign, we measured the energy efficiency of flight
for a battery-powered, fixed-wing drone (3D Robotics Aero-M)
with a payload capacity similar to the quadcopter test unit. We
find the fixed-wing uses about half the energy per distance
traveled as the quadcopter. This is broadly consistent with the
well-known efficiency advantage of fixed-wing aircraft over
copters18,31.

There are several reasons to expect that hybrids will not match
efficiency of classic fixed-wings. For example, hybrid motors and
rotors must be sized to support the full weight of the vehicle,
adding weight and drag. Also, the efficiency of fixed-wings is
directly related to wingspan and wing area, which may be limited
for safety and maneuverability in urban environments (the
quadcopter test model measures roughly 0.5 by 0.6 m, whereas
the comparable fixed-wing test model spans 1.3 by 1.9 m).
However, the potential for improved energy efficiency through
hybrid designs is clear. A scenario where drone energy use is
reduced by half is shown in the best case drone power use scenario
in Fig. 6. Especially for the larger drone, emissions are reduced in
this case, which start to have lower impacts than diesel trucks
under the U.S. average carbon intensity of electricity. The range of
the drone could be much longer in this case, easing warehouse
demand as well, although that is not captured in this calculation.

Although drone-based package delivery faces many technolo-
gical challenges, safety issues, regulatory concerns, and system
uncertainties, in this initial estimate we find significant promise in
the use of drones to reduce energy use and greenhouse gas
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emissions in the freight sector compared with traditional
pathways. We focus initially on the United States, where the
large variation in regional electricity mixes provides important
comparisons and can inform policymakers and stakeholders (the
carbon intensity of many countries and international regions fall
within the range of the values assessed here—see Supplementary
Fig. 9).

There are plausible scenarios where drones lead to overall
higher energy use and greenhouse gas emissions compared to
ground vehicles. These include higher than expected warehousing
space and energy needs, as well as continued improvement in
ground vehicle energy and logistics efficiencies. Contrary to most
energy technologies, future technological improvement in drones
may increase energy use per package, because better energy
storage will allow drones to fly further with heavier loads. To
realize any environmental benefits from the use of drones,
regulators and firms must consider the system-wide demand for
additional warehousing, the size and efficiency of the drones, and
the source of electricity. In particular, the focus of drones should
be on light packages, with heavier packages left for ground
vehicles. Finally, it’s clear that the continued reduction in the
carbon intensity of the electricity system, coupled with energy
efficiency improvements in associated commercial buildings, are
essential to realize the potential environmental benefits of freight
delivery by drones.

Methods
Drone energy use model. Drones expend energy to fight gravity and to counter
drag forces due to forward motion and wind. The drone’s control software adjusts

the speed of each rotor to achieve the thrust and pitch necessary to stay aloft and
travel forward at the desired velocity. On average, the thrusts from each of the
rotors are roughly equal and together exactly balance gravity and drag forces. We
can then find the total required thrust by:

T ¼ mbody þmbatt þmpackage
� �

g þ Fdrag; ð1Þ

where mbody, mbatt, and mpackage are the masses of the drone body, battery, and
package (if present), g is the gravitational constant, and Fdrag is the total drag force.
Similarly, for steady flight, the pitch angle, α, can be calculated by:

α ¼ tan�1 Fdrag
mbody þmbatt þmpackage
� �

g

 !
: ð2Þ

The drag force can be estimated piecewise by the formula:

Fdrag ¼
X
i

1
2
ρv2aCDiAi; ð3Þ

where va is the air speed, ρ is the density of air, and CDi and Ai are the drag
coefficient and projected area (perpendicular to v) of the ith component. We find it
useful to consider the drag in three components: the drone body, the battery pack,
and the package. Drag coefficients for the latter two are taken from the literature
for appropriate geometries. The drag coefficient for the quadrotor drone is
determined empirically using the drone’s onboard pitch measurement while flying
at various velocities:

CD ¼ 2mbodyg � tanðαÞ
ρv2aAbody

: ð4Þ

The same CD is also applied to the octocopter body. The values used are given
in Supplementary Table 1.

