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Abstract
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1 Introduction

There is increasing recognition that a transition to cleaner technology has to be the bedrock of future

reductions in carbon emissions.1 While there have been important advances in “conventional”

clean technologies, such as wind and solar, and economic research supports the notion that carbon

taxes and other subsidies can contribute to the adoption of these technologies,2 some experts

and policy-makers instead pin their hopes on geoengineering breakthroughs, such as large-scale

carbon sequestration, ocean fertilization, and solar radiation management (for example, Keith,

2013, Flannery, 2015, and Morton, 2015). Although such breakthroughs, if realized, could enable

the global economy to achieve lower environmental damages without high carbon taxes, there are

concerns that the prospect of geoengineering may delay or undermine other policy responses to

climate change. As the Intergovernmental Panel on Climate Change (IPCC) concludes in its most

recent report,

One of the most prominent arguments against geoengineering suggests that geoengineering re-

search activities might hamper mitigation efforts. . . which presumes that geoengineering should

not be considered an acceptable substitute for mitigation. The central idea is that research

increases the prospect of geoengineering being regarded as a serious alternative to emission

reduction. (IPCC, 2014, p. 219)

In this paper, we provide a new and complementary reason why the prospect of geoengineering

may, paradoxically, lead to worse environmental outcomes. In addition to incorporating geoengi-

neering, our model features two plausible modifications relative to the simplest model of Pigovian

carbon taxation. First, we introduce a conventional clean technology, which firms can adopt in or-

der to reduce emissions when faced with a future carbon tax. Consistent with much of the evidence

in the area of innovation, we assume that the development or adoption of cleaner conventional

technologies today will make it cheaper to adopt them in the future.3 Second, we assume that

1On anthropogenic climate change, see, e.g., Mann et al. (2017) on the contribution of human activity to recent
European heat waves, Yan et al. (2016) on the intensification of tropical cyclones, Kopp et al. (2016) on new models
of sea level rise, and Cook et al. (2016) on scientific consensus. On economic costs of climate change, see Dell et al.
(2012) on growth, Hsiang et al. (2013) on conflict, and Costinot et al. (2016) on agriculture, as well as Greenstone
et al. (2013) on calculating the social cost of carbon. For recent macroeconomic analyses of climate change, see
Hassler et al. (2016), Nordhaus (2008, 2014), Desmet and Rossi-Hansberg (2015), and Golosov et al. (2014).

2We refer to wind, solar and geothermal technologies and to energy-saving incremental improvements, which firms
themselves develop or invest in, as “conventional” technologies to distinguish them from the less-tested geoengineering
technologies (which are likely to be developed by other entities).

3This type of externality arises naturally in almost all models of endogenous technology, including the quality
ladder models of Aghion and Howitt (1992), Grossman and Helpman (1991) and Klette and Kortum (2004), as well
as many of the horizontal innovation models, such as Romer (1990) and Jones (1995). See Acemoglu (2007) for a
discussion. Aghion and Griffith (2005) and Akcigit and Kerr (forthcoming) provide evidence consistent with this type
of externality in general, while Aghion et al. (2016) provide evidence for it in the context of the adoption of cleaner
technologies in the automobile industry and Gillingham and Bollinger (2014) provide evidence in the context of solar
installations.
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policy is chosen by a social planner without the ability to commit to future policies. That policy-

making is potentially “time inconsistent”—both because future decision-makers may be different

than the current one and because even the same decision-maker may wish to revise policy plans and

deviate from promises made in the past—has long been emphasized in many areas of economics.4

In environmental economics, even if it has not been studied extensively, its importance has been

recognized.5 For example, in reviewing several economic frameworks for climate policy evaluation,

William Nordhaus observes that

[N]one of these approaches touch on the structure of actual intertemporal decision-making,

in which this generation cannot decide for or tie the hands of future generations. Instead,

each generation is in the position of one member of a relay team, handing off the baton of

capital to the next generation, and hoping that future generations behave sensibly and avoid

catastrophic choices by dropping or destroying the baton. . . . but this is largely uncharted

territory in economic growth theory. (Nordhaus, 2007, p. 693)

The core of our argument is that time-inconsistency—beyond its general import—qualitatively

changes the positive and normative implications of new technologies. A natural reference point

for the carbon tax in a model with harmful carbon emissions is the Pigovian benchmark (where

the carbon tax equals the marginal damage from one more unit of carbon). However, when the

(social) planner would also like to encourage a transition to cleaner (conventional) technology, she

would like to deviate from the Pigovian benchmark and set a higher tax rate to encourage more

rapid technology adoption.6 But in a world without commitment to future policies, firms will

anticipate that any promised taxes above the Pigovian level will be revised, and underinvest in

clean technology.

It is into this setting that we introduce the prospect of geoengineering. For clarity, and in

4Throughout, we use the term “time-inconsistency” in the spirit of Kydland and Prescott (1977) and Calvo (1978)
to signify that Bellman’s (1957) theorem of sequential optimality fails even for a standard, additively separable
exponentially-discounted objective function because the constraint facing the decision-maker changes over time (here,
due to decisions made by other agents). For examples in the context of fiscal policy, see Chari and Kehoe (1990),
Benhabib and Rustichini (1997), Phelan and Stacchetti (2001), and Klein et al. (2008).

5Several noteworthy about-turns in environmental policy in the OECD illustrate the relevance of time-
inconsistency concerns in this area. Major political reversals include Canada’s withdrawal from the Kyoto Accord in
2011, Australia’s repeal of its carbon tax in 2014, and the U.S.’s rollback of the Clean Power Plan and repudiation of
the Paris Accord in 2017. Examples of regulators revising energy pricing schemes in response to technological change
include the Spanish solar-feed-in-tariff, where the government reneged on solar subsidies after the production costs
fell by more than regulators anticipated, and the U.K.’s decision in late 2011 to cut solar subsidies under the 2008
Energy Act by 55%.

6As emphasized in Acemoglu et al. (2012, 2016), the presence of clean technology innovations or investments
necessitates augmenting carbon taxes with direct subsidies for the development or adoption of these technologies.
In our model, in contrast, we assume that the planner uses a carbon tax to encourage these investments. This is
motivated by practical difficulties in using subsidies to costlessly encourage a complete transition to clean technology
(see, e.g., Borenstein, 2012, pp. 79–80). We show in Proposition 6 how our qualitative results generalize to the case
in which the social planner can also subsidize clean technology.
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line with the IPCC’s own taxonomy, we distinguish between two different types of geoengineering

technologies (recognizing that some real-world technologies are a mixture of these two types): type

I technologies, carbon removal, which correspond to a rightward shift of the environmental damage

function (or, equivalently, reduce the effective stock of carbon that enters the damage function by

a constant amount), and type II technologies, climate adaptation or solar radiation management,

which reduce marginal damages from carbon in the atmosphere.7 Examples of type I technologies

include all forms of large-scale carbon dioxide removal, like mass afforestation, biochar, ambient

air capture, and ocean fertilization.8 Examples of type II technologies include solar radiation

management, such as albedo enhancement, space reflectors, or stratospheric aerosols.9 While some

type II geoengineering technologies appear to be the most empirically relevant, due to their low

predicted costs, type I technologies may also experience breakthroughs.

Though each type of geoengineering technology has somewhat different implications, they both

work in a similar manner. Without an equilibrium response, geoengineering of either type re-

duces future damages, and thus future Pigovian carbon taxes. But when future Pigovian carbon

taxes determine today’s investment in conventional clean technologies, we show that the advent of

geoengineering technologies increases underinvestment in these socially valuable technologies.

More specifically, we demonstrate that type I geoengineering technologies reduce investment

in conventional clean technology so much that overall damages remain at the same level as before

geoengineering. Intuitively, in our model to restore incentives for the adoption of conventional clean

technologies, the Pigovian tax (marginal damage of carbon) needs to be at a certain level. With

type I technologies, when the marginal value of damages remains the same so does the level of

overall damages. Interestingly, even though overall damages remain constant, welfare may decline

because the problem of underinvestment in cleaner technologies becomes more severe with the

geoengineering advances. More ominously, we show that type II geoengineering technologies may

actually lead to greater damages (depending on an elasticity condition for the damage function)

and are more likely to reduce welfare.

The reason why geoengineering technologies backfire in our model is very different from those

emphasized in previous discussions, which focus on potential downsides of the prospect of geo-

engineering because major geoengineering breakthroughs may not be realized or may create new,

unrelated environmental risks. Instead, our framework identifies potential inefficiencies from geo-

7See IPCC (2014, pp. 484–489): “Two categories of geoengineering are generally distinguished. Removal of GHGs,
in particular carbon dioxide termed ‘carbon dioxide removal’ or CDR, would reduce atmospheric GHG concentra-
tions.. . . ‘Solar radiation management’ or SRM technologies aim to increase the reflection of sunlight to cool the planet
and do not fall within the usual definitions of mitigation and adaptation.”

8See, for example, Lenton and Vaughan (2009) for a scientific assessment of these technologies for global climate
dynamics and Socolow et al. (2011) and Lackner et al. (2012) for cost estimates for direct carbon removal.

9See, for example, the analysis in Rasch et al. (2008) and the survey in National Research Council (2015). On low
predicted costs, see McClellan et al. (2012) and Keith et al. (2017).
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engineering that arise precisely because the breakthroughs will be realized.

We first develop these ideas in the simplest setting, which is a static world with ex ante identical

firms. Each firm first undertakes a costly investment to switch to a cleaner production technology

anticipating the future carbon tax and any geoengineering breakthroughs. A benevolent planner

sets the carbon tax after these conventional clean technology investments are made, but before pro-

duction decisions. Production decisions create emissions, which contribute to the stock of carbon in

the atmosphere, and a convex (social) damage function determines the welfare costs from this stock

of carbon. The key technological externality—that clean technology investments make future clean

technology cheaper—arises from a simple premise: a fraction of firms are replaced by new entrants,

and if they have invested in the clean technology, the new entrant can inherit this improvement.

This externality implies that the planner would like to choose a carbon tax rate above the Pigo-

vian level, but the aforementioned time-inconsistency problem means that she cannot deviate from

Pigovian taxes, leading to underinvestment in the conventional clean technology.

What simplifies the analysis of this setting is that there exists a unique level of the carbon tax

that satisfies the technology IC—making the ex ante identical firms indifferent between investing

in the clean technology and not. Provided that it is optimal to have some firms invest in the clean

technology, the stock of carbon in the atmosphere has to adjust in order to satisfy the technology

IC. In this light, the implications of various different types of geoengineering technologies become

straightforward. A type I geoengineering technology, for example, shifts the damage function to

reduce the level of the Pigovian carbon tax at a given stock of carbon in the atmosphere. But at

this lower level of carbon tax, the technology IC is violated. To restore IC, the stock of carbon

in the atmosphere must increase to offset the benefits from geoengineering. The logic for type II

technologies is similar, except that in this case following geoengineering, the overall level of damages

increase not to their original level but to restore the marginal value of damages to their original

level. Depending on the elasticity of the damage function, this may involve an increase in the level

of damages relative to the benchmark without geoengineering.

After expositing our main ideas in a transparent manner in this static model, we move to a

continuous-time model of endogenous technological change with quality ladders. This model is

useful for micro-founding the technological externality introduced above and demonstrating that

the results discussed in the previous two paragraphs do not depend on assuming a static setting.

In our dynamic model, each active firm operates the best available technology in a given energy-

related activity, and is stochastically replaced by a new entrant that builds and improves upon its

productivity. The key technology externality emerges from the assumption that firms face nonzero

probabilities of replacement. We characterize the dynamic equilibrium with a time-inconsistent

planner in this setting. Though Pigovian taxes become more complicated (because they take into
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account future damages), we show that the results in the unique balanced growth path (BGP) are

qualitatively identical to those we obtained in the static setting (and that the dynamic equilibrium

converges to the BGP).

We also discuss how relaxing several of the assumptions adopted for simplicity and transparency

does not affect our qualitative conclusions. These include introducing heterogeneity across firms

in terms of their costs of switching to clean technology, allowing policy to imperfectly internal-

ize climate externalities, introducing direct subsidies to clean technology, making geoengineering

advances stochastic, and modifying how environmental externalities impact utility or productivity.

Our work relates to the small but growing literature on clean technology investments and

innovations. In addition to Acemoglu et al. (2012, 2016) and Aghion et al. (2016), which have been

mentioned above, Bovenberg and Smulders (1995, 1996), Goulder and Mathai (2000), Goulder and

Schneider (1999), Grimaud et al. (2011), Hartley et al. (2016), Hassler et al. (2012), Newell et al.

(1999), Popp (2002, 2004), and van der Zwaan et al. (2002) also discuss endogenous technology in

the context of environmental policy and climate change.

Our work is also related to a very small literature on environmental policy without commitment

(surveyed in Karp and Newbery, 1993). Laffont and Tirole (1996a,b) study pollution permit markets

and innovation in a two-period setting with asymmetric information, where the regulator cannot

commit and the usual hold-up problem arises. Harstad (2012) and Harstad and Battaglini (2016)

study incentives to invest in clean technologies in the presence of multiple regulators without

commitment, and show there will be underinvestment because additional investments reduce each

regulator’s bargaining position against the others. Also notable is Harstad (2016) who analyzes

environmental policy and technology choices under hyperbolic discounting. We are not aware of

any papers that model or note how with time-inconsistency, improvements in technologies can lead

to declines in welfare.10

Finally, there are some recent papers on geoengineering in the economics literature. Most

relevant to our work are Barrett (2008), Weitzman (2015), and Moreno-Cruz (2015), who focus on

the international political economy dimensions of geoengineering technologies to study the risks of

unilateral geoengineering when the technology imposes externalities on other countries. Separately,

Emmerling and Tavoni (2018) explore the optimal combination of conventional technology and

stochastic geoengineering from the viewpoint of a social planner, using an integrated assessment

model that assumes full commitment.

The remainder of the paper is organized as follows. Section 2 introduces our model and char-

10This point is related to but distinct from the general idea that equilibrium responses may undo or weaken benefits
from technological improvements. For example, Peltzman (1975) has observed that adjustment in driver behavior
may undo the benefits from automobile safety devices such as seatbelts. Kousky et al. (2006) and Boustan et al.
(2012) make a similar point in the context of flood levees, private investments and migration decisions in areas prone
to natural disaster.
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acterizes the equilibrium. Section 3 extends our results to an infinite-horizon setting in continuous

time. Section 4 concludes. Appendix A contains proofs omitted from the text, while online Ap-

pendix B contains proofs for the infinite-horizon model and demonstrates the robustness of our

main results to various variations on our model and its assumptions.

2 Baseline Model

In this section, we introduce our baseline static model. In the next section, we consider a dynamic

model which provides a clearer microfoundation for some of the assumptions used in this section and

fits more naturally with existing economic models of climate change, but still delivers essentially

identical results.

2.1 Production and Environmental Damages

We consider an economy consisting of a range of energy-related activities, represented by the

continuum [0, 1]. For simplicity, we take the output of these activities to be perfectly substitutable.

Initially, firm i controls the production technology for activity i ∈ [0, 1], and by using ki units of

the final good as inputs, it can produce

fd(ki)

units of output. The production function fd is assumed to be twice continuously differen-

tiable, increasing and concave with the usual Inada conditions to ensure interior solutions (i.e.,

limk→0 f
′
d(k) = ∞ and limk→∞ f

′
d(k) = 0). Since all activities are perfectly substitutable, firms

will act competitively and we choose the price of energy output as numéraire (normalizing it to

1).11

As indicated by the subscript “d,”the initial production technology is “dirty,” and generates ki

units of carbon emissions. By incurring a cost Γ > 0, each firm can upgrade to a (conventional)

cleaner technology that produces

fc(ki)

units of output (where fc is also twice continuously differentiable, increasing and concave, and

satisfies limk→0 f
′
c(k) =∞ and limk→∞ f

′
c(k) = 0), but only γki units of carbon (where γ < 1). We

think of clean firms as switching to a technology that produces energy output from cleaner sources

such as wind or solar energy, or upgrading their existing plant’s efficiency to reduce emissions per

unit of energy production.

We also assume that in each activity i ∈ [0, 1], a new entrant replaces the incumbent firm with

probability λ ∈ [0, 1). If the incumbent has already transitioned to clean technology, the entrant

11Though different activities are perfect substitutes, the Inada conditions on the production functions ensure that
all of them will be produced in equilibrium.
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inherits it.12 The entrant has access to the same production technology as the incumbent (fd if

there has not been a transition to clean technology, and fc if there has been such a transition).13

Given these assumptions, denoting the fraction of activities that have switched to clean tech-

nology by q, total emissions in the economy can be written as

E = qγkc + (1− q)kd, (1)

where kc is the equilibrium production level of clean technology and kd is the equilibrium production

level of dirty technology (here we are using the fact that both entrants and incumbents will choose

the same level of investment given their technology). The presence of the term γ < 1 captures the

fact that input usage by clean firms creates lower emissions.

