Global Energy Perspective: Reference Case 2018

December 2017

With our Global Energy Perspective, we built a fundamental energy demand outlook

Key insights

I Global energy demand growth decelerates, following a structural decline in energy intensity

2 Electricity demand grows four times faster than all other fuels

Renewables' cost decline accelerates further, out-competing new-built fossil capacity today and existing capacity in 5-10 years

4 Coal demand peaks in next decade, oil in the next two; in contrast, gas continues to grow modestly

5 CO₂ emissions plateau by 2030 and remain far from a 2°C pathway

I Global energy demand growth decelerates, following a structural decline in energy intensity

Global energy demand rises by one quarter over 2015-50, but the rate of growth slows to a pace not seen in the past 100 years

Global primary energy demand

Million terajoules

Sources: McKinsey Energy Insights' Global Energy Perspective, December 2017; IEA Energy Balances (Historical); Smil, V. (Historical)

Population and economic expansion underlie higher overall energy demand, but downward pressure on economic growth and falling energy intensity drive a deceleration of energy demand

Sources: McKinsey Energy Insights' Global Energy Perspective, December 2017; McKinsey Global Institute Global Growth Model, Global Deceleration Scenario; UN Population Division

Energy intensity is improving across regions and end-use sectors with switching to more efficient fuels and technologies

Change in sector energy intensity, 2015-30

% reduction in energy use per selected sector/segment activity

Sector	Segment	Activity unit	China	India	Non- OECD Asia	Africa	Other non-OECD	OECD Americas	OECD Europe	OECD Asia Pacific
Buildings ²	Space heating	m ² floor space								
	Lighting	m² floor space								
	Water heating	Household								
Transport	Passenger cars	km travelled								
	Trucks	km travelled								
	Aviation	Rev-passenger km travelled								
Industry	Chemicals	Ton produced								
	Iron and steel	Ton produced								

¹ Energy intensity provides an indication of end-use efficiency. Underlying drivers include fuel switching, technology changes and service demand effects, e.g. more heat per m²

Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

>40% 20-40% 10-20% <10%

² Residential buildings only, excluding commercial buildings

India, Africa and other developing Asia lead energy demand growth over 2015-50, while China peaks and OECD markets decline

The McKinsey Global Energy Perspective Reference Case projects slower energy demand growth than comparable long-term energy outlooks

Sources: McKinsey Energy Insights' Global Energy Perspective, December 2017; BP Energy Outlook 2017; ExxonMobil 2017 Outlook for Energy; IEA WEO 2017; EIA IEO 2017; Shell New Lens Scenarios

2 Electricity demand grows four times faster than all other fuels

Electrification across key end uses – particularly in buildings and road transport – underlies an acceleration of electricity demand relative to demand for other fuels

¹ Buildings includes residential buildings in OECD Europe and OECD Americas; transport includes passenger cars, trucks, vans, buses, and two- and three-wheelers Source: McKinsey Energy Insights' Global Energy Perspective. December 2017

In buildings, higher living standards in Asia and Africa support fast-rising demand for electricity-based services

Strong improvements in economics of electric vehicles trigger rapid uptake, for cars as well as trucks

¹ ICE: internal combustion engine BEV: battery electric vehicle Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

In a disrupted case, electricity demand growth could be boosted to 2.9% per year

¹ Only in OECD Americas and OECD Europe Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

Renewables' cost decline accelerates further, out-competing new-built fossil capacity today and existing capacity in 5-10 years

2016 was the first year in which solar and wind net additions exceeded coal and gas

This is driven by rapidly improving economics of renewables: already in 2020, they are the most economic new-build option across regions

New renewables become cheaper than even existing CCGTs by 2030 in some markets

¹ Short run marginal cost for existing capacity and levelized cost of energy for new capacity Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

The large-scale shift to renewables is further catalyzed by fast-declining storage costs

Sources: McKinsey Energy Insights' Global Energy Perspective, December 2017; SNE research; Navigant; Bernstein Research; expert interviews

The rapid uptake of renewables will shift the role of fossil fuelled power plants, triggering steep declines in utilization rates

Globally, more than 80% of capacity additions will be in solar and wind, with China and India contributing more than half

¹ Based on bottom-up modelling of 14 countries representing 65% of global power demand, and top-down assessment of remainder of the world Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

Solar and wind generation grow 5-10 times faster than gas, and coal declines after 2030

¹ Other includes biomass, geothermal and marine Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

The impact these developments will have on power systems vary substantially by market

If renewables are delivered at the low bids seen in recent auctions, we could witness even higher penetration of wind and solar, at the expense of gas and coal

^{1 &#}x27;Auctions as Reality' scenario realizes substantially lower prices for solar PV and onshore wind (reflecting recent auction results) relative to the Reference Case Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

In a fast-changing world, key uncertainties will determine how these developments play out locally