With the total thrust from Eq. 1, we calculate the power required for steady
flight. The theoretical minimum power depends on the area swept by the rotors. In
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Fig. 5 Comparison of life-cycle greenhouse gas emissions per package delivered for drone and ground vehicle pathways under base case assumptions. The
analysis focuses on the final delivery of the package, after the package is delivered to the regional warehouse. Emissions from battery and fuels production,
as well as fuels combustion and electricity production required for transportation and warehousing, are included. The range of regional greenhouse gas
(GHG) intensities of electricity in the U.S. is represented by comparing results from low-carbon California to relatively high-carbon Missouri. Additional
warehousing requirements for drone and van pathways are included. The results show that small quadcopter drones across all U.S. regions have lower life-
cycle GHG emissions than conventional delivery trucks powered by diesel and natural gas, electric vehicle (EV) trucks in most regions, and gasoline-
powered vans. Large octocopter drones are shown to have lower GHG emissions than diesel and natural gas vehicles only when charged with low-carbon
electricity. Both small drones and large drones are shown to have lower GHG emissions than use of a personal vehicle to pick-up a single package.
Numerical values of these results are presented in Supplementary Tables 13–17

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02411-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:409 |DOI: 10.1038/s41467-017-02411-5 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


200

Warehouse multiplier for drones

Electricity intesity of warehousing

Carbon intensity of electricity

Number of hops for drone delivery

Natural gas intensity of warehousing

Upstream emissions from natural gas

Drone power use

Drone battery cycle life

Number of hops for drone delivery

Warehouse multiplier for drones

Carbon intensity of electricity

Electricity intensity of warehousing

Drone power use

Drone battery cycle life

Natural gas intensity of warehousing

Upstream emissions from natural gas

Delivery truck parcels/mile

Electricity intensity of warehousing

Carbon intensity of electricity

Natural gas intensity of warehousing

Upstream emissions from natural gas

600 1000 1400 1800 2200
g CO2e/package

g CO2e/package

g CO2e/package

Large drone

Small drone

Diesel truck

2600 3000 3400 3800

200 600 1000 1400 1800 2200 2600 3000 3400 3800

4200

4200

200 600 1000 1400 1800 2200 2600 3000 3400 3800 4200

Fig. 6 Sensitivity analysis. Greenhouse gas emissions per package delivered for the quadcopter, octocopter, and diesel truck under the parameters listed in
Table 2. Vertical lines mark the base case result for each mode. Green bars show the decrease in emissions and purple bars show the increase in emissions
given parameters Table 2

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02411-5

8 NATURE COMMUNICATIONS |  (2018) 9:409 |DOI: 10.1038/s41467-017-02411-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


general, larger propellers are more efficient because the larger swept area allows
them to achieve a given thrust at lower air velocity. However, they are less
responsive (because they have greater inertia) and more dangerous (because they
carry more kinetic energy). In addition, rotors must be spaced not to interfere with
each other. These factors limit the rotor size.

For n rotors of diameter D, the theoretical minimum power to hover is32:

Pmin;hover ¼ T3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 πnD

2ρ
q : ð5Þ

When the drone moves at significant velocity or in significant wind, the
minimum power requirement changes somewhat depending on the air speed and
incident angle. For example, when the drone has substantial forward pitch and
forward velocity, the rotors must spin faster to achieve a given thrust, because they
must accelerate the air faster than its incoming velocity. The minimum power with
forward motion can also be calculated from conservation of momentum. Adapting
from Hoffman et al.33, the power is given by:

Pmin ¼ Tðv sinαþ viÞ; ð6Þ

where vi is the induced velocity required for a given thrust and can be found by the
solution to the implicit equation:

vi ¼ 2T

πnD2ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v cos αð Þ2þ v sin αþ við Þ2

q : ð7Þ

We correct the theoretical minimum power by the overall power efficiency of
the drone, η, to get expended power:

P ¼ Pmin=η: ð8Þ

We determine η empirically for the quadcopter model and apply the same
factor to the octocopter estimates. Alternately, the velocity-dependent
power–thrust relationship for a specific propeller can be measured empirically or
estimated with a computational fluid dynamics (CFD) simulation. The relationship
is available from the manufacturer in the form of a lookup table for the propellers
in our quadcopter test model34. We include the CFD result in Fig. 1 and
Supplementary Fig. 1 for comparison.

To calculate the energy efficiency of travel, e, we divide power consumption by
the average ground speed of the drone:

e ¼ P=v: ð9Þ

We find the energy consumed for a delivery trip of one-way distance d by:

E ¼ eloaded þ eunloadedð Þd; ð10Þ

where power and velocity (which we assume are constant for each leg) are
evaluated with the package present to give eloaded (for the outbound trip) and
without the package to give eunloaded (for the return trip).