Finally, we assume that the stock of carbon in the atmosphere is given by

S = (1− δ)S0 + E, (2)

where S0 ≥ 0 is the initial level of carbon, and δ ∈ [0, 1] denotes “depreciation” of this stock of

carbon (for example, by absorption by oceans and forest cover). We choose this formulation to

create continuity with the dynamic model in the next section. The damages from carbon in the

atmosphere are denoted by

D(S; ξ, υ), (3)

where D is an increasing, twice continuously differentiable and strictly convex function, and for

now, damages are taken to be additive, and the parameters ξ and υ will be used to model the

effects of other types of geoengineering advances on environmental damages. For now, we suppress

these parameters, writing environmental damages simply as D(S).

2.2 Carbon Tax and Production Decisions

Firms pay a carbon tax of τ per unit of their emissions. Thus the profit maximization problems of

the two types of firms can be written as

πd(τ) = max
k≥0

fd(k)− (1 + τ)k

= fd(kd(τ))− (1 + τ)kd(τ),

and

12Nothing in our qualitative results below change if we instead assume that the entrant could use the clean tech-
nology at some cost Γentrant < Γ. Our specification can be viewed as the special case with Γentrant = 0, adopted
for simplicity. An incumbent’s clean investment may create lower costs for an entrant if, for example, there exists
any learning-by-doing in that activity, or if imperfect patent protection (or, in the dynamic model, quality-ladder-
location-specific investment) prevents an exiting incumbent from recouping the entire value of their clean investment.
For evidence on these types of spillovers, see footnote 3.

13This structure of entrants replacing incumbents will be further micro-founded in the context of the dynamic
model in the next section.
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πc(τ) = max
k≥0

fc(k)− (1 + γτ)k

= fc(kc(τ))− (1 + γτ)kc(τ),

where kd(τ) is defined as the profit-maximizing level of input choice for a dirty firm, and kc(τ) is

the profit-maximizing level of input choice for a clean firm.

The difference between the profit-maximization problem of the two types of firms stems from

the difference in their production functions and—more crucially for our focus—from the fact that

clean firms pollute less per unit of input (i.e., γ < 1). That clean firms pollute less per unit of

input does not, however, guarantee that their overall emissions are less than that of dirty firms,

since they may choose higher levels of input usage. This possibility, first noted by Jevons (1866),

may lead to greater overall emissions by clean firms. Our next assumption ensures that this is not

the case.

Assumption 1 (No Jevons) For all τ ≥ 0, we have

Λ(τ) ≡ kd(τ)− γkc(τ) > 0.

This assumption is not restrictive and is automatically satisfied when γ = 0 or fc = fd.

2.3 Clean Technology Decisions

The difference in profits between a clean and a dirty firm can be written as

Ψ(τ) = πc(τ)− πd(τ) (4)

= [fc(kc(τ))− (1 + γτ)kc(τ)]− [fd(kd(τ))− (1 + τ)kd(τ)]

= [fc(kc(τ))− kc(τ)]− [fd(kd(τ))− kd(τ)] + τΛ(τ),

where Λ(τ) is the change in emissions from switching to a clean technology defined in Assumption

1.

Recall that firms make their investment to switch to clean technology before they know whether

they will be replaced by a new firm, and enjoy the additional profits from clean technology, Ψ(τ),

only if they are not thus replaced (an event of probability 1− λ). Consequently, a firm will find it

(privately) optimal to switch to clean technology only if the condition

(1− λ)Ψ(τ) ≥ Γ

is satisfied. Our key results will follow from the interplay between the effect of various geoengineer-

ing technologies and the equilibrium tax rate implied by this Technology IC constraint.

In what follows, we denote the fraction of firms that switch to clean technology by q. The

following lemma is immediate (proof omitted):
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Lemma 1 (Incentive Compatible Technology Choice)
Ψ(τ) > Γ

1−λ =⇒ q = 1

Ψ(τ) = Γ
1−λ =⇒ q ∈ [0, 1]

Ψ(τ) < Γ
1−λ =⇒ q = 0.

(Technology IC)

Note that when Technology IC holds exactly, i.e.,

Ψ(τ) =
Γ

1− λ
, (5)

any fraction of firms switching to clean technology is privately optimal. Conversely, when this

equality does not hold, either all firms or no firms will make the switch to clean technology. Since

we show that Ψ(τ) is increasing in the next lemma, (5) defines a unique carbon tax rate, which we

denote by τ̂ .

The following lemma shows that higher taxes increase the incentives to switch to clean technol-

ogy (proof omitted).

Lemma 2 (Carbon Tax and Technology IC) Suppose Assumption 1 holds. Then

dΨ(τ)

dτ
= Λ(τ) > 0.

The result that a small increase in the carbon tax affects (Technology IC) only through Λ(τ)

follows from the Envelope Theorem, or simply from using the fact that both clean and dirty firms

are choosing profit-maximizing levels of input usage. That this effect is positive is a consequence

of Assumption 1. This result greatly simplifies our analysis by ensuring that the function Ψ is

monotone.

2.4 The Planner’s Problem

The (social) planner maximizes utilitarian welfare. Imposing, without loss of any generality, that

all dirty (clean) firms choose the same level of inputs, welfare can be written as

W = (1− q)[fd(kd)− kd] + q[fc(kc)− kc]− qΓ−D(S)

= (1− q)πd + qπc + (kd − qΛ)τ − qΓ−D(S), (6)

where, as in Assumption 1, we write Λ = kd − γkc > 0.

There are three important observations. First, differently from private firms, the planner cares

about the actual cost of inputs, and not about the taxes; this can be seen by the presence of the

term Λ. Second, she also cares about the externality from emissions, as captured by the term

D(S). Third, the probability that a current producer is replaced by a new entrant, λ, which was

9



important for private decisions to invest in clean technology, does not feature in this objective

function because the new entrant will be able to produce with the same technology.

Until Section 2.11, we assume that the planner has access to a single instrument—a carbon tax,

τ .

2.5 Timing of Events

The key assumption, already highlighted in the Introduction, is that of the lack of commitment to

future policies, which induces time-inconsistency. Namely, the planner is not able to choose, and

commit to, the carbon tax sequence ahead of all other decisions. In the static model, we incorporate

this feature with the following timing of events:

• All firms simultaneously make their technology decisions.

• Firms that will be replaced by new entrants are revealed.

• The planner chooses the carbon tax, τ .

• Given the carbon tax τ , all firms simultaneously choose their input levels.

2.6 Equilibrium

Given the above description, a (subgame perfect) equilibrium can be defined as tuple (q∗, τ∗, k∗d, k
∗
c )

such that

• Given q∗, τ∗ maximizes W as in (6);

• q∗ satisfies (Technology IC);

• Given τ∗, k∗d and k∗c maximize, respectively, πd and πc.

Since the maximization problem of both clean and dirty firms is strictly concave, the equilibrium

will always feature the same level of inputs for a given type of firm, denoted respectively by kd(τ)

and kc(τ) as defined above. Then, once q∗ and τ∗ are determined, the level of emissions can

be computed from equation (1) as E(τ∗, q∗), and the level of stock of carbon in the atmosphere

from equation (2) as S(τ∗, q∗). In view of this, we summarize the equilibrium simply by (τ∗, q∗),

corresponding to the level of carbon tax and fraction of firms switching to clean technology.

2.7 Pigovian Carbon Taxes

A first implication of the timing of events adopted here (which incorporates the time-inconsistency

feature mentioned above) is that the carbon tax will always be Pigovian—it will equal the marginal
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damage created by one more unit of emissions. This structure of Pigovian taxation contrasts with

the case in which the planner can commit to carbon taxes, as we will see later.

More formally, we have:

Proposition 1 In equilibrium, the carbon tax is given as

τ∗ = D′(S(τ∗, q∗)). (7)

This result follows straightforwardly by differentiating the planner’s objective function, (6).

The Pigovian tax given in (7) will play a central role throughout the paper.

2.8 Characterization of Equilibrium

In the rest of the analysis, we impose the following assumption, which ensures the existence of an

interior equilibrium, meaning one in which some firms switch to clean technology, while others do

not.14

Assumption 2 (Conditions for Interior Equilibrium) We have

Γ

1− λ
∈ (Ψ(τ),Ψ(τ))

where τ = D′ ((1− δ)S0 + γkc(τ)) and τ = D′ ((1− δ)S0 + kd(τ)).

This assumption ensures that condition (5) holds and the equilibrium is interior. It implies

that when all firms make the switch to clean technology, the stock of carbon is low enough that

the planner chooses a relatively low level of carbon tax (the one given by τ in this assumption),

and when no firm makes the switch, the stock of carbon is high enough that the planner chooses a

relatively high level of carbon tax (the one given by τ in this assumption).

When this assumption does not hold, there exists a unique equilibrium in which all firms

switch to the clean technology or no firm switches to the clean technology, and in neither case

do we have interesting comparative statics of investment in clean technology (small changes in

parameters will not impact clean technology decisions). Thus Assumption 2 restricts the analysis

to the interesting subset of the parameter space, where the equilibrium is interior. This is also

empirically reasonable—in practice, only a limited fraction of energy producers have made the

transition to clean technology, and there exist marginal clean investment decisions that will be

impacted by future carbon taxes.

The next proposition characterizes the unique interior equilibrium.

14This equilibrium can also be labeled “asymmetric” because some ex-ante identical firms switch to clean technology,
while others do not. We show in Appendix A2, however, that asymmetry is not the important feature, and similar
results obtain when firms are heterogeneous ex ante in terms of their cost of switching to clean technology. The
important feature, thus, is that in our equilibrium, the transition to clean technology is not complete.
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Proposition 2 (Interior Equilibrium) Suppose Assumptions 1 and 2 hold. Then there exists

a unique equilibrium given by (τ∗, q∗) = (τ̂ , q̂), where (τ̂ , q̂) = (D′(S(τ̂ , q̂)), q̂). This equilibrium is

interior in the sense that the fraction of firms switching to clean technology q̂ is strictly between 0

and 1.

Proof. See Appendix A.

τ

q

Interior equilibrium

τ̂

D′(S(τ, q))

(q̂, τ̂)

q̂

τ = Ψ−1
(

Γ
1−λ

)

Figure 1: Unique interior equilibrium (τ̂ , q̂).

The first noteworthy result in this proposition is the uniqueness of an interior equilibrium. The

reason why the equilibrium is interior and only a fraction of firms switch to the clean technology

relates to the main economic force in our model. Firms, at the margin, switch to clean technology

because of the carbon tax. The higher the carbon tax, the more inclined they are to make this

transition. However, the carbon tax is determined by the planner after the technology decisions are

made and will be lower when more firms have made the switch to clean technology—and herein lies

the time-inconsistency problem. In particular, as already emphasized, in an interior equilibrium (5)

needs to hold as equality. This implies that the carbon tax needs to take a specific value, τ̂ , as given

in Proposition 2 and represented by the horizontal line in Figure 1. Given the convexity of damages

in (3), the Pigovian carbon tax the social planner will set is increasing in the stock of carbon and

hence decreasing in q̂, guaranteeing uniqueness. But, for τ̂ to emerge as the planner’s choice, the

stock of carbon in the atmosphere needs to take a specific value, S(τ̂ , q̂), and exactly q̂ fraction of

firms need to switch to clean technology. If more firms than q̂ were to switch to clean technology,

there would be less carbon in the atmosphere than S(τ̂ , q̂), and consequently, the planner would
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choose a lower carbon tax than τ̂ , violating (5). Likewise, if fewer firms than q̂ made the switch,

the carbon tax rate would be higher than τ̂ , once again violating (5).

In addition to the existence of a unique interior equilibrium, the most important conclusion of

Proposition 2 is that the level of carbon taxes will be Pigovian. This is dictated by the timing of

events. At the time the planner sets the tax rate, technology decisions have already been made—in

view of the fact that the planner cannot commit to carbon taxes ex ante. Without an influence on

technology decisions, there is no reason for the planner to deviate from the Pigovian benchmark.

This contrasts with what the planner would have preferred if she could commit to the carbon

tax, as we show next.

2.9 Second-Best

In this subsection, we briefly contrast the equilibrium with the “second-best” allocation where the

planner can commit to carbon taxes in advance of the technology decisions of energy firms (but

still cannot dictate input choices and technology decisions, hence the label “second-best”). This

comparison will highlight the implications of time-inconsistency in our model.

Suppose that the planner sets a carbon tax rate τ , and commits to it, before the technology

decisions of firms.15 The next proposition shows that as long as λ > 0 the planner deviates from

the Pigovian tax and induces more firms to switch to the clean technology than in the case without

commitment.

Proposition 3 (Second-best) 1. Suppose λ > 0. Then the planner commits to a carbon tax

τSB = τ̂ > D′(SSB), and the equilibrium fraction of firms that switch to clean technology is

qSB > q̂, where SSB is the stock of carbon in the second-best allocation (with commitment).

2. Suppose λ = 0. Then the planner commits to a carbon tax τSB = τ̂ = D′(SSB), and the

equilibrium fraction of firms that switch to clean technology is qSB = q̂.

Proof. See Appendix A.

The first part of this proposition shows that, provided that λ > 0, the planner would like to

deviate from Pigovian taxation. Recall that Pigovian taxation implies τSB = D′(SSB), whereas

the planner would like to commit to a tax τSB > D′(SSB).16 This is because when λ > 0, there

is underinvestment in clean technology, because firms do not take into account the benefit they

15When we endow the planner with commitment power, if the planner commits to the (unique) incentive-compatible
tax τ̂ , then technically any q ∈ [0, 1] may be an equilibrium. In the spirit of general mechanism design or principal-
agent problems, we impose the incentive-compatibility constraints and let the planner or the principal choose her
favorite allocation consistent with incentive-compatibility.

16Note, however, that we still have τSB = τ̂ , since the planner cannot control investments in clean technology and
thus has to satisfy (Technology IC).
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create for others who will build on their clean technology investments. As a result, in the second-

best allocation where she cannot directly control technology investments but still can commit to a

tax, the planner would like to encourage greater investment in clean technology by setting higher

carbon taxes than the Pigovian benchmark, in order to induce more firms to switch to the clean

technology. However, without commitment, the planner cannot achieve a non-Pigovian carbon tax,

and the equilibrium always involves too little investment in clean technology, i.e., q̂ < qSB.

The second part of the proposition highlights the role of λ > 0. When λ = 0, firms fully

internalize the benefits from a switch to clean technology. In this case, setting the right price of

carbon—i.e., the Pigovian tax—is sufficient to induce the right level of technology investment, and

thus the planner has no reason to resort to a non-Pigovian carbon tax.

One consequence of Proposition 3 is that, when λ > 0 as we assume to be the case throughout

the rest of the analysis, there is too little investment in clean technology and too much carbon in

the atmosphere. Thus any further increase in the stock of carbon has a first-order negative impact

on welfare.

2.10 The Effects of Geoengineering

We next study the implications of geoengineering technologies on equilibrium carbon taxes, invest-

ment in clean technologies, environmental damages and welfare. By geoengineering technologies,

we refer to technological advances that reduce the damages from a given stock of carbon and are

operated by the government or some other entity (but not the firms themselves). We distinguish

between two different types of geoengineering technologies, which we first enumerate and motivate.

We then analyze their implications separately. Actual geoengineering breakthroughs may com-

bine features from these two types, but it is useful for our purposes to exposit their implications

separately.

To incorporate each type of geoengineering, let us make the role of the different parameters

explicit as follows, writing

D(S; ξ, υ) = (1− υ)D̃((1− δ)S0 − ξ + E),

where D̃ is a base damage function, and changes in the parameters ξ ≥ 0 and υ ∈ [0, 1) each shift

the environmental damage function.

More specifically, the first type of geoengineering technology, which we refer to as carbon removal

or geoengineering technology of type I, corresponds to an increase in ξ, and thus leads to a parallel

rightward shift of the environmental damage function as shown in the left panel of Figure 2. In

practice, this corresponds to large-scale carbon sequestration schemes that capture carbon from

the air, such as permanent afforestation or algae blooms.
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Figure 2: Geoengineering of type I (“carbon removal”) and type II (“climate adaptation” or “solar
radiation management”).

The second type of geoengineering technology, climate adaptation, solar radiation management,

or geoengineering technology of type II, corresponds to an increase in υ, a proportional rightward

shift or rotation of the environmental damage function as illustrated in the right panel of Fig-

ure 2. We interpret this class as representing a range of technologies related to solar radiation

management, aiming to slow temperature rise at a given emissions level. The most well-known

example is the injection of sulfur dioxide into the stratosphere—suggested most notably by the

Nobel prize-winning chemist Paul Crutzen—in order to reduce surface temperatures. Less esoteric

geoengineering solutions that reduce marginal damages via various technological adaptations fall

within this category as well.

In addition to the way in which we map the technical aspects of climate engineering into climate

damages, there are two other features of the way that we model geoengineering that matter for

our results. First, we conceive of geoengineering advances as exogenous, in the sense that they

are not consequences of decisions made by agents within the model. Second, it is also important

for our results that these advances are small (hence the infinitesimal changes in the propositions).

