

Metals/Minerals 202 % US Import Dependence, Key Uses

100% Import Dependent

Arsenic	Lumber preservatives, pesticides, lead acid batteries, solar cells Electronic components, gas turbine alloys Pyrotechnics, ceramic magnets, drilling fluids	
Tantalum		
Strontium		
Scandium	Alloys, fuel cells, electronics	
Rubidium	Electronics, glass	
Rare Earths	Catalysts, ceramics, glass, alloys, metallurgy	
Niobium	Steel alloys	
Manganese	Steel production	
Indium	LCD screens, electrical components	
Graphite	Lubricants, batteries, fuel cells	
Gallium	steel making Integrated circuits, optical devices (LEDs)	
Fluorspar	Aluminum manufacturing, gasoline,	
Cesium	uranium fuel, refrigerants Oil/gas well drilling, fuel cells	
Yttrium	Catalysts, ceramics, metallurgy, jet engines	
Asbestos	Oil industry, rubber sheet, vehicle friction	
Mica (sheet)	Oil drilling, roofing, rubber products	

Note: Navy type indicates on USGS Critical List 2022 Red type highlights some key energy uses

Vanadium	96% Metal, steel
Tellurium	>95% cooling, ene
Bismuth	94% Used in med
Potash	90% Fertilizer, ch
Titanium*	>88% White pigme
Diamond	84% Computer cl
Zinc	83% Metal galva
Antimony	81% Flame retard
Silver	80% Electricity, e
Platinum	79% Catalytic ag
Rhenium	76% Lead-free ga
Cobalt	76% Rechargeab
Barite	>75% Oil/gas drill
Bauxite	>75% Cement, pet
Iron Oxide	>75% Concrete, co
Tin	75% Coatings &
Chromium	75% Stainless ste
Gold	>52% Electrical/el
 Tungsten	>50% Wear-resista
Germanium	>50% Fiber optics
Lithium	>50% Batteries, E
Nickel	>50% Steel alloys

96% Metal, steel, uranium alloys >95% Cooling, energy production, solar cells, cast iron production 94% Used in medical/ atomic research **90%** Fertilizer, chemical, & industrial apps 88% White pigment, metal alloys 84% Computer chips, O&G drilling, transportation 83% Metal galvanizing 81% Flame retardants, metal products, ceramics, glass **80%** Electricity, electricity conductivity, batteries, plastics **79%** Catalytic agents **76% Lead-free gasoline, super alloys** 76% Rechargeable batteries, superalloys >75% Oil/gas drilling Sources: USGS; Methodological Note to the >75% Cement, petroleum industries Inventory of Export **Restrictions on Industrial** >75% Concrete, construction materials Raw Materials 75% Coatings & alloys for steel *Titanium mineral concentrates 75% Stainless steel, other alloys >52% Electrical/electronics >50% Wear-resistant metals **50%** Fiber optics, solar cells **50%** Batteries, EVs

96 - >50% Import Dependent

Deep Dive: Minerals and Energy Security

US Metals, Minerals on Which the US 80 to 100% Import Dependent, Country Suppliers of US Market/% Total Imports from Country

Demand for Electrification/Transportation = \$10,000 per ton Copper

Green electrification related copper demand by region

Copper, 5 Year Price Chart

21%; transportation equipment, 19%; consumer and general products, 10%;

and industrial machinery and equipment, 7%.

Frik Els | April 13, 2021 | 2:16 pm

ENERGY FUTURES

Source: Woodmac, IEA, IRENA, ICA, CDA, Goldman Sachs Global Investment Research

Reference Frame: High Voltage Transmission Line Materials Needed by 2050

EIA: In 2016, there were 160,000 miles of high voltage transmissions lines

ENERGY FUTURES

Princeton NZA (E+RE pathway with base land availability): The US will need a 75% increase in transmission capacity by 2030 to meet net zero targets

Assume 60% of that capacity is achieved by adding new miles (the other 40% is met with technology

improvements)

60% of 96,000 translates to 72,000 miles of new high voltage transmission lines by 2030

HANDAKOTA

MINNESO

MONTANA

OLORADO

There are between 5 and 5.6 towers per mile on a high voltage transmission line (credible numbers range from 5 to 5.6) Transmission towers are made of steel, aluminum and copper., among other materials. So are transmission lines. So are wind turbines. So are cell towers. So are EVs. So are EV charging stations

At 5 towers/mile, we will <u>need 360,000</u> <u>transmission towers by</u> <u>2030</u>

https://www.eia.gov/todayinenergy/detail.php?id=27152