We calculate the range of a drone, R, by:

R ¼ mbattsbattδ
eloaded þ eunloadedð Þf ; ð11Þ

where sbatt is the specific energy of the battery (energy capacity per mass), δ is
the depth of discharge (the fraction of energy capacity designed to be spent on

a typical cycle), and f is a safety factor to reserve energy for unusual
conditions. Note that P and v depend implicitly on mbatt because of its
contribution to the drone mass. In practice, batteries will have to be oversized
to give a margin of safety accounting for variations in conditions and drone
performance. On the basis of the variation in flight times that we observed on
the test unit, we assume f = 1.2. In emergency situations, the option of
discharging the battery below its optimal depth of discharge also provides a
margin of safety. However, in very windy conditions, especially in the case of a
strong and steady crosswind, the drone’s range will be greatly reduced or it
may become unstable (in many locations, winds can reach similar speeds to
the drone’s air speed). A summary of parameter values used in the base case
energy model is given in Supplementary Table 1.

Drone flight conditions, data collection, and model implementation. Mea-
surements from several flight campaigns with a quadrotor drone were used to
validate and calibrate the energy use model. We flew the quadcopter back and forth
between programmed waypoints. To obtain data from flight path segments, where
the quadcopter was flying at a consistent velocity, we omitted data during the
periods when the quadcopter was turning, slowing, or accelerating. There were two
sites for testing. One of them required the distance between waypoints to be limited
to 10.4 m, but the second site allowed for longer flight paths of 66.1 m, allowing
measurements at higher velocities. Our experimental set-up included a weather
station that recorded the wind direction and magnitude while we were flying. Wind
speed ranged from 0 to 3 m/s (0 to 7 mph) at the first site and 2 to 7 m/s (4 to 15
mph) at the second. On average, wind direction was oriented at random with
respect to the flight paths. During different tests, the programmed velocity and
acceleration of the quadcopter was varied to examine the energy efficiency at
different speeds. We also performed tests with payloads increasing from 0 to 384 g
to investigate the relationship between energy use and payload weight. Depending
on the flight test parameters, the quadcopter was able to complete between 19 and
74 segments on a battery charge. The onboard autopilot system recorded GPS data,
onboard voltage and current, the pitch, roll, and yaw of the copter, and other
information. These data were post-processed in Matlab to compute the power
drained by the copter, the distance and time traveled, and the drag coefficient.
These results were then imported into R for comparison with analytical and
manufacturer rotor models and plotting. The analytical and rotor models were
implemented in R35.

Supplementary Fig. 1 shows the theoretical power vs. thrust relationship
for the quadrotor test model. Comparative data shown were measured by
affixing a variety of weights and flying at low speed (~2 m/s). We see that the
quadrotor operates at about two times the theoretical minimum energy (the
best-fit power efficiency is 0.53). This compares well with typical power
efficiencies reported for similar propellers36. The rotor model overestimates
the power consumption slightly.

We performed quadrotor test flights with nine different batteries. The flight
times varied depending on payload, programmed speed, and wind conditions. As
we would expect, flight times were shorter when the quadrotor carried heavier
payloads: flights lasted for 12 min with 0 payload weight, and were as short as 8
min for the full 384 g payload. Flight length extended a little with speed at the first
site, and those flights had durations between 11 and 12 min. For the longer distance
flights at high speed, there were significantly higher winds and flights lasted
between 7 and 9 min. Due to the changing test conditions, there are not sufficient
data to formally analyze the variability in flight times, however it is apparent that
the variation in flight time per battery charge is substantially less that the variability
in energy use on a given flight segment, as seen in Fig. 1a. This is the basis for our
assumption of the safety factor, f = 1.2.

Rotor model. For reference, we adapted parameters provided by the rotor man-
ufacturer based on a CFD model to compare with other results34. The predicted
power and thrust of a rotor is given at various rotational velocities and incident air