Specifically, geoengineering improvements cannot be so large as to shift the economy out of an

interior equilibrium into a world in which clean technology investments no longer respond at the

margin to carbon taxes.

We now show that, in our framework, both types of geoengineering technologies do, to some

extent, backfire, and they may increase emissions and even reduce welfare.

Proposition 4 (Implications of Geoengineering Technologies of Type I) Suppose that

Assumptions 1 and 2 hold. Consider a geoengineering technology improvement of type I that

increases ξ by a small amount dξ. Then we have

• dτ̂/dξ = 0 (there is no effect on the equilibrium carbon tax).
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• dq̂ = − 1
Λdξ (investment in clean technology declines).

• dE = dξ > 0 (emissions increase, through lower q̂).

• dD/dξ = 0 (environmental damages remain constant).

• dW/dξ < 0 if and only if λ(πc − πd) > Λτ (welfare may decline).

Proof. See Appendix A.

The key economic force driving the result in Proposition 4 is that even after the geoengineering

advances, the technology IC (5) still pins down the carbon tax rate at τ̂ . This is because with a

small change in ξ, Assumption 2 will continue to hold and the equilibrium has to be interior. This

in turn requires that the social planner still prefers to set the carbon tax at τ̂ , which is only possible

if the marginal environmental damage remains constant. Since geoengineering shifts the damage

function rightward by dξ, the total stock of carbon must increase by dξ. This happens by fewer

firms making the switch to clean technology. This is visually illustrated in Figure 3. Geoengineering

shifts the curve representing marginal damages rightwards as shown by the red curve. If there was

no change in investment in conventional clean technology, marginal and overall damages would

both decline. But in equilibrium, marginal damages have to remain constant, and as shown by the

arrows along the red curve, the adjustment involves a reduction in investment in conventional clean

technology, which increases emissions and the total stock of carbon and restores marginal damages

to the same level that prevailed before geoengineering.

The effects of this type of geoengineering advance on welfare are ambiguous because of two

competing forces. On the one hand, since S remains constant and q declines, society saves the

costs of switching to clean technology. If investment in clean technology were optimal (which

happens when λ = 0), this would be its sole impact because reductions in investment in clean

technology would only have second-order welfare costs. Thus in this case, despite the increase

in emissions, welfare would go up. However, because λ > 0, investments in clean technology are

distorted, and a further reduction in the fraction of firms making the switch to clean technology

creates a first-order welfare loss. Put differently, the benefit from investment in clean technology

is not only the reduction in emissions, but also the fact that πc = fc(kc(τ̂))− (1 + γτ̂)kc(τ̂) may be

greater than πd = fd(kd(τ̂))− (1+ τ̂)kd(τ̂). A reduction in q implies that this gain is forgone, which

can outweigh the cost savings from lower investments. The condition for welfare to diminish as a

result of a geoengineering advance of type I in the last part of the proposition indeed requires that

λ and πc − πd are sufficiently large to compensate for the fixed cost savings. In fact, a large value

of λ, by creating a larger wedge between the planner’s objective function and private incentives to

switch to clean technology, is sufficient to ensure that welfare declines as a result of this type of

geoengineering advance.
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D′(S(τ, q)− ξ)

q̂(ξ)

Figure 3: Equilibrium response of clean technology after type I geoengineering.

We also note that, if instead of a small increase in ξ, we consider a large increase, we may

violate Assumption 2, and if so, the planner may wish to deviate from (5), forgoing any investment

in clean technology. In this case, damages may again decline and welfare may increase. A similar

caveat applies to the type II geoengineering technology discussed next.

Remark 1 (Carbon Leakage) Though our focus is on geoengineering technologies, Proposition

4 holds identically in a different setting. Suppose that our model applies to a specific country

(say the United States), and another country (say China) reduces its emissions by an amount

dξ > 0. This reduction in the global carbon stock would reduce the Pigovian tax of the domestic

government, violating (5). To restore this constraint, emissions by domestic firms increase, again

through reduced investments in clean technology.

The implications of geoengineering technologies of type II are broadly similar but slightly more

involved because they can also lead to greater overall damages.

Proposition 5 (Implications of Geoengineering Technologies of Type II) Suppose that

Assumptions 1 and 2 hold. Consider a geoengineering technology improvement of type II that

increases υ by a small amount dυ > 0, and let η = ŜD′′(Ŝ)/D′(Ŝ) be the elasticity of the marginal

damage function (where Ŝ = S(τ̂ , q̂)). Then we have

• dτ̂/dυ = 0 (there is no effect on the equilibrium carbon tax).
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• dS/dυ > 0 (the total stock of carbon increases).

• dq̂/dυ < 0 (investment in clean technology declines).

• dE/dυ > 0 (emissions increase, through lower q̂).

• dD/dυ > 0 if and only if η ≤ η∗ (environmental damage increases if the damage function is

not too convex), where η∗ ≥ 1.

• dW/dυ < 0 if and only if

η ≤ ηII(λ) ≡ aλ
(
πc − πd

Λτ

)
(welfare declines if the damage function is not too convex), where a ≡ SD′(S)/D(S) > 1.

Proof. See Appendix A.

As in Proposition 4, the results of Proposition 5 are a consequence of the fact that to sustain an

interior clean technology adoption rate, the carbon tax needs to remain at τ̂ , and this necessitates

an increase in emissions. In the case of a type I geoengineering improvement, emissions increased in

such a way as to keep the total stock of carbon in the atmosphere and overall environmental damages

constant. With a type II advance, emissions must again increase to keep the marginal damage

constant, but this might involve a higher level of overall damages. In particular, if the elasticity

of the marginal damage function, η, is high, marginal damages can change significantly without a

large change in the level of the stock of carbon. In this case, the direct environmental benefit from

geoengineering dominates the equilibrium decline in clean technology, and environmental damages

fall. Conversely, if η is low (in particular, less than some η∗), to restore marginal damages to their

initial value and thereby sustain the Pigovian tax at τ̂ , the stock of carbon needs to change by a

large amount, which translates into an increase in overall environmental damages. This is the case

illustrated in the bottom panel of Figure 4.17

The effects on welfare are once again ambiguous for similar reasons to those discussed above.

But provided that the elasticity of the marginal damage function η is sufficiently low (in this case

less than ηII) and λ > 0, the negative effect of distorting investment in clean technology dominates

savings from the transition costs qΓ, and overall welfare declines (in fact, as in the previous case, a

sufficiently large λ ensures that welfare always declines). Conversely, a sufficiently elastic marginal

damage function or a sufficiently low λ will make welfare increase as a result of an improvement in

geoengineering technologies of type II. But the reason why these two conditions rule out negative

17The figure is drawn for a quadratic D function. We show in Appendix A that when D is quadratic, the condition
η ≤ η∗ is always satisfied, and thus environmental damages always increase as a result of a geoengineering technology

improvement of type II. In this case, the condition λ ≥ λ∗ ≡ 1
2

(
Λτ

πc−πd

)
is necessary and sufficient for welfare to

decline (note that λ∗ < 1/2).
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Figure 4: Environmental damage before and after type I (“carbon removal”) and type II (“climate
adaptation” or “solar radiation management”) geoengineering. The top panel depicts the increase
in the stock of carbon necessary to keep marginal damages constant with a type I technology, and
the bottom panel does the same for a type II technology.
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welfare effects are somewhat different: when η is sufficiently high, overall environmental damages

decline by a large amount; when λ is very small, private investment in clean technology is nearly

optimal, and a further reduction in these investments only has second-order welfare costs.

Together, Propositions 4 and 5 are the main results of our static model: the negative equi-

librium response of clean technology entirely offsets the environmental benefits of geoengineering

improvements. In all interior equilibria, geoengineering technologies that remove carbon directly

from the atmosphere do not affect overall environmental damages (Proposition 4), while geoengi-

neering technologies that flatten the damage function sometimes increase environmental damages

(Proposition 5). When λ is sufficiently large, both geoengineering improvements will reduce welfare.

2.11 Extensions

Many of the assumptions adopted so far are for simplicity and transparency. We now briefly discuss

how several of them can be relaxed. Throughout, we assume that slight variations of Assumptions

1 and 2 (adapted to the extended environment) continue to hold, but do not state them formally

to conserve space.

Direct subsidies to clean technology. We have so far assumed that the social planner has

access to a single policy instrument, the carbon tax. This is not central to our results as long as the

social planner cannot perfectly control investments in clean technology. Suppose, for illustration,

that she can subsidize a proportion σ ∈ [0, 1] of each firm’s investments (fixed costs Γ) in clean

technology. We capture the fact that the planner cannot perfectly control these clean technology

investments by assuming that these subsidies are not pure transfers and there is a social cost of

σωΓ in terms of the final good, where ω > 0 parameterizes the extent of inefficiency from the clean

technology subsidies. In this case the qualitative results in Propositions 3–5 continue to apply. In

particular, we can summarize the results in this case with the following proposition.

Proposition 6 (Direct Subsidies for Clean Technology) Suppose that in addition to the car-

bon tax, the social planner has access to a clean technology subsidy whereby a fraction σ ∈ [0, 1] of

clean investment costs is subsidized at a social cost σωΓ in terms of the final good. Then

• If ω > 0, the planner still prefers to commit to a tax above the Pigovian benchmark when

λ > 0.

• dW/dξ < 0 ⇐⇒ λ̃(πc − πd) > Λτ .

• dW/dυ < 0 ⇐⇒ η ≤ ηII(λ̃), where λ̃ ≡ λ−σ−(1−λ)σω
1−σ .

Proof. See Appendix A.
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This result is intuitive. As long as the planner cannot perfectly control clean technology

decisions—in particular because clean technology subsidies are socially costly (the case where

ω > 0)—she would prefer a carbon tax above the Pigovian level to encourage additional clean

technology investments. The commitment problem, however, prevents this, and the logic of our

results above apply and yield the same insights. However, our results do not extend to the case

in which ω = 0, where the planner can perfectly control clean technology investments without any

social distortions. In this case, she has no reason to deviate from Pigovian taxation, the technology

externality emphasized above is no longer present, and geoengineering improves welfare because

the equilibrium is constrained efficient.

Political economy considerations. Our model takes a rather charitable view of policy-

makers, assuming that they fully internalize environmental externalities. In practice, many regu-

lators and politicians appear to be far away from this ideal benchmark. For example, they may be

captured by special interest groups or receive campaign contributions that influence their policy

agendas. In several simple political economy settings, such behavior can be modeled by assuming

that the policy-maker maximizes a weighted social welfare function, with greater weights on groups

capable of lobbying or making campaign contributions (e.g., Grossman and Helpman, 1994). In

our setting, this corresponds to the policy-maker having an objective function that assigns a lower

weight to environmental damage. The next proposition shows that our qualitative results remain

unchanged in this case, except that negative welfare consequences of geoengineering become more

likely.

Proposition 7 (β-Benevolence) Suppose that the policy-maker values only β ∈ (0, 1) of envi-

ronmental damages and thus maximizes

W (β) = (1− q)[fd(kd)− kd] + q[fc(kc)− kc − Γ]− βD(S) (6′)

rather than (6)—but true welfare is still given by (6). Then Proposition 4 and Proposition 5 hold,

except that in the latter case welfare declines if

η ≤ a
(
βλ

πc − πd
Λτ

+ 1− β
)
< ηII. (8)

Proof. See Appendix A.

Intuitively, because the policy-maker undervalues environmental damages, the equilibrium is

further away from the second-best, making it more likely that the decline in clean investment

resulting from geoengineering reduces welfare.

Heterogeneous costs of clean investment. Our analysis is simplified by the fact that the

(Technology IC) constraint holds with equality both before and after the arrival of geoengineering

technologies. This feature relies on all firms having the same cost of switching to clean technology.
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In Appendix B we show that our qualitative results generalize to the case in which these costs

are heterogeneous. Suppose, in particular, that firm i’s cost of switching to clean technology is

Γi = Γ + χi, where χi is mean zero and distributed according to a probability density h. We

then establish that—provided that the density h is sufficiently concentrated around zero—all of

our qualitative results, including the potential negative welfare consequences of geoengineering,

continue to hold. Intuitively, the fact that h is concentrated around zero ensures that the social

planner does not find it beneficial to change the carbon tax by too much after the arrival of the

geoengineering technology, in which case all of the insights emphasized above apply in the same

fashion.

Stochastic arrival of geoengineering technologies. Our analysis also presumed for sim-

plicity that a geoengineering advance would arrive with certainty and that this was fully recognized

by all agents. In practice, as our discussion in the Introduction emphasized, there is considerable

uncertainty about whether and when large-scale geoengineering will be feasible. We can incorpo-

rate this feature by assuming that both the agents in the economy and the social planner expect

the geoengineering technology to arrive with some probability κ ∈ (0, 1). We show in Appendix B

that all of our results generalize immediately to this case, but we also gain an additional insight.

We see that the worst outcomes in terms of welfare and environmental damages are realized when

geoengineering is expected to succeed with high probability—substantially lowering investment in

clean technology—but then fails. In this case, our model delivers a specific channel for the general

concerns noted by the IPCC in the Introduction.

Endogenous geoengineering. It is also straightforward to see that all of our results ap-

ply with endogenous geoengineering, meaning that the social planner has access to a technology to

generate possibly stochastic geoengineering advances and cannot commit to not deploying this tech-

nology. In the no-commitment equilibrium, the social planner chooses her optimal geoengineering

investment after clean technology investments are made, and then the equilibrium is very similar

to the one with stochastic geoengineering technologies given the resulting equilibrium probability

of geoengineering success.

Different formulations of environmental damages. The additive formulation of environ-

mental damages simplified our analysis, but it is also unnecessary. In Appendix B, we show that

our qualitative results are unaffected if damages affect productivity as in Nordhaus (1991, 2008)

and Golosov et al. (2014), or affect utility in a non-additively separable manner.

3 Dynamic Model

We now extend our static model to a dynamic economy where production decisions are made

continuously, firms enter and exit, and technological quality and the stock of carbon accumulate
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over time. Our model is constructed to mimic both the structure of our static setup and the

quality-ladder models of Aghion and Howitt (1992) and Grossman and Helpman (1991) as closely

as possible. The quality-ladder structure enables us to endogenize the replacement probability λ as

the flow rate of creative destruction. After deriving the unique balanced growth path (BGP) and

characterizing the structure of the dynamic equilibrium, we show that the effects of geoengineering

technologies on the BGP are essentially identical to those derived in the static model.

3.1 Production, Entry and Environmental Damages

As in the static model, we consider an economy with a unique final energy good, produced by a

continuum of perfectly substitutable activities indexed by [0, 1]. We think of each activity i ∈ [0, 1]

as being produced at a site i ∈ [0, 1] dedicated to that activity and each site can house only one

firm (so that the number of active firms will be constant as in the static model). Time t is infinite

and discrete, of length ∆ > 0. In what follows, we simplify the exposition by taking ∆→ 0 to work

directly with differential equations. The production technology differs from the static model only

in that the productivity of each activity depends on where it is located on a quality ladder, denoted

by nit ∈ N for activity i at time t. This productivity applies both to dirty and clean technologies. If

there has not been a switch to clean technology in activity i, then the firm with the best technology

in this line at time t will be active in site i and produce

Anitfd(kit), (9)

where kit ≡ Kit/A
nit is “normalized investment,” Kit is investment (again in terms of the final

good), A = 1 + α > 1 so that each higher rung on the quality ladder secures a proportional

improvement in productivity, and we continue to make the same assumptions on fd (f ′d > 0,

f ′′d < 0, and the Inada conditions).18 We also assume that the dirty production technology emits

Kit units of carbon given investment Kit.

If, on the other hand, activity i has switched to clean technology, the firm with the best

technology for this activity at time t has access to the production technology

Anitfc(kit), (10)

where again the same assumptions as in the static model apply to fc, and as before, clean technology

emits γKit units of carbon when the level of investment is Kit, where γ < 1. Consequently, total

emissions at time t are

Et =

∫ 1

0

[
1{i is dirty}Kit + γ1{i is clean}Kit

]
di. (11)

18As in the static model, the Inada conditions imply that, despite productivity differences across activities, all
activities will produce positive output. Moreover, since each site can house a single firm, only the firm with the best
technology in that activity will produce.
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An important feature of our formulation is that even though productivity varies across activities,

the level of normalized investment will only differ between dirty and clean activities, and we thus

denote it by kdt and kct respectively for dirty and clean technologies at time t. Consequently, total

emissions can also be expressed as

Et = (1− qt)kdtE [Anit | i is dirty] + qtγkctE [Anit | i is clean] ,

where qt denotes the aggregate fraction of clean firms at time t.