2	Regulatory/municipal push for electrification/decarbonization	 Carbon prices Efficiency requests pushing EVs/ electricity in buildings, e.g. C40 initiative
1	Market models and implications of high renewables systems	 Sink for electricity in negative electricity spikes pushing hybrid Capacity/storage markets
*	Increasing connectivity of power markets – electricity exports	 Surge of inter-region and intra-country transmission/ grid design to connect to low RES regions Hydrogen synthetic fuel exports
	Nuclear and coal politics sensitivities	 National plan scenarios of decommissioning vs. new push for small scale/next gen reactors Coal subsidies for energy security/ jobs
<u>\</u>	Fossil fuel price impacts	Impact of potential low demand driving prices down: revival of other segments? Resulting investment cycles?
0-0	Resource and supply chain implications	 Implied demand for e.g. copper, lithium, silicon, rare earths Land use implications from solar/wind build out Demand for installation and O&M of new technologies
***	Consumer consciousness	Pull for low efficiency technologies reducing demand vs. hunger for materialism

4 Coal demand peaks in next decade, oil in the next two; in contrast, gas continues to grow modestly

Fossil fuel use flattens from 2035, with oil and coal in decline but gas use continuing to expand

Sources: McKinsey Energy Insights' Global Energy Perspective, December 2017; IEA Energy Balances (Historical)

Strong growth in coal demand in India and other developing markets partially offsets declining demand in OECD countries and in China

By 2030, this still implies higher coal demand than today based on growth in power and other industries, and cement in particular

Additional acceleration of cost declines in renewables could reduce coal demand for power by over 50% in China and India

^{1 &#}x27;Auctions as Reality' scenario realizes substantially lower prices for solar PV and onshore wind (reflecting recent auction results) relative to the Reference Case Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

In the next decade, liquids demand growth is fueled by chemicals and transport

Yet, this growth is finite: peak oil demand is reached before 2040, driven by efficiency improvements and electrification in road transport

With disruption in road transport and chemicals, oil demand could peak before 2030

What would you have to believe to see liquids demand plummet to half of today's level?

What would you have to believe in each sector?

Road transport

All new vehicles sales are EVs as of 2030, causing rapid shift of OEM production lines and electric infrastructure build out

Marine

Stringent air emissions regulation prompt conversion to LNG of a substantial share (30%) of the shipping fleet

Aviation

The industry achieves its fuel economy improvement stretch target of 2.0% per year

Chemicals

Packaging efficiency reaches 30%, recycling of plastics 20-60% and 10% of virgin ethylene from biomass sources due to global, industry-wide standards to reduce plastics environmental impact

Other industry

Transport equipment within industry electrifies and historical rates of efficiency improvement are maintained

Buildings

OECD countries phase out oil-powered space and water heating in favour of more efficient gas or electricity

Power

Oil-fired generation is completely phased out as renewables with storage prove cheaper

Gas demand develops very differently by sector and over time – only industry and power continue to show growth

Gas demand growth is driven by China's policy push for gas use in power and industry as well as by competitive prices in producing regions

A combination of industrial and residential disruptors could slow global gas demand growth to 0.3% per year, with power rebounding to balance renewables

¹ Only in OECD Americas and OECD Europe 2 Impact only assessed for: China, India, Germany, France, UK, Spain, Italy, Russia, Mexico, Brazil, Australia, and South Africa Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

5 CO₂ emissions plateau by 2030 and remain far from a 2°C pathway

Energy-related ${\rm CO_2}$ emissions peak around 2030 but remain more than double the level consistent with a 2°C long-term pathway

¹ IEA Sustainable Development Scenario emissions pathway consistent with a 1.5-2°C long-term global average temperature increase; extrapolated for 2040-50 Source: McKinsey Energy Insights' Global Energy Perspective, December 2017

Implications

Questions we are discussing with our clients often affect multiple stakeholder groups: examples

Resource producers

- How will resource demand be affected by the regional and sectoral shifts in energy systems?
- Will there be increasing price pressure on resources like oil or coal?
- When do we get peak resource demand and what are the disruptions to watch out for?
- How big is the impact from EVs on oil demand?
- What amount of growth in chemicals would be required to offset impact from recycling?
- Which markets will be key importers of energy?

Utilities

- What are the storage/ renewables costs to be 'in the money'?
- Will there be sufficient demand for all the planned renewables projects?
- Under which circumstances would I still invest into fossil?
- What are the grid/system costs implications of a high renewables power system?

End consumers

 What will be the impact on energy prices for end consumers?

Cities

- What are optimal measures to reduce GHG emissions and how does that change in the future?
- Should I switch the city buses to natural gas or electric?

Governments

- By when will renewables be able to compete economically with conventional generation in my market?
- What are the implications of and pre-requisites for a high renewables power system?

Financiers

- Will value pools be shifting from upstream and resources to downstream?
- If emissions KPIs lead to a reallocation of capital from more to less emissionintense investments – where would that lead the capital?

Get in touch

For more information about McKinsey Energy Insights' Global Energy Perspective please contact info_energyinsights@mckinsey.com

About us

We are a global market intelligence and analytics group focused on the energy sector. We enable organizations to make well-informed strategic, tactical, and operational decisions, using an integrated suite of market models, proprietary industry data, and a global network of industry experts. We work with leading companies across the entire energy value chain to help them manage risk, optimize their organizations, and improve performance.