Table 2 Parameter values used in the sensitivity analysis

Parameter Best case Base case High case

Number of hops for drone deliverya — 1 4
Carbon intensity of electricity (g CO2e/(kW·h) 100 654 1000
Warehouse multiplier for drones and vansb 1 2 4
Electricity intensity of warehousing (kW·h/package) 0.175 0.35 0.70
Drone power use (% of base case) 50 100 140
Drone battery cycle life 1000 300 150
Upstream emissions of natural gasc (g CO2e/MJ) 10.3 20.1/13.4 29.5
Natural gas intensity of warehousing (MJ/package) 0.475 0.95 1.9
Delivery truck parcels delivered per mile 6.04 1.51 0.76

a Hops are the number of segments each package travels by drone. More than one hop would represent a scenario built on waystations where packages are passed from one drone to another
b The impacts of warehousing in the drone and van scenario, as a multiple of warehousing impacts in the current logistics network
c base case upstream natural gas emissions for CNG/stationary combustion are from Argonne National Laboratory23 for consistency. Low (5%) and high (95%) values are from ref. 40
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velocities. However, the parameters do not account for pitch. To calculate the
effective incident air velocity, we take the component of air speed perpendicular to
the rotor:

veff ¼ v sin αð Þ; ð12Þ

where v and α are the air speed and pitch angle of the drone, as calculated by
Eqs. 1–3. The manufacturer-provided parameters are then interpolated using the
required thrust and effective velocity to calculate power requirements in various
conditions. Results are shown in Fig. 1a and Supplementary Fig. 1. The CFD model
gives results of the same order as measured data, but over-predicts power demand
at all velocities.

Energy storage options and drone range. The range of a drone depends strongly
on the energy density and specific energy of the battery or fuel it carries. The
Lithium polymer battery technology used in the test models and many commercial
drones leads to a very short range compared to ground-based delivery vehicles. The
representative range for batteries is calculated using Eq. 11 using the quadcopter
parameter values in Supplementary Table 1 and the practical energy density and
depth of discharge shown. To assess the potential for improvements in drone range
and subsequent effects on energy efficiency, we performed a review of battery
technologies and hydrocarbon fuels. The results are compiled in Supplementary
Table 2, with a shortened version presented in Table 1. The number of charging
cycles for drones will affect how often energy storage/generation devices or com-
ponents need to be replaced. The safe depth of discharge must also be considered,
since it relates directly to useable energy density. Additional considerations, such as
stability, maximum discharge power and charging rate, are important for vehicle
applications37, and thus not all chemistries will be available to drones.

Unlike batteries, other components such as fuel tanks and hardware are
necessary to facilitate the function of both fuel cells and combustion engines (this
weight is not included in the energy densities shown). To compare the performance
of fuel cells and combustion fuels to batteries, the added volume and weight must
be considered. Table 1 and Supplementary Table 2 give representative ranges for
hypothetical drones driven by hydrogen or methanol fuel cells. The key
assumptions to calculate the effective energy density of the systems are shown in
Supplementary Table 3. Even with the added equipment weight, there is potential
for substantially increased range using fuel cells.

Engines used in combusting fuels are generally much heavier than electric
motors. Therefore, the practical energy density of combustion fuels will likely be
lower than the values in the table when considering the added weights of the
motors and added weight of a fuel tank. However, even when considering
hardware, combustion fuels are the most energy dense of the technologies we
examined, which is why they are used in current large drones.

Advantages to using batteries and fuel cells in drones are higher energy
efficiency than combustion, lower noise, no air emissions at the point of use, and
possible reduced greenhouse gas impacts via low-carbon electricity storage in
batteries or hydrogen produced via low-carbon methods. Cost-efficient use of grid
resources is possible if batteries are charged or hydrogen is generated by electricity
from the grid during off-peak hours, and then used in drones during peak hours.

Energy use estimate for a gasoline helicopter drone and a fixed-wing drone.
We included parameters for a gasoline-powered drone, which are adapted from the
Yamaha RMAX, a helicopter-style drone, currently used in agricultural applica-
tions, with a maximum load capacity of 28 kg38. As electric drones are likely to be
the first type of urban delivery drones in widespread use, we focus the efforts of this
paper on electric drones.

Although copters are the focus of this analysis, we also provide an estimate of
energy use for a fixed-wing drone for rough comparison. The Aero-M by 3D
Robotics is a battery-powered, fixed-wing drone with a payload capacity (0.5 kg)
similar to our quadcopter test unit and, incidentally, the same control software.
Manufacturer specifications indicate a flight time of 40 min, and maximum and
minimum airspeeds of 25 and 9.8 m/s. The specified battery capacity converts to
320 kJ. Assuming an 80% maximum discharge and average flight speed of 17.4 m/s,
we calculate an expected energy efficiency of flight of 6 J/m.