The dynamics of the stock of carbon in the atmosphere, which we write directly in differential

form since we focus on ∆→ 0, are given as

Ṡt =
Et
At
− δSt, (12)

where S0 ≥ 0, δ > 0 is the environmental regeneration rate, and environmental damages are

AtD(St; ξ, υ),

where

At ≡
∫ 1

0
Anitdi (13)

is the average productivity of the economy at time t,

D(S; ξ, υ) ≡ (1− υ)D̃(S − ξ) (14)

as in the static model, and D̃(·) is increasing, strictly concave, and twice continuously differentiable

in the stock of carbon S. We set the geoengineering parameters as (ξ, υ) = 0 and omit them from

our notation until the final subsection of this section. Note that damages are multiplied by average

productivity, while emissions are divided by average productivity. This formulation captures the

fact that when the productivity or consumption level of the economy is higher, a given stock of

carbon in the atmosphere will have more negative productivity or disutility implications, while

ensuring that damages grow at the same rate as the economy.

Finally, we assume that the economy is inhabited by a representative household, who discounts

the future at the exponential rate ρ > 0. In the text we simplify the analysis (and keep it as close

as possible to the static model) by assuming that this household obtains linear flow utility (more

general utility functions are discussed in Appendix B). Thus the objective function of the household

at time t is ∞∑
s=t

[
Ct+∆(s−t) −At+∆(s−t)D(St+∆(s−t); ξ, υ)

]
e−ρ∆(s−t),

where Cs is consumption at time s. Once again, taking the limit ∆ → 0, we work with the

continuous-time equivalent, ∫ ∞
t

[Cs −AsD(Ss; ξ, υ)] e−ρ(s−t)ds. (15)
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The switch from dirty to clean technology has a fixed cost of AnitΓ > 0 in terms of the final

good for activity i with productivity Anit , and is incurred only once for each activity (because once

an activity switches to clean technology, all future productivity improvements build on the existing

clean technology in that activity or site). This formulation, which makes the cost of switching

to clean technology proportional to productivity, ensures that the incentives to switch to clean

technology remain independent of an activity’s productivity.

Productivity improvements take place in a manner analogous to the standard quality-ladder

models. Specifically, potential entrants invest in research and development (R&D) in order to

improve over existing products. R&D uses a scarce input, say scientists, which has an inelastic

supply of Z > 0.19 We also assume that R&D is undirected, meaning that entrants decide their

R&D effort, but cannot choose which activity they are researching and are randomly matched to

one of the activities in [0, 1]. A successful innovation for activity i currently with productivity Anit

enables the entrant to replace the incumbent producer of this activity with a new technology with

productivity Anit+1. Let us denote R&D effort (scientists hired) at time t by zt. Then the (Poisson)

arrival rate of a successful innovation is

λt = ϕzt, (16)

where ϕ > 0. The cost of R&D effort of zt is ztwt, where wt denotes the equilibrium wage for

scientists. This wage is determined from the market-clearing condition for scientists given by

zt = Z for all t ≥ 0. (17)

This naturally ensures that in equilibrium

λt = λ ≡ ϕZ.

Taking into account the expenditures on switching to clean technology, the resource constraint

of the economy implies that consumption at time t is given as

Ct =

∫ 1

0
Anit [fi(kit)− kit − 1(t = inf{t ≥ 0 : qit = 1})Γ]di,

which integrates over the output levels of different activities and then subtracts the costs of invest-

ment in clean technology (where 1(t = inf{t ≥ 0 : qit = 1}) is the indicator function for the time

at which activity i switches to clean technology and incurs the fixed cost AnitΓ).

19This formulation with an inelastic supply of scientists ensures that the overall growth rate of the economy will
be insensitive to the rate of carbon taxation. We view this as a desirable benchmark property, since otherwise the
planner would have an incentive to manipulate carbon taxes in order to affect the long-run growth rate.
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3.2 Carbon Tax and Production Decisions

As in the static model, there is a carbon tax of τt at time t. Profits of dirty and clean firms can be

written, respectively, as

Πidt = max
k≥0

Anit [fd(k)− (1 + τt)k] = Anit [fd(kd(τt))− (1 + τt)kd(τt)] (18)

and

Πict = max
k≥0

Anit [fc(k)− (1 + γτt)k] = Anit [fc(kc(τt))− (1 + γτt)kc(τt)] , (19)

where kc(τt) and kd(τt) are then defined as the optimal input decisions for dirty and clean firms

respectively. We use πj(τt) ≡ Πijt/A
nit to denote normalized profits of activity j ∈ {c, d} at time t.

We next write the value functions of firms with clean and dirty technologies as a function of

their productivity. At time t, a clean incumbent with productivity An has (expected) net present

discounted value given by the usual dynamic programming recursion (provided that this value is a

differentiable function of time):

rtVct(n) = Anπc(τt) + V̇ct(n)− λVct(n).

Intuitively, the firm receives a “dividend” of Anπc(τt) on its asset of Vct(n), but also recognizes that

this asset may change value, captured by the term V̇ct(n), and may entirely disappear because of

creative destruction coming from improvements by entrants, which takes place at the Poisson rate

λt and will make the incumbent lose the asset entirely. This stream of profits is then discounted

at the interest rate rt. Because the household’s preferences are linear, the interest rate is always

equal to the discount rate, i.e.,

rt = ρ,

and thus this expected net present discounted value can be expressed as

Vct(n) = An
∫ ∞
t

πc(τs)e
−(ρ+λ)(s−t)ds, (20)

which is just the discounted integral of flow profits πc(τs) over time, adjusted for the baseline

productivity of the firm and the Poisson rate λ of arrival of creative destruction.

The expected net present discounted value of dirty firms is similar, except that they can choose

whether to switch to clean technology at a cost AnitΓ > 0,

Vdt(n) = max

{
Vct(n)−AnΓ,

Anπd(τt) + V̇dt(n)

ρ+ λ

}
. (21)

The max operator takes care of the choice to switch to clean technology, while the second part is

the dynamic programming recursion rearranged (with rt = ρ imposed).

Equations (20) and (21) show that Vjt(n)/An is independent of n for j ∈ {c, d}, and we thus

define vjt ≡ Vjt(n)/An as the normalized value function.
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3.3 Clean Technology and R&D Decisions

Equation (21) immediately gives us the equivalent of (Technology IC) in the static model. Firms

are happy to switch to clean technology only when the maximization operator in this expression

picks the first term, or, put in terms of normalized value functions, when

vdt = vct − Γ. (22)

This binding constraint will play an analogous role to (5) in the static model, and implies the

following form for incentive-compatible technology choice qt:{
vdt = vct − Γ =⇒ qt ∈ [0, 1]

vdt > vct − Γ =⇒ qt = 0
(Dynamic Technology IC)

which closely resembles its analogue in the static model.20

Next, using the characterization of the value functions in the previous subsection, we derive

equilibrium R&D decisions. Since potential entrants have access to the R&D technology given by

(16), equilibrium requires the following free-entry condition to hold with complementary slackness

ϕ

∫ 1

0
[qtVct(nit + 1) + (1− qt)Vdt(nit + 1)] di− wt = 0,

where Vjt(n) for j ∈ {c, d} are the expected value functions defined in (20) and (21), wt is the

equilibrium wage for scientists, and the integral reflects the fact that R&D is undirected and may

lead to an improvement over a clean or dirty technology. Using the definition of normalized value

functions, the free-entry condition can be simplified to the following form

qtvct + (1− qt)vdt =
wt
ϕAt

. (23)

At each t, the wage for scientists, wt, adjusts to satisfy (23) (so zt = Z).

3.4 Planner’s Problem

As in the static model, the (social) planner is benevolent, and therefore maximizes the same ob-

jective as the representative household, (15). She will seek to achieve this objective by choosing

a sequence of carbon taxes, (τt)t≥0. We also continue to assume that the planner does not have

access to a commitment technology, so the sequence of carbon taxes can be revised at any t. As in

the static model, the planner’s preferred allocation differs from that of the firms in two ways. First,

firms do not internalize the environmental damage they create (except through the carbon taxes

20Unlike the static condition (Technology IC), however, there is no case in which vdt < vct − Γ, since vdt =
max{vct − Γ, (ρ+ λ)−1(πdt + v̇dt)} implies that vdt ≥ vct − Γ for all t ≥ 0. Naturally, the equilibrium involves qt = 1
when the max operator always strictly picks the first term in (21). We provide conditions for this not to be the case
in equilibrium in Assumption 2′ below.

27



that the planner imposes). Second, they fail to internalize the positive externality that they create

for future producers of the same activity when they switch to clean technology. This externality is

again proportional to the likelihood of replacement, λ.

3.5 Definition of Equilibrium

We focus on Markovian equilibria where no agent can condition its strategy at t on the history of

play except through the state variables (St, qt, {nit}i∈[0,1]). This focus on Markovian equilibria is

motivated by our main interest, which is to understand the implications of lack of commitment to

future carbon taxes. In an infinite-horizon setup, non-Markovian equilibria may sometimes mimic

commitment policies.21

A dynamic (Markov) equilibrium, or an equilibrium for short, is given by a path

of technology choices, taxes, input decisions, wages for scientists, and stock of carbon

{(q∗t )t≥0, (τ
∗
t )t≥0, (k

∗
dt)t≥0, (k

∗
ct)t≥0, (w

∗
t )t≥0, (S

∗
t )t≥0},

• Given (q∗t )t≥0, carbon taxes (τ∗t )t≥0 maximize household utility (15) at each t ≥ 0,

• Given (τ∗t )t≥0, clean technology decisions (q∗t )t≥0 satisfy (Dynamic Technology IC),

• Given τ∗t , input choices k∗dt and k∗ct maximize, respectively, πdt and πct in (18) and (19), for

all t ≥ 0,

• Given (τ∗t )t≥0 and (q∗t )t≥0, the equilibrium R&D intensity zt and wages wt satisfy labor market

clearing (17) and free entry (23) for each t ≥ 0.

The equilibrium has a block recursive structure whereby the remaining variables can be deter-

mined from (τ∗t )t≥0 and (q∗t )t≥0. In view of this, we use the shorthand of referring to an equilibrium

as (τ∗t , q
∗
t )t≥0.

We also define a Balanced Growth Path Equilibrium (BGP) as an equilibrium in which (τ∗t , q
∗
t ) =

(τ̂ , q̂) for all t, so that aggregate output At grows at a constant rate given by

g ≡ αλ = αϕZ,

where the presence of the term α = A− 1 follows from the properties of the Poisson process.22 We

will also see that in a BGP, St = Ŝ for all t. When this causes no confusion, we will also include Ŝ

in the definition of a BGP (or S∗t in the definition of an equilibrium).

21In our setup, this would take the form of the social planner expecting worse actions from the firms following
a lower-than-promised carbon tax. Though such schemes are not always feasible, they nevertheless complicate the
analysis.

22Each nit is a sample path of a Poisson process with intensity λt, so
∫ 1

0
Anitdi corresponds to the expectation of

ANt = exp(Nt logA), where Nt ∼ Pois(λt) so that E[eφNt ] = exp(λt(eφ − 1)) for any φ ∈ R.
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3.6 Farsighted Pigovian Taxes

To characterize the equilibrium tax sequence, we start by determining the evolution of marginal

environmental damages or, equivalently, the shadow price of carbon emissions, which will give us

the dynamic equivalent of Pigovian taxation (or what we will call “farsighted Pigovian taxes”).

Consider the Hamiltonian corresponding to the planner’s maximization problem, in (15), subject

to the evolution of the stock of carbon given in (12),

Ht(Kt, St) = Ct −AtD(St)− µt [Et/At − δSt] , (24)

where µt is the costate variable associated with the stock of carbon in the atmosphere.23 Since

emissions are divided by average productivity, At, the shadow value of carbon emissions is given by

pt = µt/At. (25)

Since the Hamiltonian is concave, the necessary and (with the usual transversality condition) suf-

ficient first-order condition for optimality is

∂Ht/∂S = µ̇t − ρµt,

which yields a simple form for the shadow price of carbon emissions provided that the planner’s

maximization problem in (24) is well-behaved (in particular has a finite value). The next assumption

ensures this:

Assumption 3 (Growth)

g ≡ αϕZ < ρ+ δ.

Under this assumption, we have:

Lemma 3 (Shadow Cost of Carbon) Suppose Assumption 3 holds. Then, along any optimal

path,

ṗt = −D′(St) + (δ + ρ− αλ) pt (26)

and thus

pt =

∫ ∞
t

D′(Ss)e
−(δ+ρ−αλ)(s−t)ds, (27)

for all t ≥ 0.

23The full maximization problem would also need to impose constraints for the evolution of the states of clean
technology, qt, and average productivity in the economy, At, but as these constraints do not change the expression
for the shadow price of carbon, we omit them from our exposition in the text.
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Proof. See Appendix B.

We refer to the tax trajectory implied by (27) as “farsighted Pigovian.” This terminology

emphasizes that this tax sequence is a direct generalization of our static Pigovian tax. The gener-

alization accounts for the fact that emissions create damages not only today but at all future dates,

which means that the shadow price of carbon emissions must incorporate the discounted cost of

these future damages.

Our next result shows that equilibrium taxes—due to the lack of commitment of the planner—

must equal the farsighted Pigovian taxes characterized in (27), at least once clean technology

converges.24

Proposition 8 (Pigovian Best-response) There exists T < ∞ such that equilibrium taxes are

given by

τt = pt (28)

for all t ≥ T .

Proof. See Appendix B.

Proposition 8 shows that, despite the complicated dependence of clean technology and R&D

decisions on the entire tax trajectory, equilibrium carbon taxes take a simple form. In fact, in

(27), these taxes only depend on the evolution of the stock of carbon in the atmosphere (St)t≥0.

The key to understanding this result is that absent technology choices, the (farsighted) Pigovian

taxes are optimal (with or without commitment), and the lack of commitment, combined with

the Markovian restriction, precludes the planner from choosing a tax sequence that is ex post

distortionary (different from Pigou), once the transition to cleaner technology is complete (either

with qt = 1 or qt = q̂ < 1). This transition is completed within some finite time T , enabling us to

use backward induction to prove the proposition.25

Remark 2 (Counterexample to pure Pigovian taxes) Proposition 8 establishes that τt = pt

for all t ≥ T . In addition, we can prove that τt ≤ pt for all t ≥ 0. But there might be some

circumstances in which the social planner prefers to set a tax rate strictly less than the Pigovian

one in the interval [0, T ] in order to increases future Pigovian taxes and encourage a faster switch

to clean technology. We analyze the conditions under which this possibility could arise in Appendix

B, but also prove that such a counterexample is possible only if λ is very high (in fact, so high that

all geoengineering technologies are strictly welfare reducing.)

24The main technical detail, showing that equilibrium clean technology indeed always converges in finite time, is
stated and proven as Lemma B1 in the Appendix.

25This result is reminiscent of the generic time-inconsistency result of Calvo (1978). It is also simplified since
∆→ 0, which removes the possibility of choosing a distortionary tax today in order to affect behavior until the taxes
are adjusted tomorrow.
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We will see later that, if she could commit, the planner would prefer to deviate from this

Pigovian tax scheme.

3.7 Characterization of Equilibrium

To characterize the dynamic equilibrium, we impose dynamic analogues of Assumptions 1 and 2,

which will again rule out Jevons’ paradox and guarantee an “interior” equilibrium.

Assumption 1′ (Dynamic No Jevons) For all t ≥ 0 and all τ ≥ 0, we have

Λ(τt) ≡ kd(τt)− γkc(τt) > 0.

This assumption enables us to develop another parallel with the static model. Analogously with

(4), let us define

Ψ(τt) ≡ πc(τt)− πd(τt) (29)

= fc(kc(τt))− kc(τt)− (fd(kd(τt))− kd(τt)) + Λ(τt)τt

as the difference in (normalized) profits between clean and dirty technologies at carbon tax τt.

Recall that in the static model, Lemma 2 ensured that Ψ′(τ) = Λ > 0. Here, we similarly have

Ψ′(τt) = Λ(τt) > 0 by Assumption 1′. Moreover, in an interior BGP where (τt, qt) = (τ̂ , q̂) with

q̂ ∈ (0, 1), we obtain a simplified form of (Dynamic Technology IC),

vdt − vct =
Ψ(τ̂)

ρ+ λ
= Γ. (30)

Here the first equality exploits the fact that when q̂ < 1, vdt is equal to the discounted stream

of profits from dirty technology, and that profits, taxes and the creative destruction rate, λ, are

constant, and the second equality follows from (22).