To test this specification, we flew a single campaign with the fixed-wing drone
and measured energy use and distance traveled. Energy use was calculated by the
degree of battery discharge while distance and velocity were calculated by similar
methods as for the quadcopter. The flight was performed outdoors in moderate
wind conditions at an average ground speed of 13.5 m/s. The resulting energy
efficiency of travel was 10 J/m. This should be taken as a rough value, since it is
based on a single campaign, however it is consistent with the difference between
specified and measured performance that we observed for the quadcopter.
Comparing with Fig. 1a, we see that the fixed-wing is roughly twice as efficient as
the quadcopter, which clusters around 20 J/m at higher velocities.

This value is roughly consistent with known data for passenger aircraft.
Although not directly proportional to energy use, comparing the lift-to-drag ratios
of aircraft can provide some guidance about the relative energy use of aircraft of
similar weight. The factor-of-2 difference between the copter and fixed-wing drone
is on the order of what we would expect comparing the lift-to-drag ratios of
passenger helicopters and small planes. For example, a typical ratio for a helicopter

is 4.5, whereas the ratio for the 4-seat Cessna 172 is 9. Some aircraft are
considerably more efficient, for example the Boeing 747 has a ratio of 17.7,
suggesting at least the potential for fixed-wing drones to outperform copters by a
wider margin31.

Ground vehicle parameters. For final delivery of packages with a medium-duty
truck, we developed a bottom-up energy and emissions model informed by lit-
erature values and Argonne National Laboratory’s GREET model23 and validated it
against top-down sustainability reporting from United Parcel Service, Inc. (UPS)’s
2015 Corporate Sustainability report39. We model total energy use of a ground
vehicle per package delivered, thereby eliminating the need to estimate exact street
routes. Because our functional unit is 1 package delivered, we also do not distribute
impacts across the distribution of package weights on a delivery truck. We started
with fuel energy content and vehicle efficiency values for Class 4 package delivery
vehicles, as well as for light-duty vans and light-duty cars as shown in Supple-
mentary Table 4. The product of the energy content of the fuel and the fuel
consumption per mile of travel yields the direct energy use per mile of travel for
each of these vehicles.

Tong et al.40 estimates that the energy efficiency for Class 4 parcel delivery
trucks is 7.3 MJ/km (11.5 mpg) for diesel trucks, 7.8 MJ/km (10.8 mpgde) for
compressed natural gas (CNG) trucks, and 2.44 MJ/km (34.5 mpgde) for electric
(EV) trucks. Hence, each 100 miles (161 km) of travel at these efficiencies uses 1178
MJ for diesel trucks, 1255 MJ for CNG trucks, and 393 MJ of final energy for EV
trucks (excluding efficiency losses at the power plant). As with all rated fuel
economy values, actual observed energy use values would vary with driving
patterns, traffic, terrain, vehicle weight, age of the vehicles, and other parameters.
UPS reported that route optimization and other efficiencies led to a decrease of 23
million miles traveled and a fuel savings of 2.6 million gallons. Dividing those
reported numbers only yields 8.9 mpg. Yet, we use the original reviewed literature
values as near-term thresholds and also include the bounds of uncertainty to
account for near-term improvements to measured fuel economies in these vehicles.

To obtain an energy consumption value for the functional unit of 1 package
delivered, the energy used by the vehicle has to be normalized for the number of
packages the vehicle is carrying and delivering per km. UPS states39 that ground
package trucks generally travel about 100 miles/day and average 1.51 stops per mile
(161 km with 0.94 stops/km), which provides a base case of 151 packages delivered
per day. We note that some of the stops reported by UPS could include pickups
only, or could include the delivery of multiple packages to a single stop, which
would make 151 packages delivered to individual addresses per day a generous
average estimate. Yet, in urban areas packages per mile could be higher. This
number of packages delivered per total distance traveled in a day is a key parameter
that is explored in the sensitivity analysis. For the sensitivity analysis, we use a best
case value of a factor of four higher deliveries per mile than the base, and a worst-
case value a factor of two lower. A Class 4 diesel truck that travels 100 miles and
delivers 151 packages requires 8.7 gallons, or 17.4 packages per gallon, or 7.8 MJ
per package. This estimate is similar in magnitude to an earlier estimate by Weber
et al.27 of last-mile energy use for commercial package delivery. For U.S. domestic
packages, UPS reports a normalized energy intensity of 26.65 MJ per package,
however these values include all stationary and fuel energy used by UPS. Taking the
percentage of energy from diesel to estimate the energy intensity of final package
delivery, as done in Weber et al.27, we arrive at a value similar to our
7.8 MJ per package.

Our bottom-up estimate of package delivery truck energy efficiency is fairly
consistent with UPS’ reporting of 8.32 packages delivered per gallon of fuel,
because UPS’ estimate includes fuel consumption by their feeder network (which
we did not estimate here), and their feeder network “connects our distribution hubs
to each other and to high-volume customers, our own delivery network with the
familiar brown delivery vehicles, as well as third-party trucking and rail partners.”
They report that the feeder network accounts for “more than half of our fuel
consumption in our U.S. Domestic Package business segment”39. Adjusting our
bottom-up estimate by half gives a value similar to UPS’ 8.32 packages delivered
per gallon of fuel. This gives us confidence in our baseline value and also highlights
the need for sensitivity analyses across these parameters.

Besides current Class 4 parcel delivery trucks using a range of fuels, we also
estimate impacts from both vans and automobiles. Last mile delivery in an urban
setting could also be accomplished with smaller, more efficient delivery vans of
various sizes. To bound the vehicle performance we use a smaller van, the Nissan
NV200, which has a city fuel economy of 10.2 km/l (24 mpg)41. A small electric
cargo van is currently not available in the United States, but we test this case using
a van with a 30 kWh battery achieving 100 MPGGE. A recent news article
mentioned that 150 parcels were loaded onto Amazon.com urban delivery vans42,
nearly matching our assumption of 151 packages per day for traditional parcel
trucks. If delivery vans can maintain the same number of stops per mile as Class 4
trucks, then their energy consumption is 3.1 MJ per package or 37.8 packages per
gallon.

To test a scenario where customers use light-duty passenger vehicles to pick-up
a package from a retail store, we use the city fuel economy of exemplary gasoline
(31 MPG Nissan Versa) and electric (124 MPGGE Nissan Leaf) light-duty vehicles
from U.S. fuel economy information41. The U.S. Department of Transportation
estimated that the average vehicle trip length for shopping purposes was 6.4 miles,
according to the most recent survey data43. We use twice this length (12.8 miles or
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20.6 km) as the base case roundtrip travel distance for personal package pick-up
from a retail store. If the roundtrip energy is allocated to one package, the base case
energy use is 50.5 MJ for the gasoline personal car and 3.7 kWh for the EV personal
car. We test the sensitivity to these results by using minimum and maximum
roundtrip distances for retail of 2 and 20 miles, respectively, as done in Weber
et al.27. This sensitivity range would also likely include the uncertainty regarding
allocation of per package energy and chained trips with other errands. At a
roundtrip distance of 2 miles, a personal gasoline car would still have more GHGs
per package than small drones in most of the U.S., but would have lower GHGs
than large drones.

Emissions from fuels. The life-cycle GHG intensities of diesel fuel, gasoline and
natural gas are adapted from Argonne National Laboratory’s GREET model23 and
Tong et al.40, using IPCC AR5 100-year Global Warming Potential values44 of 1
(CO2), 36 (CH4), and 298 (N2O), and are summarized in Supplementary Table 5.
These include both direct values and upstream GHGs associated with extraction,
transportation, and processing of fuels.

Emissions from electricity. We use our calculated range of 3.5 km for the
quadcopter and 4.2 km for the octocopter, and estimate the GHGs per trip for these
distances. Our estimate of direct average energy consumption for a quadcopter
with a 1 kg Li-Polymer battery is 32 J/m (0.0089Wh/m) and our estimate for an
octocopter with a 10 kg Li-Polymer battery is 266 J/m (0.0739Wh/m).

Because of efficiency losses in the drone battery and charger, as well as in the
electric power transmission and distribution systems, more than 1 unit of
electricity generation is required at the power plant to provide 1 unit of usable
electricity from the drone battery. We assume battery and battery charging
efficiencies are each 90%, for a combined efficiency of 81%45,46. We use a value of
5% for transmission and distribution losses from the EPA22. Hence, electricity
generated at the power plant, traveling the transmission and distribution system,
converted at the drone charger, and traveling into and out of the battery to power
the motor has an efficiency of about 77%. Our estimates reflect these efficiencies
and hence electricity values are power plant-to-drone estimates. The emissions
from drone electricity are the product of electricity per meter (including charging
and distribution losses), trip distance, and subregional non-baseload electricity
emissions factors from the e-GRID dataset from the U.S. Environmental Protection
Agency.