Assumption 2′ (Conditions for Dynamic Interior Equilibrium) Let the initial carbon stock

be S0. Then for all t ≥ 0,

Γ ∈
(∫ ∞

t
Ψ(τ s)e

−(ρ+λ)(s−t)ds,

∫ ∞
t

Ψ(τ s)e
−(ρ+λ)(s−t)ds

)
where

τ t =

∫ ∞
t

D′
(
S0e
−δs +

∫ s

0
kd(τν)e−δ(s−ν)dν

)
e−(δ+ρ−αλ)(s−t)ds

and

τ t =

∫ ∞
t

D′
(
S0e
−δs +

∫ t

0
kd(τν)e−δ(t−ν)dν + γ

∫ s

t
kc(τν)e−δ(s−ν)dν

)
e−(δ+ρ−αλ)(s−t)ds.
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Although notationally cumbersome, this assumption has an identical interpretation as its static

counterpart, Assumption 2. Specifically, it ensures that the cost of switching to clean technology is

neither too high nor too low—and the relevant thresholds depend on the farsighted Pigovian taxes

and R&D intensities that will prevail when no firm ever switches to clean technology, (τ t)t≥0, or all

firms switch to clean technology, (τ s)s≥t. As in its static analogue, Assumption 2, the conditions

in Assumption 2′ depend on the initial stock of carbon, because this determines the entire path of

Pigovian taxes.

We start by characterizing the BGP in which (τt, qt) = (τ̂ , q̂) for all t, which also ensures that

the stock of carbon in the atmosphere converges to some finite Ŝ. From (12), this limiting value of

the stock of carbon must satisfy

q̂γkc(τ̂) + (1− q̂)kd(τ̂) = δŜ. (31)

Using (27) and (28), the stationary Pigovian tax τ̂ is given by

τ̂ =
D′(Ŝ)

δ + ρ− αλ
. (32)

These two equations together with (30) determine (Ŝ, τ̂ , q̂). The next proposition establishes that

such a BGP exists and is unique.

Proposition 9 (Existence, Uniqueness of the Balanced Growth Path) Suppose Assump-

tions 1′, 2′, and 3 hold. Then there exists a unique BGP where (St, τt, qt) = (Ŝ, τ̂ , q̂), and (Ŝ, τ̂ , q̂)

is the unique solution to equations (30), (31), and (32).

Proof. See Appendix B.

The existence of a BGP (Ŝ, τ̂ , q̂) follows from the equations and arguments proceeding the

proposition. The uniqueness of this BGP is a consequence of the fact that the BGP farsighted

Pigovian tax τ̂ is a decreasing function of q̂. Once the incentive-compatible carbon tax, τ̂ , is pinned

down by equation (30), there exists a unique q̂ that solves (32). These two variables then yield a

unique value of Ŝ.

A noteworthy feature of the unique BGP is that, as in our static model, q̂ ∈ (0, 1) and the

equilibrium is “interior.” This, in particular, ensures that in the BGP, (30) holds, which restricts

the value of the BGP carbon tax to τ̂ . The next proposition shows that every equilibrium converges

to the BGP equilibrium in Proposition 9, and does so by some T <∞.

Proposition 10 (Interior Dynamic Equilibrium) Suppose Assumptions 1′, 2′, and 3 hold.

Then the unique dynamic equilibrium takes the following form. There exists a T <∞ such that:

1. for all t ∈ [0, T ), τt and St grow continuously and qt = 0.
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2. for all t ≥ T , (St, qt, τt) = (Ŝ, q̂, τ̂), where (Ŝ, q̂, τ̂) is given in Proposition 9.

Proof. See Appendix B.

Figure 5 illustrates the shape of the dynamic equilibrium. The stock of carbon is always

nondecreasing, and smoothly increasing until the economy reaches the BGP. Therefore marginal

environmental damages and Pigovian taxes also increase until they reach their constant BGP level τ̂ .

As the Pigovian tax grows, clean technology incentives also increase—eventually (by monotonicity

of Ψ(τt)) reaching the value for which (30) holds, at which point clean technology leaps from zero

to q̂.

Dynamic equilibrium

t

Ŝ (St)t≥0

T

(qt)t≥T

τ̂
(τt)t≥0

q̂

(qt)t≤T

Figure 5: Time paths of the carbon stock (St)t≥0, optimal taxes (τt)t≥0, and clean technology
(qt)t≥0 in the dynamic equilibrium.

The proof of Proposition 10 is provided in Appendix B. Here we give some intuition. Proposition

9 established that the BGP has to be “interior”—if all activities eventually switched to clean

technology, the subsequent carbon taxes would be too low to make such a switch optimal, whereas

if no activity switches to clean technology, the stock of carbon and thus future carbon taxes would

be sufficiently high to incentivize investment in clean technology. Proposition 10 then shows how

we get to this BGP. Initially, with a lower stock of carbon in the atmosphere than the BGP value,

the marginal damage of carbon emissions is low, so Pigovian taxes are also low, and consequently

the transition path involves faster growth of emissions than in the BGP. When the stock of carbon

reaches Ŝ, the fraction of firms that have already transitioned to clean technology must be exactly

the BGP value, q̂, to sustain the (stationary) Pigovian tax sequence that maintains the dynamic
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technology IC, (30), so that we have τt = τ̂ for all t ≥ T .

3.8 Second-best

We noted above that, as in the static model, if she could commit, the planner would set a carbon tax

sequence different than the Pigovian one. In this subsection, we prove this claim. As in Proposition

3 in our static analysis, the next result shows that whenever λ > 0, the second-best deviates from

Pigovian taxation. The main differences are that the condition that λ > 0 is now automatically

satisfied in any BGP with productivity growth (provided that Z > 0). Second-best carbon taxes,

τSBt , exceed Pigovian ones (are greater than the shadow price of carbon emissions, pt), and induce

more firms to switch to clean technology. In contrast, if λ = 0 so that there is no growth in

productivity in this economy, second-best and Pigovian taxes coincide.

Proposition 11 (Dynamic Second-best) 1. Suppose that Z > 0 (which ensures that λ > 0).

Then the planner commits to a carbon tax τSBt ≥ pSBt for all t ≥ 0, with τSBt > pSBt for some

t ≥ 0, and the equilibrium fraction of firms that switch to clean technology converges to

qSB > q̂.

2. Suppose that Z = 0 (so that λ = 0). Then for all t ≥ 0, τSBt = pt and the equilibrium fraction

of firms that switch to clean technology converges to qSBt = q̂.

Proof. See Appendix B.

3.9 Geoengineering

We next consider the implications of geoengineering breakthroughs on dynamic carbon taxation,

environmental damages and welfare. We focus on the BGP derived in Proposition 9, and show that

the results are essentially identical to the effects of geoengineering in the static model, derived in

Section 2.10. We again distinguish between the two types of geoengineering advances, captured by

the parameters ξ and υ in the general damage function (1− υ)D(St − ξ).

Proposition 12 (Dynamic Implications of Type I Geoengineering Technologies)

Suppose that Assumptions 1′, 2′, and 3 hold, and the economy’s unique BGP is given by (Ŝ, q̂, τ̂).

Consider a geoengineering technology improvement of type I that increases ξ by a small amount

dξ > 0. Then:

• dτ̂/dξ = 0 (taxes do not change).

• dŜ/dξ = 1 (the stock of carbon increases).

• dq̂/dξ = −δ/Λ < 0 (clean technology falls).
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• dW/dξ < 0 ⇐⇒ λ
ρ+λ(π̂c − π̂d) > Λτ̂ (welfare may decline).

Proof. See Appendix B.

This proposition shows that any geoengineering advance of type I results in conclusions similar

to Proposition 4—in the BGP, the stock of carbon in the atmosphere increases and welfare (in the

BGP) may even decline if there is a sufficiently strong response of investment in clean technology.

The next proposition gives the dynamic analogues of Proposition 5. Geoengineering reduces

the BGP carbon tax, and welfare may decline.

Proposition 13 (Dynamic Implications of Type II Geoengineering Technologies)

Suppose that Assumptions 1′, 2′, and 3 hold, and the economy’s unique BGP is given by (Ŝ, q̂, τ̂).

Consider a geoengineering technology improvement of type II that increases υ by a small amount

dυ > 0, and let η = ŜD′′(Ŝ)/D′(Ŝ) be the elasticity of the marginal damage function. Then

• dτ̂/dυ = 0 (taxes do not change).

• dŜ/dυ = D′(Ŝ)

(1−υ)D′′(Ŝ)
> 0 (the stock of carbon increases).

• dq̂/dυ < − δŜ
(1−υ)Λ

1
η < 0 (clean technology declines).

• dW/dυ < 0 ⇐⇒ η < ηII(λ), where

ηII(λ) ≡ a
(
δ(ρ− g + δ)

λ

ρ+ λ

π̂c − π̂d
Λτ̂

+
δ

ρ− g + δ

)
and a ≡ ŜD′(Ŝ)/D(Ŝ) > 1 (welfare may decline).

Proof. See Appendix B.

We note in addition that the conditions for welfare to decline as a result of a geoengineering

advance of type II are again very similar to those we have obtained in the static model in Proposition

5. In particular, as in the static model, if λ is sufficiently large, welfare declines following both

types of geoengineering.

4 Conclusions

Many scientists and policymakers are pinning their hopes on major geoengineering advances to stem

damages from the rapidly-rising concentration of carbon in the atmosphere. Others, on the other

hand, have worried that the prospect of geoengineering advances may jeopardize more conventional

solutions to our environmental maladies, most notably the necessary increases in carbon taxes.

Many of these concerns center around the possibility that the promise of geoengineering solutions

may not materialize, or that geoengineering may have harmful side effects. In this paper, we have
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proposed an alternative perspective on the possible dark side of geoengineering. We have argued,

theoretically, that geoengineering may damage the environment and welfare precisely because it is

expected to and will materialize (or at least do so with a high probability). At the center of our

argument is the possibility that the expectation of geoengineering makes future carbon taxes non-

credible (because once geoengineering advances have been made, the damage from carbon emissions

is reduced), which will discourage current investments in conventional cleaner technology (where

our emphasis on “conventional” is to distinguish it from geoengineering technologies).

To advance this argument, we have developed a model of an endogenous transition to clean

technology with policy-making without commitment. Both of these elements are relatively new in

the environmental literature and important for our argument. Though transition to various types

of clean technology (including wind, solar, and geothermal) is generally seen as a bedrock of any

reduction in the pace of buildup of carbon in the atmosphere, there are relatively few analyses of

this process in the economics literature (see the references in the Introduction). The modeling of

the transition to conventional clean technology is critical for understanding the potential adverse

effects of geoengineering, because it is these types of investments that may be discouraged if future

carbon taxes are expected to be low. Lack of commitment to future policies in general and carbon

taxes in particular is also an evident reality, but most economic analyses of environmental policy

have stayed away from the time-inconsistency issues that arise in the absence of such commitment.

It plays a pivotal role in our setting because it is this lack of commitment that makes it impossible

for future carbon taxes to remain high when geoengineering advances materialize.

We start with a static model in which existing energy producers can undertake costly invest-

ments to switch to clean technology and once these technology investments are made, a benevolent

planner sets the carbon tax. Lack of commitment to policies means that the planner cannot deviate

from the Pigovian carbon tax once technology investments are sunk. But because such investments

create a positive externality—for other firms that can build on them—the planner would have

preferred to commit to a carbon tax greater than the Pigovian level, had this been possible. Fur-

thermore, we restrict attention to parameters such that the equilibrium is “interior” where some

firms switch to clean technology, while others do not. In the static model, an interior equilibrium

arises only if the carbon tax that they anticipate takes a specific value.

We then introduce geoengineering breakthroughs into this framework. For simplicity, we dis-

tinguish between two different types of geoengineering advances. Type I, which corresponds to

various technologies aiming at carbon removal from the atmosphere, shifts the damage function

from the stock of carbon in the atmosphere rightwards in a parallel fashion—and is thus equivalent

to a decline in the effective stock of carbon. If no economic decisions changed following this type

of geoengineering breakthrough, the marginal and overall damages would decline, leading to lower
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carbon taxes in the future and higher welfare. But anticipating a lower rate of carbon taxation, all

firms would then abandon their investments in clean technology. This would increase emissions and

the stock of carbon. Provided that the geoengineering breakthrough is not so large as to destroy

the interior equilibrium, we must then have sufficiently higher emissions so that marginal damages

are restored to their pre-geoengineering level and energy producers are once again incentivized to

invest in conventional clean technology. In this case, therefore, overall environmental damages re-

main constant despite the geoengineering breakthrough, and overall welfare may decrease. With

geoengineering advances of type II, which correspond to climate adaptation technologies including

solar radiation management, environmental damages decline proportionately. In this case, we show

that similar reasoning leads to an increase or decrease in the overall environmental damages de-

pending on the elasticity of the marginal damage function. Intuitively, the stock of carbon in the

atmosphere has to increase so that the marginal environmental damage and future carbon taxes

do not decline, and depending on the aforementioned elasticity, this may necessitate a large or a

small increase in the stock of carbon in the atmosphere (the greater is the elasticity, the larger is

the requisite change in the stock of carbon). As a result, welfare may again decrease. Overall, both

types of geoengineering breakthroughs generate countervailing negative effects, and may make the

problem of reducing and controlling carbon emissions much more difficult.

We show that the general insights are not dependent on specific assumptions made for tractabil-

ity and clarity in our model. Adding heterogeneity or changing the way in which damages are

modeled does not change our qualitative conclusions. More importantly, similar results apply in

the context of a dynamic model in which the stock of carbon in the atmosphere and technology

evolve gradually. In this dynamic model, the positive externalities from switching to clean tech-

nology have a more compelling microfoundation: technological progress takes the form of firms

ascending a quality ladder, and investments for switching to a clean technology enable further im-

provements on that ladder to build on the foundations laid by this clean technology. We show that

the BGP equilibrium in this dynamic model has a very similar structure to our static equilibrium,

and the effects of the two types of geoengineering breakthroughs are essentially identical to what

we described in the previous paragraph.

We see this paper as a first step both in the investigation of the implications of policy-making

without commitment in the context of environmental policies and in the study of the consequences of

geoengineering. In addition to considering richer menus of different technologies for reducing carbon

emissions and combating climate change, future theoretical work could consider direct competition

between firms using clean and dirty technologies (see Acemoglu et al., 2016, for one attempt in this

direction). A major element missing from our analysis is the interaction between different countries

and jurisdictions, which would require political economy considerations in addition to the issues of
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policy-making without commitment. Perhaps even more important is to provide empirical evidence

on the two-way interactions between technology and policy—how current and future policy affects

investments in clean technology, and how new technologies impact future policies.

Finally, while the paper’s analysis has been positive, its results have normative implications.

First, much of the conversation over climate engineering thus far has centered on scientific assess-

ments of the probabilities that geoengineering will succeed or create adverse environmental risks.

We suggest that the result of this research may itself affect economic equilibria by impacting in-

vestments in conventional clean technology, and in this sense our model provides a note of caution

for geoengineering policy-makers. Second, by stressing the costs of the policy-makers’ inability to

commit to future carbon taxes, our results highlight that there are additional benefits from effi-

cient subsidies for clean technology (which would remove the excessive reliance on carbon taxes to

incentivize innovation) and from new commitment devices in the context of environmental policy.26

Appendix A

A1 Omitted proofs

Proof of Proposition 2 (Interior Equilibrium). (Interiority). From Proposition 1, τ̂ =

D′(·; q̂). Assumption 2, which imposes that (1 − λ)Ψ(τ) < Γ and (1 − λ)Ψ(τ) > Γ, then implies

that neither q = 0 nor q = 1 are subgame perfect equilibria.

(Existence and uniqueness). The private gain from switching to clean technology, Ψ(τ), is

continuous in τ , so the intermediate value theorem gives existence of a point τ̂ such that (1 −
λ)Ψ(τ̂) = Γ. Since Ψ(τ) is increasing (from Lemma 2), τ̂ is unique. Moreover, because D′′ > 0,

the Pigovian tax,

τ = D′((1− δ)S0 − qΛ(τ) + kd(τ)),

is decreasing in q. Consequently q̂ is also unique.

Proof of Proposition 3 (Second-best). The derivative of welfare with respect to q is

∂W

∂q
= fc(kc)− kc − Γ− (fd(kd)− kd)−

∂S

∂q
D′(S)

which, using ∂S/∂q = Λ and the fact that in the interior, fc(kc)− kc− (fd(kd)− kd) + Λτ = Γ
1−λ =

Γ− λ
1−λΓ, becomes

∂W

∂q
=

λ

1− λ
Γ− Λτ + ΛD′(S). (A1)

26For example, enforceable carbon price floors, such as the auction reserve price in the California cap-and-trade
mechanism under AB 32 (see Borenstein et al., 2015) may help to provide some medium-term commitment in the
context of carbon markets. Laffont and Tirole (1996a) also discuss a number of more complicated options contracts
that can be used to mimic commitment in dynamic pollution permit markets.
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At τ = D′(S), (A1) is positive, implying that τSB > D′(S) yields strictly higher welfare than

τ = D′(S) if and only if λ > 0.

Proof of Proposition 4 (Type I Geoengineering). (Taxes, damages do not change). In

an interior equilibrium,

τ̂ =
1

Λ

[
Γ

1− λ
− fc(kc) + kc + fd(kd)− kd

]
and the RHS is invariant to a level shift in S0, so dτ̂ = 0. If τ̂ = D′(S), then dS = 0, which implies

that −Λdq̂ = dξ.