There are a variety of methods to allocate GHG and air pollutant emissions to
local electricity use, and each has benefits and drawbacks20,21,47–51. The regional
yet interconnected architecture of the electricity system, coupled with hourly,
seasonal, inter-annual variation, and long-term change in fuel use and asset
composition introduces temporal and spatial uncertainty20,21,52. New demand
from drones would be charged by electricity generating units at the margin, rather
than baseload electricity generating units. Because the GHG emissions intensity of
electricity varies regionally, and for the desire to have open and replicable data
inputs, we use EPA’s e-GRID annual direct non-baseload GHG emissions22 to
present the range of emissions in each North American Reliability Corporation
(NERC) region (shown in Supplementary Table 6), in each e-GRID subregion
(shown in Supplementary Table 7), and for the United States average. When
comparing the results, e-GRID subregions have the advantage of smaller
geographic boundaries, whereas NERC regions reduce some of the uncertainty
from electricity trading across a larger area. To represent the range, we estimate the
emissions using both NERC regions and e-GRID subregions. For the main figures,
we report the range from California (e-GRID subregion WECC California (CAMX)
to the highest value in Missouri (e-GRID subregion SERC Midwest (SRMW). We
note that e-GRID subregion WECC Northwest (NWPP) has about 3% less GHGs
than California (resulting in similar outcomes). For completeness, we report drone
GHG results for each NERC region and e-GRID subregion in Supplementary
Figs. 10–13. The values are consistent with the endpoints selected for presentation
in Fig. 5. As done with other emissions above, methane and nitrous oxide
emissions are converted to CO2-equivalent with a 100-year global warming
potentials (GWP) from IPCC AR544. A map of the NERC regions is shown in
Supplementary Fig. 5 and a map of EPA e-GRID subregions is shown in
Supplementary Fig 6. Because the fuel mix and emissions of the electricity grid is
likely to evolve toward lower emissions over time, and because reduced relative
natural gas prices can result in reduced electricity emissions as gas substitutes for
coal in the near-term53, we include a low-carbon case using 200 g/kWh. We also
present the spectrum of results as GHG intensity of electricity varies from 100 to
1000 g/kWh in the sensitivity analysis. In Supplementary Fig. 9, we show average
emissions factors for electricity from several selected continents and countries.

Emissions and other environmental impacts are also generated in the
manufacturing, construction and decommissioning of specific electricity and fuels
infrastructure, as well as in the extraction, processing and transportation of
energy54–61. Hence upstream emissions from electricity production vary both
within and across regions based on time of day, season, fuel mix, methane leakage
rates, and technological change. Argonne National Laboratory’s GREET model
estimates upstream emissions from average U.S. power plants by fuel type (see
Supplementary Table 8). We estimate the weighted percentage of non-baseload
generation by fuel in each NERC region and e-GRID subregion per the e-GRID
guidance, and multiply these percentages by the upstream emissions values for each

fuel from Argonne’s GREET model. This yields an upstream value in g GHG/kWh
for non-baseload generation in each NERC region and e-GRID subregion. Values
for the weighted percentage of non-baseload generation by fuel in each NERC
region are shown in Supplementary Table 9 and in e-GRID subregions in
Supplementary Table 10. Direct, upstream, and life-cycle emissions in each NERC
region are shown in Supplementary Table 11, and in each e-GRID subregion in
Supplementary Table 12. The uncertainties involved in estimating upstream
emissions from non-baseload electricity in regional electricity grids are
compounded across assumptions about resource extraction, transport, and power
plant type. We tested the sensitivity of the results to the distributions of upstream
GHGs from fossil fuel-fired power plants used in Tong et al.40 and Abrahams
et al.62, which did not measurably change the results.

Emissions from battery production. The impacts of manufacturing and raw
material extraction for lithium-ion batteries can be an important portion of the life-
cycle impacts of electrified transportation. These impacts depend on the battery
chemistries, manufacturing and recycling processes, useful life, and other para-
meters24,63–68. For this analysis, we assume Li–Po batteries will have similar
impacts to lithium-ion phosphate batteries. We use an estimate from Argonne’s
GREET model23 for the embodied energy and GHG emissions for 1 kg of lithium-
ion phosphate batteries of 75 MJ and 4.7 kg of GHG, respectfully. We assume these
impacts are distributed equally per drone trip over the cycle life of the battery.
Testing a range of cycle life assumptions did not measurably affect the results from
the small drone, but battery emissions from large drones would be affected by
either better or worse than expected cycle life. We also use an estimate from
GREET for 1 kg of lithium cobalt oxide batteries of 154 MJ and 10.4 kg of GHG.
For ground vehicles, battery emissions are allocated per km and then per package.
If early battery replacement is required, emissions would increase.