(Welfare). We can calculate the total derivative of welfare, W = q(fc(kc) − kc − Γ) + (1 −
q)(fd(kd)− kd)−D((1− δ)S0 − ξ + E), with respect to ξ as

dW

dξ
=

[
q(f ′c(kc)− 1)

dkc
dτ

+ (1− q)(f ′d(kd)− 1)
dkd
dτ

]
dτ̂

dξ

+ [fc(kc)− kc − Γ− (fd(kd)− kd)]
dq̂

dξ
+D′ − dE

dξ
D′

= [fc(kc)− kc − Γ− (fd(kd)− kd)]
dq̂

dξ
+D′ − dE

dξ
D′

= [fc(kc)− kc − Γ− (fd(kd)− kd)]
dq̂

dξ

(A2)

where the second line uses dτ̂/dξ = 0 and the third uses dE/dξ = 1. (And dE/dξ = 1 confirms

dD/dξ = 0). Using (5), (A2) simplifies to

dW

dξ
= [λ (fc(kc)− kc − (fd(kd)− kd))− (1− λ)Λτ ]

dq̂

dξ
.

Using dq̂/dξ = −1/Λ, and πc − πd − Λτ = fc(kc)− kc − (fd(kd)− kd), we conclude that

dW

dξ
< 0 ⇐⇒ λ(πc − πd) < Λτ.

Proof of Proposition 5 (Type II Geoengineering). (I. Taxes). As in the proof of

Proposition 4, only dτ̂/dυ = 0 sustains IC.

(II. Environmental damage). Differentiating total environmental damage, (1 − υ)D(S), with

respect to υ, we obtain
dD(·)
dυ

= D(S) + (1− υ)D′(S)
dS

dυ
. (A3)

To calculate dS/dυ, note that because dτ̂/dυ = 0, we can differentiate

(1− υ)D′(S) = τ̂

with respect to υ to obtain

−D′(S) +
dS

dυ
(1− υ)D′′(·) = 0 =⇒ dS

dυ
=

1

1− υ
D′(S)

D′′
.
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The total effect in (A3) then becomes

dD(·)
dυ

= −D(S) +
1

1− υ
D′(S)

D′′
(1− υ)D′(S)

= −D(S) +
1

η
· SD′(S),

(A4)

where η ≡ SD′′(S)/D′(S) is the relative curvature of D(·) at S. By convexity (D′′ ≥ 0), the

quantity D(S) is bounded above by SD′(S), so letting η∗ ≡ SD′(S)/D(S) > 1 we have

η < η∗ ⇐⇒ dD/dυ > 0.

(III. Welfare) Aggregate welfare changes with υ according to

dW

dυ
=

∂

∂q
[q[fc(kc)− kc] + (1− q)[fd(kd)− kd]− qΓ]

dq

dυ
− dD(·)

dυ

= [fc(kc)− kc − [fd(kd)− kd]− Γ]
dq

dυ
− dD(·)

dυ

=

[
λ

1− λ
Γ− Λτ

]
dq

dυ
− dD(·)

dυ
,

where the last substitution follows from (5).

Differentiating the tax invariance condition D′(S) = (1− υ)D′(S) as before, noting that S can

adjust only through q, and that ∂E/∂q = −Λ, we obtain

dq

dυ
=

[
∂E

∂q

]−1 dS

dυ
= − 1

Λ(1− υ)

D′(S)

D′′
, (A5)

or equivalently,
dq

dυ
= − 1

Λ(1− υ)

S

η
.

As τ = (1− υ)D′(S), using this expression for dq/dυ above gives[
λ

1− λ
Γ− Λτ

]
dq

dυ
= − λ

1− λ
Γ · 1

Λ(1− υ)

S

η
+

1

η
SD′(S). (A6)

From above, the total effect on environmental damage is

−dD(·)
dυ

= D(S)− 1

η
SD′(S). (A7)

The last term in each of the previous two expressions cancels when summed, and we obtain

dW

dυ
= D(S)− λ

1− λ
Γ · 1

Λ(1− υ)

S

η
.

From (5), we have

Γ = (1− λ)(πc − πd), (A8)
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and multiplying both sides by Λ(1− υ)D′(S)/D(S), we obtain

dW

dυ
< 0 ⇐⇒ Λτ − λ(πc − πd)

1

η

SD′(S)

D(S)
< 0

and letting a ≡ SD′(S)/D(S) > 1 (where the inequality follows from the strict convexity of D(·)),
we conclude that

η < ηII(λ) ≡ aλ
(
πc − πd

Λτ

)
characterizes the family of damage functions for which dW/dυ < 0.

Proof of Claim in Footnote 17 (Quadratic Damages). (Damages always increase). If

D is quadratic, then the approximation

D(S) ≈ SD′ − 1

2
S2D′′

is exact, so that D/SD′ = 1− η/2. By (A4), dD/dυ > 0 ⇐⇒ −D(S) + η−1SD′(S), so

dD/dυ > 0 ⇐⇒ −1 + η/2 + 1/η > 0,

or dD/dυ > 0 ⇐⇒ η2/2− η+ 1 > 0. But η2/2− η+ 1 is a polynomial with only imaginary roots,

and is thus always positive.

(Welfare). Under the assumption that D is quadratic, a = 1− η/2 and from (A4), we conclude

that the condition

η(1− η/2)− λ
(
πc − πd

Λτ

)
< 0

characterizes the region for which dW/dυ < 0. The resulting polynomial has only imaginary roots

when

λ

(
πc − πd

Λτ

)
>

1

2

which is precisely the condition that λ ≥ λ∗.
Proof of Proposition 6 (Direct Subsidies). Welfare in this extended model is given by

W = (1− q)[fd(kd)− kd] + q[fc(kc)− kc − (1 + σω)Γ]−D(S),

the new binding IC constraint becomes

Ψ(τ) =
1− σ
1− λ

· Γ, (A9)

and the first-order condition for σ is

[fc(kc)− kc − (fd(kd)− kd) + Λτ − (1 + σω)Γ]
dq

dσ
− qωΓ = 0. (A10)

Note also that we can obtain
dq

dσ
=

Γ

1− λ
1

ΛD′′(S)
(A11)
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by differentiating (A9) totally with respect to σ (noting that τ depends on σ) and using Ψ′(τ) = Λ

and dτ
dσ = −ΛD′′(S) dqdσ . Using (A9) and (A11), we can rewrite (A10) as

Γ

1− λ
1

ΛD′′(S)

(
λ− σ − (1− λ)σω

1− λ

)
Γ = qωΓ

yielding

σ =
λ

1 + (1− λ)ω
− qω (1− λ)2ΛD′′(S)

1 + (1− λ)ω

which reduces to σ = λ if ω = 0, and otherwise shows that σ < λ for all ω > 0. To study welfare,

dW

dξ
=

(
λ− σ
1− λ

Γ− Λτ − σωΓ

)
dq

dξ

and using πc − πd =
(

1−σ
1−λ

)
Γ with dq/dξ < 0, we obtain the statement of the proposition.

Proof of Proposition 7 (β-Benevolence). For type II, τ = β(1− υ)D′(S). Equation (A5)

is unchanged but we obtain a modified version of (A6),[
λ

1− λ
Γ− Λτ

]
dq

dυ
= − λ

1− λ
Γ · 1

Λ(1− υ)

S

η
+ β

SD′(S)

η
.

The total effect on environmental damage is still given by (A7), so that the last terms in each of

(A6) and (A7) no longer cancel, and

dW

dυ
= D(S)− λ

1− λ
Γ · 1

Λ(1− υ)

S

η
− (1− β)

SD′(S)

η
.

Using (A8), and multiplying both sides by βΛ(1− υ)D′(S)/D(S), we obtain

dW

dυ
< 0 ⇐⇒ Λτ −

[
βλ

πc − πd
η

+
1− β
η

Λτ

]
SD′(S)

D(S)
< 0

yielding (8).

A2 Robustness to Ex Ante Heterogeneity

As described in Section 2.11, suppose that firms are differentiated in terms of fixed costs of transi-

tioning to clean technology. In particular, suppose that

Γi = Γ + χi

with E[χi] = 0 and H(x) ≡ P(χi ≤ x). We call this “economy H.” While before, equilibrium

technology adoption was the jump-discontinuous function

q̂(τ) = q̂1{(1−λ)Ψ(τ)=Γ} + 1{(1−λ)Ψ(τ)>Γ},

the effect of heterogeneity is to smooth equilibrium technology,

q̂(τ) = H ((1− λ)Ψ(τ)− Γ) .

42



The equilibrium τ̂ is now the fixed point of

τ = D′ ((1− δ)S0 + kd − Λ ·H ((1− λ)Ψ(τ)− Γ)) , (A12)

which will be unique if H(·) is increasing in the neighborhood of the solution to (A12), since H(·)
is always nondecreasing. Define the derivative of H from the left by h.

We can build some intuition for our geoengineering comparative statics by totally differentiating

τ̂ with respect to ξ (Type I), to obtain

dτ̂

dξ
= − 1

1/D′′(S)− [∂kd/∂τ ] + Λ2(1− λ)h(0)
< 0 (A13)

and
dS

dξ
= 1 +

1

D′′(S)

dτ̂

dξ
. (A14)

When either h(0) → +∞ (the case of ex ante identical firms) or D′′(S) → 0, the RHS of (A13)

vanishes: the Pigovian tax is totally invariant to geoengineering. Otherwise, the more concentrated

the distribution of firms is at (1− λ)Ψ(τ)− Γ, the closer [dτ̂/dξ] gets to zero.

Types I and II geoengineering go through just as before, subject to a restriction on heterogeneity

that we now calculate exactly (proofs omitted):

Proposition A1 (Geoengineering Type I with Heterogenous Firms) Consider economy

H. For every ε > 0, there exists a `I ≥ 0 such that if h(0) ≥ `I, then

• |dτ̂/dξ| < ε.

• dŜ/dξ > 1−
(

1
D′′(S)

)
ε.

• dq̂/dξ < −1/Λ +
(

1
ΛD′′(S) −

1
Λ
∂E
∂τ

)
ε.

• dW/dξ < 0 ⇐⇒ λ(πc − πd) > Λτ +O(ε).

In particular,

`I(ε) =
1

(1− λ)Λ2

[
1

ε
− 1

D′′(S)
+
∂kd
∂τ

]
.

Proposition A2 (Geoengineering Type II with Heterogenous Firms) Consider economy

H. For every ε > 0, there exists an `II ≥ 0 such that if h(0) ≥ `II then

• |dτ̂/dυ| < ε

• dŜ/dυ > D′(S)
(1−υ)D′′(S) +

(
1

(1−υ)D′′(S)

)
ε

• dq̂/dυ < − S
(1−υ)Λ

1
η +

(
1

Λ(1−υ)D′′(S) −
1
Λ
∂E
∂τ

)
ε
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• dW/dυ < 0 ⇐⇒ η < ηII(λ) +O(ε), where ηII(λ) is defined in Proposition 5.

In particular,

`II(ε) =
1

(1− υ)(1− λ)Λ2

[
1

ε

S

η
− 1

D′′(S)
+ (1− υ)

∂kd
∂τ

]
.

A3 Stochastic Geoengineering

As described in Section 2.11, suppose that geoengineering is known to succeed only with some

probability κ ∈ (0, 1), realized after clean investments and carbon taxation.27

Proposition A3 (Stochastic Geoengineering Type I) Suppose an increment dξ of type I geo-

engineering arrives with probability κ ∈ (0, 1). Then expected welfare declines if and only if

λ(πc − πd) > Λ
Eκ[D′′(S)]

D′′(S − dξ)
(τ − (1− κ)b)

where Eκ[D′′(S)] = κD′′(S − dξ) + (1− κ)D′′(S) and b ≡ D′(S)−D′(S − dξ) > 0.

Proof. Totally differentiating the tax rate,

τ̂ = κD′(S − dξ) + (1− κ)D′(S),

with respect to ξ, we obtain (as τ̂ is pinned down as before by technology IC),

0 = −κD′′(S − dξ)−
[
κΛD′′(S − dξ) + (1− κ)ΛD′′(S)

] dq
dξ

so that dq
dξ = −κ D′′(S−dξ)

Eκ[ΛD′′(S)] . Consequently, the derivative of expected welfare is

dEκ[W ]

dξ
=

(
λ

1− λ
Γ− Λτ

)
dq

dξ
+
dq

dξ
ΛEκ[D′(S)] + κD′(S − dξ)

and using τ = Eκ[D′(S)], we obtain the following simplification:

dEκ[W ]

dξ
= − λ

1− λ
Γ · κD

′′(S − dξ)
ΛEκ[D′′(S)]

+ κD′(S − dξ)

which, as κ > 0, rearranges to the statement in Proposition A3.

Proposition A4 (Stochastic Geoengineering Type II) Suppose an increment dυ of type II

geoengineering arrives with probability κ ∈ (0, 1). Then expected welfare declines if and only if

η <
a

Λ

(
1− dυ

1− κ · dυ

)(
λ(πc − πd)
τ − (1− κ)b′

)
where b′ ≡ dυ ·D′(S) > 0.

Proof. Calculate dq
dυ = −κD′(S)/Eκ[Λ(1 − υ)D′′(S)], and manipulate dE[W ]

dυ as in the proof of

Proposition 5.

27The case in which the event of geoengineering is realized before carbon taxation is essentially identical, since
clean investments are still made with reference to the expected tax, though the resulting calculations involve more
expectation operators, given the additional uncertainty over the realized carbon tax.
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Online Appendix B (Not for Publication)

In this Appendix, we first include the remainder of omitted proofs from the main text. We then

extend our economy in three directions. First, we allow the stock of carbon to directly affect

the production technology in the static model, as in Nordhaus (2008) and Golosov et al. (2014).

Second, we relax the assumption in the static model that environmental damages and producer

surplus are additively separable, and instead assume that society obtains welfare from the ratio of

consumption to environmental damage, which turns out to be isomorphic to the latter extension up

to a monotone transformation of the damages function. Third, we consider nonlinear flow utility

over consumption (net of environmental damage) in our dynamic model.

B1 Omitted proofs

Proof of Lemma 3 (Shadow Cost of Carbon). In equilibrium, the costate variable µt will

satisfy the Euler-Lagrange condition ∂Ht/∂S = µ̇t − ρµt, which we can write as

µ̇t = −AtD′(St) + (ρ+ δ)µt.

Dividing this equation by At, we obtain

µ̇t
At

= −D′(St) + (ρ+ δ)pt. (B1)

Since pt = µt/At, we have

ṗt =
µ̇t
At
− µt
A2
t

dAt
dt

=
µ̇t
At
− ptαλ,

where the second equality uses the fact that dAt/dt = αλAt. Hence (B1) becomes

ṗt = −D′(St) + (δ + ρ− αλ) pt,

which is exactly (26). Furthermore, with the transversality condition,

lim
t→∞

ptSte
−ρt = 0 (B2)

and the initial condition S0, we obtain

p0 =

∫ ∞
0

D′(St)e
−(δ+ρ−αλ)tdt,

and the differential equation (26) admits the unique solution (27).

Proof of Proposition 8 (Pigovian Best-response). We start with a crucial lemma.

Lemma B1 (Convergence of Clean Technology) Suppose that Assumptions 1′, 2′, and 3

hold. Then, qt → q̂ by some finite time T <∞.
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Proof of Lemma B1. The sequence (qt)t≥0 lives in the compact set [0, 1], and (qt)t≥0 is

monotone since clean technology decisions are irreversible. Hence qt → q̃ .

Suppose, to obtain a contradiction, that qt < q̃ for all t. Any tax trajectory that sustains an

equilibrium in which q̇t > 0 for some t ≥ t′ for every t′ <∞ must satisfy (22) infinitely often, which

requires that for some t ≥ t′, we have∫ ∞
t

Ψ(τs)e
−(ρ+λ)sdt = Γ.

Let (τt)t≥0 be a sequence of taxes with this property.

Furthermore, the planner can attain q̂ by always setting Pigovian taxes, which she prefers to

any q̃ < q̂ (this is immediate, and also follows directly from Proposition 11, which shows that the

planner prefers to induce a transition to qt → q̃). Hence we can focus on the case where q̃ > q̂.

Assumption 2′ and q̃ > q̂ together imply that for every t′ <∞, there is a subset of [t′,∞) of positive

measure for which τt > pt.

We next use this fact and construct a deviation from (τt)t≥t′ to (pt)t≥t′ that induces qt′ 6= q̃

for all t′ < ∞ (with qt → q̃), completing the contradiction argument. To verify this, observe that

deviating at t′ to pt forever (calculated with reference to the deviation path (S′t)t≥t′) will fix qt =

qt′ for all t ≥ t′. Therefore, the time-t′ deviation will yield welfare

U(t′) =

∫ ∞
t′

[
qt′ [fc(kc(pt))− kc(pt)] + (1− qt′) [fd(kd(pt))− kd(pt)]−D(S′t)

]
e−(ρ−g)tdt,

while the original path with qt → q̃ will yield

Z(t′) =

∫ ∞
t′

[qt [fc(kc(τt))− kc(τt)] + (1− qt) [fd(kd(τt))− kd(τt)]−D(St)] e
−(ρ−g)tdt,

where the stock of carbon after the deviation, S′t, satisfies Ṡ′t = qt′γkc(pt) + (1 − qt′)kd(pt) − δS′t,
the original stock of carbon St satisfies Ṡt = qtγkc(τt) + (1 − qt)kd(τt) − St, and S′t′ = St′ . Hence

the gain from the time-t′ Pigovian deviation is

U(t′)−Z(t′) ≥
∫ ∞
t′
{qt′ [fc(kc(pt))− kc(pt)− (fc(kc((τt))− kc(τt))]

+ (1− qt′) [fd(kd(pt))− kd(pt)− (fd(kd(τt))− kd(τt))]

− [D (S(qt′ , τt))−D(S(qt′ , pt)]} e−(ρ−g)tdt

− ‖qt − qt′‖
∫ ∞
t′

(
fc(τt)− fd(τt) + Λ(τt)D

′(S(qt′ , τt))
)
e−(ρ−g)tdt

(B3)

using Γ > 0 and the bound D(S(qt′ , τt))−D(S(qt, τt)) ≤ ‖qt− qt′‖Λ(τt)D
′(qt′ , τt) that follows from

convexity of D(·). As pt < τt for a set of positive measure, and pt ≤ τt always,28 the first integral

28The planner will always set τt ≥ pt for all t ≥ t′, as τt < pt reduces clean technology incentives and lowers welfare
from net consumption.
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in (B3) is strictly positive by definition of pt, while the final term can be made arbitrarily small in

finite time, since ‖qt − qt′‖ ≤ ‖q̃ − qt′‖ for all t ≥ t′; thus, for any ε > 0, there exists a t′ <∞ such

that ‖q̃ − qt′‖ < ε. But because Ψ(·) is strictly increasing and τt > pt infinitely often and always

on a subset of positive measure, we deduce that∫ ∞
t

Ψ(ps)e
−(ρ+λ)(t−s)ds <

∫ ∞
t

Ψ(τs)e
−(ρ+λ)(t−s)ds = Γ

for all t ≥ t′, which contradicts (22) unless q̇t = 0 for all t ≥ t′. Therefore qt → q̃ in finite time.

Finally, any limit q̃ 6= q̂ cannot be part of an equilibrium, because after q̃ is reached, from

Proposition 8, τt = pt, and thus (30), (31), and (32) need to hold, and thus q̃ = q̂ ∈ (0, 1) (where 0

and 1 are ruled out by Assumption 2′).

Let T be given as in the above lemma. First, consider t0 ≥ T . The planner’s objective is∫ ∞
t0

[q̂At [fc(kct)− kct] + (1− q̂)At [fd(kdt)− kdt]−AtD(St)] e
−ρ(t−t0)dt

which admits the (normalized) Hamiltonian

H̃t = q̂ [fc(kct)− kct] + (1− q̂) [fd(kdt)− kdt]− pt [γq̂kct + (1− q̂)kdt]

where pt is given by (27). Socially optimal input levels must satisfy the necessary first-order

conditions
∂H̃t

∂kct
= q̂

[
f ′c(kct)− 1

]
− γq̂pt = 0

and
∂H̃t

∂kdt
= (1− q̂)

[
f ′d(kdt)− 1

]
− (1− q̂)pt = 0

for all t ≥ t0, which are also sufficient because H̃t is strictly concave. Comparing these to the

first-order conditions of firms, which are

f ′c(kct)− 1 = γτt and f ′d(kdt)− 1 = τt for all t ≥ t0,

we conclude that τt = pt for all t ≥ T .

Second, consider t < T . We prove τt ≤ pt by backwards induction, and do this before taking

the limit ∆ → 0 for convenience. The planner’s utility at T −∆, given by the discrete version of

(15) and normalized by 1/At, is

∞∑
s=T

[
cT−∆+∆(s−T ) −D

(
ST−∆+∆(s−T )

)]
e−∆(ρ−g)(s−T ),

which, since qT = q̂, we can represent recursively as

cT−∆ −D (ST−∆) + e−(ρ−g)∆VT (ST , q̂) (B4)
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where

Vt (S, q) = max
{τt}t=t,t+∆,...

∞∑
s=t

[
ct+∆(s−t) −D

(
St+∆(s−t)

)]
e−(ρ−g)∆(s−t)

is the planner’s continuation value conditional on stock of carbon S and aggregate clean technology

q. The first-order condition of (B4) is

∂cT−∆

∂τT−∆
+ e−(ρ−g)∆∂VT (ST , q̂)

∂τT−∆
= 0,

and, since qt = q̂ for all t ≥ T ,

e−(ρ−g)∆∂VT (ST , q̂)

∂τT−∆
= −

∞∑
s=0

∂ST+s∆

∂τT−∆
D′ (ST+∆s) e

−(ρ−g)∆s

=

(
γqT−∆

∂kc,T−∆

∂τT−∆
+ (1− qT−∆)

∂kd,T−∆

∂τT−∆

)
pT−∆.

Consequently, as

∂cT−∆

∂τT−∆
= qT−∆

[
f ′c(kc,T−∆)− 1

] ∂kc,T−∆

∂τT−∆
+ (1− qT−∆)

[
f ′d(kd,T−∆)− 1

] ∂kd,T−∆

∂τT−∆
,

and, by firm-level optimization,

f ′c(kc,T−∆)− 1 = γτT−∆ and f ′d(kd,T−∆)− 1 = τT−∆

so only τT−∆ = pT−∆ is a best response for the planner. But then (Dynamic Technology IC) can

only hold at T − ∆ if qT−∆ = 0. To see this, observe that the net present discounted value of

switching to clean technology becomes

vc,T−∆ − vd,T−∆ = Ψ(τT−∆) +
∞∑
s=0

Ψ(τT+∆s)e
−(ρ+λ)(s+1)∆

= Ψ (pT−∆) + e−(ρ+λ)∆ Ψ(τ̂)

ρ+ λ

(B5)

using our result on t ≥ T to deduce that τT+∆s = τ̂ for all s ≥ 0. Therefore by (22), equation (B5)

gives

vc,T−∆ − vd,T−∆ <
Ψ(τ̂)

ρ+ λ
= Γ

using that Ψ′(·) > 0 and pT−∆ < pT = τ̂ (the latter follows from (27) since ST − ST−∆ > 0 and

ST ′ = ST = Ŝ for all T ′ ≥ T ). Hence qT−∆ = 0 in equilibrium. An identical argument implies that

qT−2∆ = 0. Inductively, then, qt = 0 for all t < T and τt ≤ pt on t < T .

We also note that we cannot show τt 6< pt for all t < T , but the discussion of Remark 2 below

gives precise conditions for which indeed τt ≥ pt, and therefore τt = pt, for all t ≥ 0.

Discussion of Remark 2 (Counterexample to Pigovian Taxes). Consider the Pigovian

equilibrium candidate in which τt = pt for all t, and

qt =

{
0 for t < T

q̂ for t ≥ T
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where T is defined by pt = τ̂ , for τ̂ from the unique BGP. Let (St)t≥0 be the pollution stock

associated with this Pigovian trajectory.

The net benefit to a deviation (τ ′t)t≤T inducing a faster carbon trajectory S′t ≥ St on [0, T ] and

an earlier transition at t′ < T , equals

G(t′, λ) =

∫ T

0

[
f(kd(τ

′
t))− kd(τ ′t)− [f(kd(pt))− kd(pt)]−D(S′t) +D(St)

]
e−(ρ−g)tdt

+ e−(ρ−g)T
(
e(ρ−g)(T−t′) − 1

)(λ(π̂c − π̂d)
ρ+ λ

− Λτ̂

) (B6)

since the earlier transition creates additional flow profits on [T ′, T ] of

q̂
(
fc(k̂c)− k̂c −

[
fd(k̂d)− k̂d

])
+ fd(k̂d)− k̂d − fd(kd(pt)) + kd(pt)

incurs the fixed cost Γ at T ′, and by (22),

fc(k̂c)− k̂c −
[
fd(k̂d)− k̂d

]
− Γ =

λ(π̂c − π̂d)
ρ+ λ

− Λτ̂ .

Equation (B6) implies that this strategy is preferred if and only if

λ ≥ λ̃ = inf{λ > 0 : G(t′0, λ) > 0} (B7)

where t′0 = arg maxt≤T G(t, λ). Note that if G(t′0, λ) ≤ 0 for all λ, then λ̃ = +∞. In particular,

since the integral in (B6) is negative by the definition of pt, it must be that

λ̃(π̂c − π̂d)
ρ+ λ̃

> Λτ̂

verifying the remark.

Proof of Proposition 9 (Uniqueness of BGP). Using (31), the (farsighted) Pigovian tax

given by (32) becomes

τ̂ =
1

δ + ρ− αλ
D′
(
q̂γkc(τ̂) + (1− q̂)kd(τ̂)

δ

)
, (B8)

which is a decreasing function of q̂. Hence there exists at most one q̂ ∈ (0, 1) that solves (32) when

τ̂ is given by (30).

Proof of Proposition 10 (Dynamic Equilibrium). We know that qt → q̂ in finite time

by Lemma B1. In addition,

Lemma B2 (Monotone Pollution) In equilibrium, (St)t≥0 is everywhere nondecreasing.

Proof of Lemma B2. Assumption 2′ implies that S0 ≤ Ŝ. Suppose also that St ≤ Ŝ for all

t (we prove this below). Now suppose, in order to obtain a contradiction, that Ṡt < 0 for some t.

But

Ṡt < 0 ⇐⇒ τt > τ̂ ≥ pt (B9)
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because

0 = q̂kc(τ̂) + (1− q̂)kd(τ̂), q̂)− δŜ

≤ qtkc(τt) + (1− qt)kd(τt)− δSt for all t ≤ T ,
(B10)

where the first line follows from the definition of τ̂ and q̂, and the second follows from qt ≤ q̂ (by

monotone convergence of qt ↑ q̂, proven in Lemma B1), τt ≤ τ̂ , and St ≤ Ŝ by assumption. But

(B9) can never be optimal; deviating downwards to τ̂ will strictly improve welfare since τ̂ ≥ pt and

τ̂ cannot affect (qt)t≥0.

Finally, St ↑ Ŝ, and until T , at which point ṠT = 0 and the economy is on the BGP. Hence

S0 ≤ Ŝ implies St ≤ Ŝ for all t, completing the proof of the lemma.

To conclude the proof of Proposition 10, note also that St is in fact increasing when either

qt < τ̂ and τt < τ̂ from (B10), and thus we can conclude that there exists T <∞ such that ST = Ŝ,

pT = τ̂ and qT = q̂, which completes the proof of the proposition.

Proof of Proposition 11 (Second-best Dynamic Policy with Commitment). Let T ?

denote the first-best switching time (when the planner controls both input decisions and technology

choices) and

T ≥ T ?

denote the equilibrium switching time without commitment specified in Proposition 10.

Observe that T = T ? (and therefore τ̂t = τSBt = τ?t = pt for all t ≥ 0 and q̂ = qSB = q?) if and

only if λ = 0. This follows by comparing the first-order condition for the planner to those of firms.

In particular, consider the full Hamiltonian that incorporates the constraint on the evolution of the

stock of clean technology, which is

H̃t = qt [fc(kct)− kct] + (1− qt) [fd(kdt)− kdt]− q̇tΓ + pt [qtγkct + (1− qt)kdt] +Qtq̇t

and note that the first-order conditions H̃q̇t = Qt − Γ = 0 and Q̇t = −H̃qt + ρQt imply

fc(kc(τt))− kc(τt)− [fd(kd(τt))− kd(τt)] + ptΛ(τt)− ρΓ = 0, (B11)

with complementary slackness. Now we can see that this coincides with firms’ first-order conditions,∫ ∞
t

[πc(τs)− πd(τs) + τsΛ(τs)] e
−(ρ+λ)(s−t)ds ≤ Γ

(with equality if qt > 0) when τt = pt if and only if λ = 0. This proves the second part of the

proposition.

Otherwise, when λ > 0, (B11) illustrates that the planner prefers a tax policy that induces

convergence to qSB > q̂, and in particular, she will obtain strictly higher welfare by committing to

the strategy τSBt that maximizes welfare subject to (22) at TSB, i.e., subject to∫ ∞
TSB

Ψ(τSBt )e−(ρ+λ)(t−TSB)dt = Γ, (B12)
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in order to induce a transition qSB > q̂ on [TSB,∞), where TSB ≤ T . Note that τSBt ≥ pSBt for

all t ≥ 0, since any τ ′t < pt will reduce clean technology incentives by Ψ′ > 0 (Assumption 1′)

and reduce welfare by definition of pSBt . Finally, Assumption 2′ implies that τSBt > pSBt for some

t ∈ [TSB,∞) if (B12) holds, completing the proof of the proposition.

Proof of Proposition 12 (Dynamic Geoengineering Type I). (Taxes, clean technology).

Recall that Type I geoengineering corresponds to an increase in ξ, so that the damages function

now equals D(S − ξ). Differentiating the BGP equilibrium tax

τ̂ =
D′(S(τ̂ , q̂)− ξ)
ρ+ δ − αλ

.

with respect to ξ, we obtain

dτ̂

dξ
=

D′′(·)
ρ− g + δ

[
∂S

∂τ

dτ̂

dξ
− Λ

δ

dq

dξ
− 1

]
+

αD′(·)
(ρ− g + δ)2

dλ

dξ
(B13)

Noting that dλ/dξ = 0 because the supply of scientists is fixed, and dτ̂/dξ = 0, equation (B13)

implies that
dq̂

dξ
= −Λ

δ
< 0 and

dτ̂

dξ
= 0.

(Welfare). The derivative of flow utility from production with respect to q̂ is

fc(k̂c)− k̂c − (fd(k̂d)− k̂d)− ρΓ

which we can write as λΓ− Λτ̂ , or equivalently

λ

λ+ ρ
(πc − πd)− Λτ̂

since λ
λ+ρ(πc − πd) = λΓ via rearranging the condition that πc − πd = (ρ + λ)Γ. Total flow

environmental damages respond as

d

dξ
D(Ŝ − ξ) = −D′(·) +

dŜ

dξ
D′(·) = 0

using dŜ/dξ = 1.

Proof of Proposition 13 (Dynamic Geoengineering Type II). Now the total derivative

of the stationary farsighted Pigovian tax, τ̂ = (1− υ)(ρ− g + δ)−1D′(Ŝ), equals

dτ̂

dυ
= − D′(Ŝ)

ρ− g + δ
+ (1− υ)

D′′(Ŝ)

ρ− g + δ

[
∂S

∂τ

dτ̂

dυ
− Λ

δ

dq̂

dυ

]
+

αD′(Ŝ)

(ρ− g + δ)2

dλ

dυ

which, with dτ̂/dυ = 0 and dλ/dυ = 0, implies that

dq̂

dυ
= − 1

1− υ
δŜ

Λ

1

η
(B14)
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The total effect on the stock of carbon equals

(1− υ)
dŜ

dυ
=
D′(Ŝ)

D′′(Ŝ)
=
Ŝ

η
(B15)

so that the welfare-relevant flow term equals

−(1− υ)
dŜ

dυ
D′(Ŝ) +D(Ŝ) = D(S)− ŜD′(Ŝ)

η

Using dτ̂/dυ = 0 and dq̂/dυ from (B14), and using the fact that flow output shifts as(
λ

ρ+ λ
(π̂c − π̂d)− Λτ̂

)
dq̂

dυ
,

then

−Λτ
dq̂

dυ
=

δ

ρ− g + δ

SD′(S)

η

which we can combine with the previous expression, dividing by ŜD′(Ŝ),

dW

dυ
< 0 ⇐⇒ − δ

η

(
(ρ− g + δ)

λ

ρ+ λ

π̂c − π̂d
Λτ̂

)
− δ

ρ− g + δ

1

η
+

1

a
< 0

with a ≡ ŜD′(Ŝ)/D(Ŝ) > 1 as in the static case. This reduces to dW/dυ < 0 if and only if

η < ηII(λ) ≡ a
(
δ(ρ− g + δ)

λ

r + λ

π̂c − π̂d
Λτ̂

+
δ

ρ− g + δ

)
which yields the proposition.

B2 Alternative Specification of Environmental Damages

Abbreviating output (net of the fixed costs of clean technology) by

Y (k, q) = q(fc(kc)− kc − Γ)− (1− q)(fd(kd)− kd),

we let welfare equal

[1−D(S)]Y (k, q) (B16)

where D(·) is the same increasing, convex, and twice continuously differentiable damage function

as before. Firms of type j ∈ {c, d} access production technologies

[1−D(S)](fj(k)− k)

and the fixed cost of switching is [1−D(S)]Γ.