Emissions from warehouses. UPS reports a total global electricity consumption of
about 1628 GWhs, 4365 TJs of natural gas, and 4.7 billion packages delivered in
201539. Using these numbers, the UPS metrics for 2015 are 0.35 kWh per package
for electricity and 0.93 MJ per package of natural gas. Given the large uncertainty
involved in accounting boundaries, local climate, fuels, and operations, we use
these UPS metrics as a base case and test this assumption in the sensitivity analysis.
Emissions from warehousing are the product of these metrics and regional elec-
tricity emissions factors or life-cycle emissions from stationary combustion of
natural gas. UPS reports 1970 g GHG per U.S. domestic package, resulting from all
stationary and mobile combustion in their supply chain, and they note that more
than half of these emissions are from air operations. Our bottom-up estimate of
about 880 g GHG for the local diesel truck delivery (excluding upstream fuel
production) and warehousing portion is within the values expected, given the
reporting by UPS.

The energy use and environmental impacts of drone delivery depend
substantially on the drones’ range and manner of implementation. As explained in
the main text, the degree of extra warehousing required for drone delivery
dominates the comparison of drone- and truck-based scenarios. For servicing an
urban area with on-demand delivery, two main approaches have been proposed.
The first is to locate distribution centers such that all of the service area is within
delivery range of a distribution center. The second is to establish waystations such
that drones can fly from one to another and exchange batteries or trade packages in
a series of hops from distribution center to destination. In the case of connecting
one way station to another, the effective range of the drone is reduced somewhat
because it flies the whole trip with a package instead of only the outbound trip.
However, this difference is small, and we neglect it.

To give a sense of the number of nodes required for a typical urban area, Fig. 3
shows a hypothetical coverage map for the city of San Francisco and for the
populated areas of the greater San Francisco Bay Area. The service area is defined
by a circle around each node (warehouse or way station) with radius equal to the
range of the drone, where range is defined as the farthest distance from the
warehouse to which a drone can deliver a package and still return to the warehouse.
The nodes were placed manually based on a drone range of 3.5 km and covering
most significant regions with population density above the lowest category (>0.5
people per 30×30 m square), yielding rough estimates only. We find that about four
nodes can service the small, dense city of San Francisco, but about 112 nodes are
needed to service the Bay Area.

More generally, the problem of covering a defined area with the minimum
number of equally sized circles has been explored for a variety of applications,
including placement of fire sensors and cellular telephone towers. The solution
depends on the boundary shape and relative size of the circles and boundary.
Square and hexagonal packings are each optimal in certain circumstances, however
hexagonal packing tends to be best over larger areas69. Li et al. provide a formula to
calculate the minimum number of nodes required to cover a square area with
hexagonal packing. The results for an area 16 km on a side (representing a
medium-sized city) and varying drone range are shown in Supplementary Fig. 7.
We see that the number of required nodes drops quickly with improvements in
range from current technology. For example, doubling the range from 3.5 to 7 km
decreases the number of nodes by a factor of 3.5. This illustrates the strong
economic and environmental incentive to increase the range of the drones, if they
are to be deployed from local warehouses. In our base case, we assume drone and
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van pathways require twice as much warehouse space (and energy) than
conventional truck pathways. For our best case, we assume no difference in
warehouse energy, and for our worst case, we assume drones and vans will need
four times as much warehouse energy.

Overall, we find that a metropolitan area currently served by one regional
distribution center could easily require dozens of new local warehouses to achieve
the on-demand delivery model proposed for drones. In our base case scenario, we
assume that the local warehouses constitute a new and additional stage in the
logistics system and that the total storage space in local warehouses is comparable
to the space in the distribution center that serves them. Conceivably, a retailer
selling a high volume of a small number of products could bypass the regional
distribution center and stock local warehouses directly from suppliers. This would
reduce the impact of the new local warehouses. On the other hand, a retailer
stocking a large number of distinct products might have to replicate its inventory
many times to make the products available at each local warehouse.

Data availability. The datasets and code generated in the current study are
available from the corresponding authors on reasonable request.
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