Lemma B3 (Pigovian Taxation) In economy B.2, optimal taxation satisfies

τ̂ = D′(S)Y (k, q). (B17)

B-8



Proof. Differentiate (B16) with respect to k to obtain

[1−D(S)][q(f ′c(kc)− 1) + (1− q)(f ′d(kd)− 1)]− Y (k, q)D′(S)(1− q + qγ) = 0.

At a per-unit carbon tax τ , each firm maximizes its profits [1−D(S)][fj(k)− k]− τγjk by setting

[1−D(S)][f ′c(kc)− 1] = γτ and [1−D(S)][f ′d(kd)− 1] = τ

so (B17) will implement the Pigovian allocation.

Lemma B4 (Equilibrium Technology) If

λ

1− λ
Γ < Λ

(
D′′(S)

D′(S)
+D′(S)

)
, (B18)

then the interior equilibrium (τ̂ , q̂) in economy B.2 is unique.

Proof. The proof of Proposition 2 (the interior equilibrium) carries through if τ̂ and q are still

strict strategic substitutes. Indeed, Ψ′(τ) > 0 as before, so the equilibrium IC is unique. However,

there may exist multiple q’s that satisfy this, since the second term in

∂τ̂

∂q
= −ΛD′′(S) +

∂Y

∂q
D′(S)

can make τ(q) not everywhere decreasing in q. However, as

∂Y

∂q
=

λ

1− λ
Γ− Λτ

in the interior, assuming (B18) will guarantee that τ ′(q) < 0.

What happens after geoengineering? When environmental damages affect production directly,

geoengineering’s effect on the stock of carbon is still weak, but is no longer exactly zero:

Proposition B1 (Geoengineering Type I) Suppose that Assumptions 1 and 2 hold. In econ-

omy B.2, consider a geoengineering technology improvement of type I that increases ξ by a small

amount dξ. Then we have

• dτ̂/dξ = 0 (there is no effect on the equilibrium carbon tax).

• dq̂/dξ = −dξ/Λ(τ̂) (investment in clean technology declines).

• dE/dξ = 1 > 0 (emissions increase, through lower q̂).

• dD/dξ = 0 (environmental damages remain constant).

• dW/dξ < 0 if and only if λ(πc − πd) > Λτ (welfare may decline).
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Proof. The incentive-compatible tax satisfies

τ̂ = Y D′(S − ξ),

so totally differentiating with respect to ξ and using that dτ̂/dξ = 0 in the interior yields

0 =
dY

dξ
D′(·) +

dS

dξ
Y D′′(·)− Y D′′(·)

or an increase in the stock of carbon (through q̂) by

dS

dξ
= 1− D′(·)

Y D′′(·)
dY

dξ
, (B19)

which differs from our benchmark case by the presence of the second term that depends on dY/dξ.

Welfare, which equals (1−D(·))Y , will shift as

dW

dξ
= (1−D(·))dY

dξ
− Y dD(·)

dξ
+ Y D′(·).

Noting that dD/dξ = [dS/dξ]D′(·), and using (B19), the direct geoengineering gain Y D′(·) cancels

with the first term of dS/dξ and the total effect on welfare reduces to

dW

dξ
=

(
1−D(·) +

(D′(·))2

D′′(·)

)
dY

dξ
,

and it is apparent that

dW

dξ
> 0 ⇐⇒ dY

dξ
= (λ(πc − πd)− Λτ) > 0,

which is the same condition in our benchmark economy.

The intuition is that exactly as before, the (IC) constraint still pins down τ̂ , so dτ̂ = 0. To

sustain the incentive-compatible τ̂ after an exogenous removal of dυ > 0 carbon from the initial

stock, emissions E need to increase to sustain the previous level of S, through smaller q. However,

with fewer clean firms, the economy incurs lower fixed costs, increasing output. On the other hand,

the optimal tax formula (B17) increases in output, which helps to increase the post-geoengineering

Pigovian price back to τ̂ . Hence emissions need not respond by “as much,” i.e., dE ∈ (0, dξ).

A type II modification will require a lower q to increase emissions and sustain the incentive-

compatible τ̂ , as exactly as in proposition 4. However, lowering q will affect total producer surplus,

which as in the type I comparative static will affect the tax level through the income effect. Our

analogue to Proposition 5 is therefore:

Proposition B2 (Geoengineering Type II in Economy B2) Suppose that Assumptions 1

and 2 hold. In economy B2, consider a geoengineering technology improvement of type II with

υ ∈ [0, 1), and let η = SD′′(S)/D′(S) be the elasticity of the marginal damage function. Then we

have
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• dτ̂/dυ = 0 (there is no effect on the equilibrium carbon tax).

• dS/dυ > 0 (the total stock of carbon increases).

• dq̂/dυ < 0 (investment in clean technology declines).

• dE/dυ > 0 (emissions increase, through lower q̂).

• dD/dυ > 0 if and only if η ≤ η∗ (environmental damage increases if the damage function is

not too convex), where η∗ ≥ 1.

• dW/dυ < 0 if and only if η ≤ ηII
B(λ) defined below (welfare may decline).

Proof. As before, dτ̂/dυ = 0. Differentiating

τ̂ = (1− υ)Y D′(·),

we obtain

0 =
dY

dυ
(1− υ)D′(S)− Y D′(S) + (1− υ)Y

dS

dυ
D′′(S),

from which we conclude that

dS

dυ
=
D′(S)/D′′(S)

1− υ
− D′(S)

Y D′′(S)

dY

dυ
. (B20)

Welfare satisfies W = [1− (1− υ)D(S)]Y , so

dW

dυ
=
dY

dυ
(1− υ)(1−D(S)) + Y D(S)− (1− υ)Y

dD(S)

dυ
,

and using that
dD

dυ
=
dS

dυ
D′(S)

and our formula for dS/dυ in (B20), we obtain

dW

dυ
=

(
1− (1− υ)D + (1− υ)

(D′(S))2

D′′(S)

)
dY

dυ
+ Y D(S)− Y 1

η
SD′(S)

so that the condition for environmental damages is the same as in the benchmark economy, and

the threshold for welfare to decline becomes

η < ηII
B(λ) ≡

(
a+

1− (1− υ)D(S)

SD′(S)

dY

dυ

)−1(
1 + (1− υ)

dY

dυ

1

Y

)
where dY/dυ = [λ(πc − πd)− Λτ ][dq̂/dυ], and a ≡ SD′(S)/D(S) > 1 as before.
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B3 Another Alternative Environmental Damage Specification

We next briefly discuss the robustness of our results to a specification in which environmental

damages directly affect consumption preferences. In particular, suppose now there exists a repre-

sentative household who consumes all of the output in each period,

C = q(fc(kc)− kc − Γ) + (1− q)(fd(kd)− kd) (B21)

and garners increasing, concave, and differentiable utility

U

(
C

D(S)

)
. (B22)

Differentiating (B22) with respect to kj , we obtain the first-order conditions

U ′(·)
f ′j(kj)− 1

D(S)
− U ′(·)γjD′(S)

C

[D(S)]2
= 0

for j ∈ {c, d}, which can be implemented as a decentralized equilibrium with a per-unit-carbon tax

of

τ̂ =
D′(S)

D(S)
C. (B23)

Observe that if we transform damages into D(S) = exp D̃(S), so that D′(S)/D(S) = D̃′(S), then

expression (B23) is exactly the tax as in economy B2. Moreover, since U ′ will not alter the sign

of dW , all of our results from economy B2 go through, except with the modified damage function.

Noting that in particular, the elasticity of D(S) = exp D̃(S) satisfies

η = SD′(S) +
D′′(S)

D′(S)
S,

the exponential transformation increases the curvature of our damages function.

B4 Concave Preferences

In the text, we focused on linear preferences, even in the dynamic model, which greatly simplified

the analysis. We now show that our results generalize when consumers have a concave utility

function, so that their dynamic preferences are given at each t by∫ ∞
t

U (Cs −AsD(Ss; ξ, υ)) e−ρ(s−t)ds,

where the utility function U(·) is increasing, twice continuously differentiable, and concave. The

specification where damages and consumption are additive arguments of U(·) is similar to Green-

wood et al. (1988). Our results can also be extended to different formulations, but those introduce

additional income effects, further complicating the relevant conditions. In addition, to sustain
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a BGP, we also assume a constant elasticity of marginal consumption (relative risk aversion),

θ = −xU ′′(x)/U ′(x), so that U can be represented by

U(x) =
x1−θ

1− θ

for θ 6= 1 and the limit U(x) = log(x) if θ = 1 (and θ = 0 recovers the linear specification of the

main text).

The household thus maximizes (B4)

1

1− θ

∫ ∞
t

(
C̃s

)1−θ
e−ρ(s−t)ds,

at each time t ≥ 0, where we define net consumption as C̃s = Cs −AsD(Ss; ξ, υ).

B4.1 Household Optimization

The Ramsey equation (derived from household intertemporal optimization with endogenous sav-

ings) yields a market interest rate of

rt = ρ+ θgt (B24)

where gt ≡ ˙̃Ct/C̃t denotes the growth rate of average net consumption, defined as C̃t = Ct −
AtD(St; ξ, υ). We derive (B24) in Appendix B4.7.

B4.2 Firms

Now that the interest rate differs in general from ρ, we must define firms’ value functions slightly

differently. Equation (20) for the value of a clean incumbent with quality n at time t becomes

Vct(n) = Et
[
An
∫ ∞
t

πc(τs)e
−rs(s−t)1{extant at s}ds

]
= An

∫ ∞
t

πc(τs)e
−(rs+λ)(s−t)ds,

(B25)

Likewise, the expected net present discounted value at t for a d-type firm with quality n becomes

Vdt(n) = sup
ν≥0

[
[Vc,t+ν(n)−AnΓ] e−

∫ t+ν
t (rs+λ)ds +An

∫ t+ν

t
πd(τs)e

−(rs+λ)(s−t)ds

]
(B26)

since they can switch at any time t+ ν ≥ t. With these new value functions, and their normalized

counterparts vct and vdt, R&D, input and clean technology switching decisions all go through just

as in the benchmark case.
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B4.3 Optimal Taxation

The planner maximizes household utility, (B4). The Hamiltonian which generalizes (24) of the

main text is

Ht(kt, St) = U
(
C̃t

)
− µt [Et − δSt] .

Optimal input decisions kct, kdt satisfy ∂Ht/∂kct = ∂Ht/∂kdt = 0, or

AtU
′(C̃t)

[
f ′d(kdt)− 1

]
= µt and AtU

′(C̃t)
[
f ′c(kct)− 1

]
= γµt,

which coincide with private firm input decisions when the planner levies a per-unit emissions tax

of µt/
(
AtU

′(C̃t)
)

. Consequently, we use the normalization

pt =
µt

AtU ′(C̃t)
,

which differs from the one in the main text only by the presence of the non-constant marginal

utilities. Along the equilibrium path, the shadow price of the stock of carbon µt will satisfy the

Euler-Lagrange condition ∂Ht/∂S = µ̇t − ρµt. The Pigovian shadow cost of carbon emissions is

identical to that of the main text, except with an endogenous interest rate (rt)t≥0. However, we

can weaken Assumption 3 of the main text to the following:

Assumption 3′ (Growth with Concave Preferences) (1− θ)αϕZ ≤ ρ+ δ.

Note that Assumption 3′ always holds if θ ≥ 1, regardless of the other parameter values.

Consequently,

Lemma B5 (Shadow Cost of Carbon with Concave Utility) Suppose Assumption 3′ holds.

Then, along any optimal path,

pt =

∫ ∞
t

D′(Ss)e
−(δ+rs−αλ)(s−t)ds, (B27)

for all t ≥ 0, where (rs)s≥0 denotes the Ramsey interest rate given by (B24).

Proof. See Appendix B4.7.

B4.4 Dynamic Equilibrium

We define an equilibrium in the concave economy exactly as in the text in section 3.5, except

appended with the natural condition that

• Given each of the other equilibrium objects, the interest rate r∗t satisfies (B24).
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Moreover, to be precise, we need to rewrite our assumption for interiority such that it takes

into account the dependence of farsighted Pigovian taxes on the interest rate.

Assumption 2′′ (Conditions for Dynamic Interior Equilibrium) For all t ≥ 0,

Γ ∈
(∫ ∞

t
Ψ(τ s)e

−(rs+λ)(s−t)ds,

∫ ∞
t

Ψ(τ s)e
−(rs+λ)(s−t)ds

)
where

τ t =

∫ ∞
t

D′
(
S0e
−δs +

∫ s

0
kd(τν)e−δ(s−ν)dν

)
e−(δ+rs−αλ)(s−t)ds

and

τ t =

∫ ∞
t

D′
(
S0e
−δs +

∫ t

0
kd(τν)e−δ(t−ν)dν + γ

∫ s

t
kc(τν)e−δ(s−ν)dν

)
e−(δ+rs−αλ)(s−t)ds,

and (rs)s≥0 satisfies (B24).

B4.5 BGP

Just as before, if the stock of carbon converges to some Ŝ, (31) will hold just as before for all

subsequent t hence. Hence growth reduces to as before

g = (A− 1)λ

and the interest rate (B24) simplifies to r̂ = ρ+ θαλ. The BGP farsighted Pigovian condition (32)

becomes

τ̂ =
D′(Ŝ)

δ + ρ− (1− θ)αλ
, (B28)

equation (22) becomes
Ψ(τ̂)

ρ+ (1 + θα)λ
= Γ, (B29)

and we obtain an analogue to Proposition 9.

Proposition B3 (Existence, Uniqueness of the BGP) Suppose Assumptions 1′, 2′′, and 3′

hold. Then there exists a unique interior solution (Ŝ, q̂, τ̂) to (31), (B28), and (B29).

Proof. Omitted.

B4.6 Geoengineering with Concave Preferences

We conclude by noting that the versions of the dynamic geoengineering propositions in the main

text, augmented to account for the endogenous interest rate dynamics, are substantively identical.
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B4.7 Proofs omitted above

Proof of the Ramsey equation (B24). Suppose that our household can save at a rate rt,

with savings at, and costate s(t). Then

ȧt = rtat −Atct +

∫ 1

0
Anit(f(kit)− kit)di,

where recall ct = Ct/At. Denoting normalized net consumption by c̃t = ct−D(St), the household’s

Hamiltonian may be written as

H =
1

1− θ
A1−θ
t (c̃t)

1−θ + s(t)

[
rtat −Antct +

∫ 1

0
Anit(f(kit)− kit)di

]
with discount rate ρ, or rather, since

A1−θ
t = exp{(1− θ)(A− 1)tλ},

we can write the transformed

H̃ =
c̃1−θ
t

1− θ
+ s(t)

[
rtat −Atct +

∫ 1

0
Anit(f(kit)− kit)di

]
with a transformed discount rate ρ̃ ≡ ρ+ (1−A)(1− θ)λ. The first-order savings conditions of H̃

are

Hct = c̃−θt −Ats(t) = 0 (B30)

ṡ(t) = −Hat + ρ̃s(t). (B31)

Differentiating (B30) with respect to time, we obtain

−θ(c̃t)−1−θ ˙̃ct = Atṡ(t) + (A− 1)λAts(t)

which we divide by Ats(t) to obtain via (B30)

ṡ(t)

s(t)
= −θ

˙̃ct
c̃t
− (A− 1)λ

so that, using Hat = rt, the definition of ρ̃, and the differential equation (B31), we obtain

−θ
˙̃ct
c̃t
− (A− 1)λ = −rt + ρ+ (1− θ)(1−A)λ.

Hence

rt = ρ+ θ
˙̃ct
c̃t

+ θαλ (B32)

is the equilibrium interest rate. Noticing that

˙̃ct
c̃t

=
˙̃Ct

C̃t
− (A− 1)λ
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yields equation (B24).

Proof of Lemma B5 (Shadow Cost of Carbon in GHH). In equilibrium, we can write

the necessary Euler-Lagrange condition ∂Ht/∂S = µ̇t − ρµt as

µ̇t = −AtU ′(C̃t)D′(St) + (ρ+ δ)µt.

Dividing this equation as before by AtU
′(C̃t), we obtain

µ̇t

AtU ′(C̃t)
= −D′(St) + (ρ+ δ)pt. (B33)

Recall our change-of-variables

pt =
µt

AtU ′(C̃t)

and note in particular that it satisfies

ṗt =
µ̇t

AtU ′(C̃t)
− µt(

AtU ′(C̃t)
)2

d

dt

[
AtU

′(C̃t)
]

=
µ̇t

AtU ′(C̃t)
− pt

(
θ

˙̃ct
c̃t

+ (1−A) (1− θ)λ
)

using
d
dt

[
AtU

′(C̃t)
]

AtU ′(C̃t)
=

d
dtA

1−θ
t

A1−θ
t

+
d
dt c̃
−θ
t

c̃−θt
,

and At = exp{tλ(A− 1)}. With (B32), equation (B33) becomes

ṗt = −D′(St) + (δ + rt − αλ) pt,

which with p0 determined by transversality gives (B27).
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